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Abstract. In this paper, we demonstrate a method for transfer learn-
ing with minimal supervised information. Recently, researchers have pro-
posed various algorithms to solve transfer learning problems, especially
the unsupervised domain adaptation problem. They mainly focus on how
to learn a good common representation and use it directly for down-
stream task. Unfortunately, they ignore the fact that this representation
may not capture target-specific feature for target task well. In order to
solve this problem, this paper attempts to capture target-specific fea-
ture by utilizing labeled data in target domain. Now it’s a challenge that
how to seek as little supervised information as possible to achieve good
results. To overcome this challenge, we actively select instances for train-
ing and model adaptation based on MMD method. In this process, we
try to label some valuable target data to capture target-specific feature
and fine-tune the classifier networks. We choose a batch of data in tar-
get domain far from common representation space and having maximum
entropy. The first requirement is helpful to learn a good representation
for target domain and the second requirement tries to improve the clas-
sifier performance. Finally, we experiment with our method on several
datasets which shows significant improvement and competitive advan-
tage against common methods.

Keywords: Active sampling · Maximum mean discrepancy ·
Transfer learning · Characteristics · Uncertainty

1 Introduction

Recent years, deep learning have made great success in various applications
across many fields. For example, there have been many CNN models such as
AlexNet [12], GoogLeNet [21], ResNet [7] and so on, which have improved clas-
sification accuracy on images datasets. It’s well known that training deep convo-
lutional neural networks always need numerous labeled data. However, in many
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cases, there’re not enough labelled data due to expensive cost and huge time con-
sumption. There are two paradigms-transfer learning and active learning-which
can effectively overcome that challenge.

Transfer learning or domain adaptation [16] tries to tackles this problem
by transferring knowledge from a label-rich and similar domain (known as
source domain) to a label-scarce domain (known as target domain). At present,
researchers mainly devoted much attention to unsupervised domain adaptation
assuming that there are sufficient labeled data in source domain and no labeled
data in target domain. However, different domains have their own characteristics
so that the model learned only from labeled source data can’t generalize well to
the target domain. It’s easily to consider obtaining labeled target domain data
to solve this problem. So, the following question is can we use as small amount
of supervised information of target domain as possible while keeping the model’s
performance improving. That encourages us to combine transfer learning with
active learning in CNN model.

Active learning [19] is one of effective paradigms to reduce the labeling cost.
Its basic assumption is that different data has different amount of information.
Therefore, people can query the most valuable instance to label and obtain
considerable performance’s improvement. Based on this idea, various criteria
have been proposed to evaluate data’s value. For instance [10], informativeness
and representativeness are two frequently used criteria to choose data. [1,2]
proposed an method that select data based on marginal distribution matching.
When it comes to transfer learning, we know that there must exist distribution
shift. So, many traditional active learning methods can’t adapt to such case well
while distribution based sampling strategy will be a good choice. What’s more,
our classifiers are typical CNN models. Hence, researchers should consider both
network architecture and datasets shift when designing strategy for selecting
data. Recently, there are several works [3,24] to combine active learning and
deep neural networks. However, their methods can not be adapted to transfer
learning models well and thus may lead to waste of annotated data by learning
from scratch.

In common transfer learning process, initially, we can use pre-trained model
as a backbone and then use labeled source data and unlabeled target data to
update the parameters of the model. These two steps are so called unsupervised
domain adaptation. But it’s well known that the insight behind transfer learn-
ing or unsupervised domain adaptation is we can learn the common parts from
similar domains. So, if the target domain is not much similar to source domain,
the learned common representation may be unsatisfactory for target task. To
address this problem, we attempt to provide as little supervised information
in target domain as possible to capture the good representation beneficial to
target domain task. In this paper, we propose to a new method based on max-
imum mean discrepancy (MMD) [6,9], which can effectively select data based
on distribution to train models. The intuition behind the method is that we can
choose data in target domain most dissimilar to source domain to capture the
distinctive information in target task.
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Eventually, We perform experiments on several datasets. The results demon-
strate that our approach can effectively learn distinctive representation for target
task and significantly improve accuracy with lower labelling cost comparing with
other method such as random sampling, entropy-based sampling and ADMA
[11]. The main contribution of our paper are summarized as follows:

– We utilize MMD method which can identify data’s distinctiveness for target
task, and based on this we can choose the most valuable data for query.

– Our selecting strategy can adapt well to distribution shift scenario.
– We evaluate our approach on various datasets and achieve a satisfactory

results.

The rest of this paper is organized as follows. In Sect. 2, we presents a brief
review of related work. Section 3 introduces the background knowledge of MMD.
Section 4 discusses the detailed components of our approach and the correspond-
ing algorithm. Section 5 demonstrates the experimental results and the corre-
sponding empirical analysis. Section 6 makes a conclusion of this paper.

2 Related Work

Domain adaptation is one of hot topics in transfer learning, especially unsuper-
vised domain adaptation(UDA) which attracts many people’s attention. Towards
transfer learning paradigm, it aims to match distributions between source data
and target data with smaller loss after feature transformation. To tackle this
problem, the core is how to measure the difference or loss between source domain
and target domain after feature transformation. There are about three ways to
deal with it—discrepancy loss, reconstruction loss and adversarial loss. The first
one [14,15,23] often utilize MMD criterion, MMD computes the norm of the dif-
ference between kernel mean embedding in two domains. The DDC method [23]
shares common features in low level across different domains but adds adaptation
layers in high level layers using MMD to minimize distance between two domains.
The deep adaptation network (DAN) [14] uses MMD when task-specific layers
embedded in a RKHS where the mean embedding of different domain distribu-
tions can be explicitly matched. But the method only considers the marginal
distribution matching. To deal with this problem, joint adaptation networks
(JAN) [15] was proposed to learn a transfer network by aligning joint distribu-
tions of multiple domain-specific layers across domains based on a joint MMD
criterion. The second [5] proposed an auto-encoder based framework for domain
adaptation by simultaneously minimizing the reconstruction loss of the auto-
encoder and the classification error. The last [4,8,22] using adversarial method
currently is the mainstream, which has chosen an adversarial loss to minimize
domain distribution shift distance. In this method, the network adds a module
discriminator that discriminates the learned representation coming from target
data or source data. If the discriminator can’t distinguish well, then we can
admit that source domain and target domain are aligning. For instance, the
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DANN [4] introduces a domain classifier with binary labels to distinguish the
source domain from target domain to learn invariant representation.

Though there are have been extensive prior work on UDA, some researchers
have noted that if we can learn the difference or distinctiveness for target task,
then the performance will make a step forward. Prior mainstream domain adap-
tation approaches tied weights of source and target domain on the model. Such
as DANN [4,20], source domain and target domain learned the feature repre-
sentation through the same convolutional layers that means both of them learn
the representation by the same way. In intuition, target domain dataset learning
representation in such way may lose its distinctive information. To reform such
network architecture, the ADDA [22] method designs a new adversarial training
networks that source domain and target domain have their own mapping net-
works and share common label classifier. Through different convolutional layers,
the extracted feature can maintain domain-specific information. [18] introduce
a new approach that attempts to align distributions of source and target by uti-
lizing the task-specific decision boundaries. It firstly maximizes the discrepancy
between two classifiers’ output to detect target samples far from the support of
source, then feature generator learns to generate target features near the sup-
port to minimize the discrepancy. Such two methods above don’t utilize any
supervised information, so we can’t be sure of the quality of learned represen-
tation. But the following tries to use as little supervised information as possible
to achieve significant improvement in performance.

[11] proposed ADMA algorithm that iteratively selected data according to
its distinctiveness and uncertainty. Its main contribution is introducing a novel
criterion distinctiveness to measure the ability of an instance on improving the
representation quality of the neural network for target task. ADMA aims to use
a few labeled data to update the parameters of pre-trained model but in some
extend, it doesn’t care much about domain distribution shift. [1] is one of classical
work about combining transfer learning and active learning, which selects data
and adjusts weights simultaneously. But noticing that transfer learning based on
endowing instance with weight is not the best method. What’s more, the method
is built on the shallow model which can not model for complex situation well.
Our approach adopts part of this paper’s basic idea and designs a novel criterion
which can be used in deep CNN models.

3 Preliminary

3.1 Kernel Embedding of Probability Distributions

Given any positive definite kernel function k : X × X → R, there exists a
unique reproducing kernel Hilbert space(RKHS) H which is a function space.
Let f : X → R where evaluation can be written as an inner product, specifically,
f(x) = <f, k(·, x)>H, for all f ∈ H, x ∈ X . Furthermore, if a probability
distribution P was given, then its kernel mean embedding into H is defined as:

μP � EP [f(x)] =
∫

X
f(x) dP (x)
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Considering a dataset X = x1, · · · , xn drawn from P(x), then its empirical kernel
mean embedding is

μ̂P =
1
n

n∑
i=1

f(xi)

3.2 Maximum Mean Discrepancy(MMD)

Given observations Xs = {xs
1, · · · , xs

ns
} and Xt = {xt

1, · · · , xt
nt

} drawn from
distributions P(X) and Q(X) respectively. Maximum Mean Discrepancy(MMD)
used as a test statistic in a two-sample test which rejects or accepts the null
hypothesis P = Q. The basic idea behind MMD is that if two distributions are
identical, all of the statistics are the same. We define the MMD and its empirical
estimation as:

MMD[P,Q] = sup
f∈H

‖Exs∼P [f(xs)] − Ext∼Q[f(xt)]‖2H (1)

MMD[Xs,Xt] = sup
f∈H

‖ 1
ns

ns∑
i=1

f(xi) − 1
nt

nt∑
j=1

f(xj)‖2H (2)

where H is an universal RKHS that is rich enough to distinguish two distribu-
tions. From the formula, we can see the MMD is defined as the squared distance
between the mean embedding. [6] gave the theoretical result that P = Q if and
only if MMD[P,Q] = 0. Formula (2) is an unbiased estimate of formula (1). In
practice, we can extend the formula (2) as the following result:

MMD[P,Q] =
1
n2

s

ns∑
i=1

ns∑
j=1

k(xs
i , x

s
j)+

1
n2

t

nt∑
i=1

nt∑
j=1

k(xt
i, x

t
j)−

2
nsnt

ns∑
i=1

nt∑
j=1

k(xs
i , x

t
j)

(3)
where k is a kernel function in H.

4 The Proposed Approach and Criteria

Let Xt = {xt
i}nt

i=1 denotes the unlabelled target domain with nt instances and
the model in iteration t will be denoted as Mt. In this paper, we perform batch-
mode active learning. At each iteration, we will select a small batch of instances
(batchsize = b) Q = {xt

i}b
i=1 for querying their labels. We will use each batch

of data to retrain the current model to update the parameters. To improve the
neural network’s performance with less cost, we must consider two points. First
one is the instance’s contribution for learning target-specific feature. Second
point is the instance’s contribution for learning classifier’s distinctiveness.

Comparing with conventional methods of active learning strategy, we should
consider distribution shift. In many UDA approaches, we can align the distri-
butions between source domain and target domain transformed or mapped by
neural networks. But it’s worth noting that specific features for target task are
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ignored by many UDA algorithms. Furthermore, without relational labeled data,
it’s hard to capture the specific features. In order to be from good to better, we
query as few instances as possible for labeling. In each iteration, we aim to
select a small batch of data and we hope there exists vast difference between
such selected instances and source domain instances. Because, the intuition tells
us that vast difference may promote to learn specific features by such instances
in target domain. MMD is a powerful tool to measure the distance between two
different distributions. We can evaluate the instances’ contribution to specific
features by this tool. Simultaneously, the uncertainty of instance should is nec-
essary to consider. Combining such two criteria, we can evaluate each batch of
instances’ value well. The following is concrete formula for such two criteria. For
the sake of writing conveniently, the symbol xs

i , xt
j are not the original data in

domains but the features extracted by convolutional layers.

4.1 Characteristics

To describe the instance’s ability of learning target-specific feature representa-
tion, we introduce the characteristics as an index.

‖ 1
ns

ns∑
i=1

φ(xs
i ) − 1

b

nt∑
j=1

αjφ(xt
j) ‖2H, αj ∈ {0, 1}

This formula compute distance between a batch of b instances and source
domain data. If we minimize the index that means we hope to find most similar
instances to source domain data. It will be beneficial for learning the common
representation. In this paper, we solve the problem that we have been learned a
good common representation and aim to capture the specific features for target
task. So, we can maximize characteristics to find instances in target domain
dissimilar to source domain distribution. Actually, the maximal value is hard or
impossible to find. In practical computation, we will use approximate point-wise
computational method to find such b instances. The detailed explanation will be
occurred in the next content.

4.2 Uncertainty

To combine with conventional active sampling strategy, we consider the uncer-
tainty based method. Uncertainty is a commonly used criterion to evaluate how
uncertain the prediction of the model for a given instance. In this paper, we adopt
the maximum information entropy as our evaluation criterion. Of course, you
can use any other methods such as margin-based or low-confidence approaches.
Assume that there are |Y| classes for target task. Then the information entropy
can be written as:

H(x) = −
|Y|∑
i=1

pilog(pi)

where the pi is the corresponding probability of class i.
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4.3 Combination

Now combining such two criteria, we can get the following objective function:

max
α

‖ 1
ns

ns∑
i=1

φ(xs
i ) − 1

b

nt∑
j=1

αjφ(xt
j) ‖2H +

nt∑
j=1

αjH(xt
j)

s.t.
nt∑

i=1

αi = b

αi ∈ {0, 1}

(4)

where H(xt
j) is the corresponding entropy of xt

j towards the classifier. It’s easy
to extend the objective function as the following form:

max
α

1
n2

s

ns∑
i=1

ns∑
j=1

k(xs
i , x

s
j) +

1
b2

nt∑
i=1

nt∑
j=1

αiαjk(xt
i, x

t
j)

− 2
nsb

ns∑
i=1

nt∑
j=1

αjk(xs
i , x

t
j) +

nt∑
j=1

αjH(xt
i)

s.t.
nt∑

i=1

αi = b

αi ∈ {0, 1}

(5)

α = (αi, · · · , αnt
)T . Dropping the constant term, formula (5) can be rewritten

as :

max
α

1
b2

αT Kt,t α − 2
nsb

1T
ns

Ks,tα + H(Xt)T α

s.t. 1T
nt

αi = b

αi ∈ {0, 1}
(6)

The formula (6) is similar to convex quadratic programming, unfortunately,
it can’t be sufficient for QP’s conditions. The constraints make the problem be
an integer programming problem. Furthermore, the key point is the objective
function is expecting for a maximum value and Kt,t is a positive matrix. So it’s
not a conventional convex optimization problem. And if we relax the constraint
αi ∈ {0, 1} to be a linear inequation αi ∈ [0, 1], then the maximal value is
impossible or reaches at boundary. To escape of this dilemma, we propose a
approximate method to find a suboptimal solution. Looking back to the formula
(5), the first term is a constant and the second term measures the similarity
of data pairs in selected dataset Q, the next term measures the similarity of
instances in Q with data in Xs and the last term evaluates the entropy. So
towards instances in Q, if each of them is much similar with other data in Q and
dissimilar with data in Xs simultaneously has a large information entropy then
such batch of b instances are good enough to label. Actually, the second term’s
computation is unbearable because it has to compute C2

bC
b
nt

of times. So, we
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can drop this term and consider the third term that means selecting b instances
dissimilar with source domain data then we have a larger possibility to make
function (5)’s value larger. So each data’s characteristics in target domain can
be reduced to:

characteristics(xt
i) = −

ns∑
i=1

k(xs
i , x

t
j)

Actually, without considering the constant term, the definition is equal to:

‖ 1
ns

ns∑
i=1

φ(xs
i ) − φ(xt

j) ‖2H

4.4 Practical Computation

We define each data’s score as:

S(x) = λ · characteristics(x) + (1 − λ)uncertainty(x)

Here, we introduce a balanced factor λ which is relational with iterations. As dis-
cussed before, characteristics measures the ability of capturing specific features
for target task and uncertainty measures the ability of improving the classifier’s
performance. At the start of iterations, the key point is adapting the feature
extractor—convolutional layers and assures features extracted can be beneficial
to target task. But with the progress of iterations, such feature extractor is good
enough to extract features for target task. If the selected data is still to change
the feature extractor then classifier’ performance will be degraded. At this time,
uncertainty need more attention. Hence, the dynamic trade-off is necessary.

Algorithm: AL MMD

Input:
Xt: Unlabeled target dataset
Mt: the model in iteration t
M0: the initial model trained by domain adaptation methods
Initialization:
Use DANN algorithm to get the initial model M0

While t < iterations :
For each instance in x ∈ Xt

compute x′s transformation after convolutional layers x = conv(x)
compute characteristics(x) = −∑ns

i=1 k(xs
i , x)

compute uncertainty(x) = −∑|Y|
i=1 pilog(pi)

compute S(x) = λ · characteristics(x) + (1 − λ)uncertainty(x)
End For

Select top b largest S(x) in target domain for Q
Query such b instances’ labels and remove Q from Xt

Fine-tune the model Mt with Q
End While
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5 Experiments and Results

We perform our proposed approach on two popular image datasets compar-
ing with maximum entropy strategy, random sampling strategy. Towards active
learning, we know a good initial model M0 is necessary. Models trained by var-
ious UDA algorithms can be qualified for this task. In this paper, we choose
DANN [4] to train our initial model. Based on it, we use AL MMD to select
instances with larger characteristics and uncertainty to fine-tune the initial
model. The following are two different datasets and corresponding results.

5.1 Datasets

MNIST and MNIST-M. Our first experiment deals with the MNIST dataset
[13] (as source domain). MNIST-M (as target domain) is a dataset that MNIST
blends digits with color photos.
Office-31 [17] is a standard dataset for domain adaptation, which consists of
3 domains Amazon(A), Webcam(W), and Dslr(D). Each contains images from
amazon.com, or office environment images taken with varying lighting and pose
changes using a webcam or a dslr camera, respectively. And it includes 4652
images with 31 classes. In this dataset, we do two transfer experiments Amazon
→ Dslr and Dslr → Webcam.

Fig. 1. Dslr → Webcam.

http://amazon.com
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Fig. 2. MNIST → MNIST-M

5.2 Results

In MNIST → MNIST-M transfer experiment, we use LeNet as our backbone.
In Office-31 transfer experiment, we use pre-trained AlexNet as our backbone.
Then we use DANN algorithm to update weights to get initial model. Eventually,
we compare our method with random sampling and entropy-based sampling.
Table 1 and Fig. 1 were the results in MNIST dataset. Table 2 and Fig. 2 were the
results in Office-31. The results show that our methods have achieved superior
performance. From the figure, you will find that at the start of iterations, results
of entropy sampling and random sampling are so volatile. On the contrary, our
method is stable comparing these two methods. According to our method’ idea,
we aim to learn good representation for target task so that we need less data
to modify the parameters. But towards another two methods, if the learned

Table 1. Accuracy on MNIST → MNIST M(%)

Methods Number of queried instances

20 50 80 110 140 170 200 230

AL MMD 47.600 64.400 70.100 73.066 77.714 78.177 79.920 77.000

Random sampling 46.400 46.720 59.120 66.480 68.960 68.320 72.960 70.320

Entropy sampling 44.000 48.000 54.640 65.520 67.043 71.440 75.360 79.440
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Table 2. Accuracy on Dslr → Webcam(%)

Methods Number of queried instances

30 50 70 90 110 130 150

AL MMD 71.446 79.245 87.044 88.0427 90.440 89.685 93.962

Random sampling 72.410 71.404 73.123 78.867 81.425 82.180 85.283

Entropy sampling 60.025 56.654 67.169 73.283 79.597 79.371 89.590

representations are not proper, the classifier needs more data to modify and the
corresponding curve are much more volatile.

6 Conclusion and Future Work

In this paper, we design an active sampling strategy based on MMD to
select valuable data in transfer learning process. We propose a new criterion
characteristics to select data that can capture target-specific feature well. And
the aforementioned experiments have shown our method’s efficacy. Through this
method, we can find MMD is a powerful tool. In the feature work, We can also
filter the data in source domain similar to target domain at the beginning. It
can effectively resist the impact of noisy data. What’s more, we hope to seek for
an efficient and scalable algorithm to extend our method to larger datasets.
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