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Abstract. Identifying the sources of epidemic spreading is of critical
importance to epidemic control and network immunization. However, the
task of source identification is very challenging, since in real situations
the dynamics of the spreading process is usually not clear. In this paper,
we formulate the multiple source epidemic spreading process as the mul-
tiple random walks, which is a theoretical model applicable to various
spreading processes. Considering the different influence of distinct epi-
demic sources on the observed infection graph, we derive the maximum
likelihood estimator of the multiple source identification problem. Sim-
ulation results on real-world networks and network models, such as the
Price model and Erdös-Rényi (ER) model, demonstrate the efficiency of
our estimator. Furthermore, we find that the efficiency of our estimator
increases with the enhancement of network sparsity and heterogeneity.

Keywords: Source identification · Random walk · Maximum
likelihood (ML) · Network heterogeneity

1 Introduction

Epidemic spreading is an universal process in nature and man-made systems,
such as the spread of cyber viruses in communication networks, rumors in social
networks and diseases in biological networks. Identifying the sources of these
harmful spreading processes is of practical interest to researchers as well as sys-
tem administrators for forensic purposes. In addition, early recognition of the
epidemic sources helps to block the epidemic spreading promptly and eventually
decrease the loss. Accurately identifying the sources of epidemic spreading is a
very challenging task, since we usually have very limited information, such as
the observed network structure and states of nodes. A more relaxed problem
is to estimate the likelihood of nodes being the spreading sources based on the
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maximum likelihood estimate (MLE) [1,2]. In recent years, many source identi-
fication methods for this problem have been proposed. A large portion of them
is based on some sort of node centrality. For example, Shah et al. proposed the
first algorithm of source identification according to the rumor centrality [3–5].
Later, Luo et al. extended the work of Shah to the case of multiple sources [6–8].
Zhu et al. presented a novel identification method based on the Jordan infection
center [9,10]. By calculating the dynamical age of nodes in the infection graph,
Fioriti et al. obtained that old nodes are more likely to be the infection sources
than young nodes [11,12]. Moreover, Comin provided an identification algorithm
based on the unbiased betweenness centrality [13], and then Zang extended this
algorithm to the multiple source scenario [14].

In addition to the centrality-based methods, there are some other remarkable
identification methods. For instance, Lokhov et al. gave the dynamic message-
passing (DMP) algorithm to estimate the likelihood of every node [15]. Altarelli
et al. proposed the belief propagation algorithm based on the factor graph to
infer the origin of an epidemic [16]. Antulov-Fantulin et al. used the Monte-
Carlo method to simulate the possible propagation process to conjecture the
source [17]. Prakash et al. proposed the NetSleuth algorithm which transforms
the source identification problem into an optimization problem that solves the
minimum description length [18,19]. Most of these methods depend on some
sort of approximation in the construction of maximum likelihood probability,
and in most of the cases, they require either large computational complexity
to find near-optimal solutions, or simplified heuristics to achieve suboptimal
performance.

Random walk is a general process that can be used to describe many diffusion
processes on networks. In particular, the spread of some viruses in reality can be
modeled as random-walk diffusion, such as the spread of Bluetongue virus driven
by the random movements of insect vectors and the cyber virus driven by the
random transmission of information packets. Most recently, Abigail et al. pro-
posed a single source identification algorithm by considering the random walk of
virus [20]. Their calculation takes account all the possible spreading paths, while
the previous work considers only the shortest paths or some high-probability
paths. Their simulation results on the food supply network data demonstrated
the efficiency of the algorithm.

Enlightened by Abigail’s work, we investigate the case of multiple infection
sources in networks. It is apparent that the source of an infected node can be
anyone in the source set. Different source nodes have different possibilities to
infected a node. Accordingly, in the calculation, we provide two ways to approx-
imate this possibility. We further calculate the likelihood of a candidate set to
be the source by considering all the possible infection paths from the set, and
obtain our maximum likelihood estimator. The set of maximum likelihood is
supposed to be the source.

To validate our estimator, we apply it to the complex network models, such as
the ER and Price models, and some real-world networks. Source sets of two and
three nodes are considered. The experimental results demonstrate the efficiency



Identifying Sources of Random Walk-Based Epidemic Spreading in Networks 377

of our estimator. Furthermore, we observe that the efficiency of our estimator
increases with the enhancement of network sparsity and heterogeneity.

2 Problem Formulation and Our Method

We consider the problem of identifying multiple infection sources. Previous work
usually uses the susceptible-infected (SI) model to describe the virus spreading
process. Differently, we consider the diffusion-based spread of virus. In particular,
we assume that the spread of virus is based on multiple random walks (simul-
taneous random walks starting from multiple sources). In this section, we first
present our diffusion model, and then derive the maximum likelihood estimator
of our model.

2.1 Diffusion Model

Let G(V,E) be a directed graph, where V and E represent the set of all nodes
and the set of all edges, respectively. Assume that the set of terminal nodes,
which have zero out-degree, is VT , and the set of non-terminal nodes is VN .
We randomly select m (> 1) non-terminal nodes to be the infection sources,
which form the source set s∗ = {s1, s2, . . . , sm},∀si ∈ VN . At the beginning,
every infection source propagates one copy of the virus to one of its neighbor
nodes. The movements of different virus copies are assumed to be independent
and identical random walks. A node is infected if it has ever been visited by the
virus; otherwise, it is healthy, while susceptible to the virus. We do not consider
the recovery of infected nodes. At each time step, every infected node spreads
one copy of virus to one of its neighbor nodes. After a period of time, we observe
that the set of infected terminal nodes is Θ = {o1, o2, . . . , oK},∀ok ∈ VT . Our
aim is to estimate the source set s∗ based on the set of infected terminal nodes
Θ.

Since the movement of virus copy is a random walk process, i.e., Markov
process, each neighbor of an infected node will receive the virus copy with equal
probability. For instance, if the out-degree of the infected node i is ki, then its
neighbor node j receives the virus copy with probability pij = 1/ki. Considering
all node pairs, we have the one-step probability transition matrix P , of which
the element is pij . We further partition matrix P into a 4×4 block matrix, which
is as follows:

P =
[

PN PT

0 IT

]
, (1)

where PN is the |VN | × |VN | submatrix concerning the transition probabilities
between non-terminal nodes, and PT is the |VN | × |VT | submatrix, which con-
sists of the transition probabilities from non-terminal nodes to terminal nodes.
The submatrix IT is an identity matrix of order |VT |, since we assume that the
self-transition probability of a terminal node is 1. Note that the transition prob-
ability from terminal node to non-terminal node is 0, which corresponds to the
zero submatrix of P . According to the principle of Markov process, the n-step



378 B. Qin and C. Pu

transition probability is the nth power of the one-step transition matrix. For
instance, the n-step transition probability from node i to j is {Pn}ij .

2.2 Multiple Source Estimator: Maximum Likelihood (ML)

In the source identification problem, the available information is the network G
and the set of infected terminal nodes Θ. We utilize the maximum likelihood
estimate to infer the set of infection sources, which is expressed as

ŝ = arg max
s∈Ω

P (Θ|s∗ = s), (2)

where Ω represents the set of all possible combinations of m non-terminal nodes,
and s is a candidate source set. Equation (2) implies that our target set is the
one which maximizes the condition probability of the set of infected terminal
nodes given the candidate source set.

To facilitate the calculation of P (Θ|s∗ = s), we make the following denota-
tions:

– γsok
: A path starting from an arbitrary node in set s to an infected terminal

node ok, ok ∈ Θ.
– Γsok

: The set of all paths starting from nodes in set s to the infected terminal
node ok, Γsok

= {γsok
}.

– πs: A specific permutation of K paths, which start from nodes of set s to the
K infected terminal nodes (one-one correspondence), πs = (γso1 , . . . , γsoK

).
Actually, πs is an element of the Cartesian product of all {Γsok

}ok∈Θ, i.e.,
πs ∈ Γso1 × · · · × ΓsoK

.
– Πs: The set of all possible path permutations {πs}, i.e., Πs = {πs} = Γso1 ×

· · · × ΓsoK
= {(γso1 , . . . , γsoK

) : γsok
∈ Γsok

}.

Similar to [20], we consider all possible spreading paths starting from the nodes
of the given candidate source set. Each path permutation πs has some probability
to be the actual one. Thus, we have

P (Θ|s∗ = s) =
∑

πs∈Πs

P (πs|s)

= P (Πs|s)
= P (Γso1 × · · · × ΓsoK

|s).
(3)

Since we assume that the virus copies perform random walks independently, the
infection of terminal nodes is also independent. Thus, we have

P (Γso1 × · · · × ΓsoK
|s) = P (

∏
ok∈Θ

Γsok
|s)

=
∏

ok∈Θ

P (Γsok
|s),

(4)
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where P (Γsok
|s) is equal to the sum of probabilities of all possible infection paths

starting from set s to node ok,
∑

γsok
∈Γsok

P (γsok
|s). Combining (3) and (4), we

can get [20]:
P (Θ|s∗ = s) =

∏
ok∈Θ

P (Γsok
|s), (5)

In order to calculate P (Γsok
|s), we need to enumerate all possible paths.

Although we use Γsok
to indicate all paths of source set s infecting ok, actually

ok is infected by a certain node or several nodes in the collection s and the
probability that different node in s infects ok is different. So we have the following
definition:

P (Γsok
|s) =

|s∗|∑
i=1

P (Γsiok
|si)P (si|s). (6)

Therefore, P (Γsok
|s) can be expressed as

P (Γsok
|s) =

|s∗|∑
i=1

∞∑
n=0

∑
l∈VN

psi
p
(n)
sil

plok
, (7)

where psi
represents the probability that among the |s∗| source nodes, node si

infects terminal node ok. p
(n)
sil

denotes the probability that source node si infects
non-terminal node l in exactly n steps, and it equals the value of the (si, l)th
element of matrix (PN )n. plok

represents the probability that non-terminal node
l infects terminal node ok in exactly one step, and it is equivalent to the value
of the (si, l)th element of matrix PT . The right side of Eq. (7) indicates that we
consider all spreading paths from a node of the source set to a terminal node
and the probability of the former to be the exact source node of the latter.

In Eq. (7), psi
is hard to obtain, and its value might be different for different

nodes in set s. Here we propose two approximation methods of psi
. The first

one is based on the transition probability matrix P . We assume that psi
is

proportional to the sum of one-step transition probabilities to all the terminal
nodes, which can be written as

psi
=

∑
ok∈Θ(p(1)siok + ε)∑|s∗|

j=1

∑
ok∈Θ(p(1)sjok + ε)

, (8)

where p
(1)
siok represents the (si, ok)th element of matrix P . ε is a small positive

number to ensure the denominator is non-zero. In non-sparse networks, this
approximation method works well. However, in sparse network, many elements
of the one-step transition matrix is zero, and in this case psi

will be equal for
all the source nodes. This is contradictory to the assumption that each node in
s might has different possibility to be the source.

To better quantify the possibility of a node to be the source, we propose
another approximation method, which considers the mean first passage time
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(FPT) [21] of a random walk. We assume that psi
is proportional to the reciprocal

of the sum of FPT from si to all the terminal nodes, which is

p
′
si

=
1/

∑
ok∈Θ tsiok∑|s∗|

j=1 1/
∑

ok∈Θ tsjok

, (9)

where tsiok
is the FPT from node si to node ok. The smaller tsiok

, the more
likely that si is the source. The pseudocode of FPT calculation is shown in
Algorithm 1.

Algorithm 1. FPT Calculation
1: Input: directed graph G(V,E), iteration times n, diffusion time t, source node si,

target node ok.
2: for i := 1 to n do
3: for j := 1 to t do
4: for each non-terminal node do
5: if the node is infected then
6: Randomly select a neighbour node to infect.

7: End If
8: if node ok is infected then
9: Record the current time as the FPT of this iteration, and cease this

iteration.
10: End If
11: End For
12: End For
13: if there is no path between si and ok then
14: tsiok := t.

15: End If
16: End For
17: Calculate the mean of all iteration results to get tsiok .
18: Output: tsiok .

Furthermore, we can get the matrix form of Eq. (7)

A = (
|s∗|∑
i=1

Pwi
)

∞∑
n=0

Pn
NPT , (10)

where Pwi
is a |C|s∗|

|VN || × |VN | matrix. It is apparent that the quantity of rows in
this matrix represents the quantity of possible combinations of all non-terminal
nodes. Let s̄ be a certain source node combination and s̄i be the ith node in
this combination. The s̄ith element of each line of matrix Pwi

is ps̄i
and the

remaining elements are zero.
According to the summation formula of geometric series, we obtain

A = (
|s∗|∑
i=1

Pwi
)(I − PN )−1PT , (11)
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where I−PQ has an inverse matrix [22]. It should be noted that {A}ij represents
the sum of probabilities of all possible infection paths from the ith source com-
bination s to terminal node oj . In other words, {A}ij is equivalent to P (Γsoj

|s).
Combining (5) and (11), we can get

P (Θ|s∗ = s) =
∏

ok∈Θ

{(
|s∗|∑
i=1

Pwi
)(I − PN )−1PT }sok

. (12)

Based on Eq. (12), we can obtain the likelihood of each candidate node combi-
nation. Combining (2) and (12), we finally obtain

ŝ = arg max
s∈Ω

∏
ok∈Θ

{(
|s∗|∑
i=1

Pwi
)(I − PN )−1PT }sok

. (13)

It worths mentioning that our solution considers all possible infection paths.
In addition, due to the fact that we need to enumerate all possible node combi-
nations, the time complexity of our solution is O(n|s∗|+1).

3 Results

In this section, we evaluate the efficiency of our estimator. In the experiments,
we only consider cases of two and three sources. We use complex network mod-
els such as the ER and Price models and some real-world networks, including
the GD96 d network and the power-494-bus network. We test the efficiency of
our estimator on different networks. In addition, we investigate how network
heterogeneity and density impact efficiency of our estimator.

To quantify the efficiency of our estimator, we provide a metric, i.e., minimum
error distance, which is given as follows:

Δ =
|s∗|∑
i=1

d(ŝi, s
∗
i ),

where d(ŝi, s
∗
i ) represents the shortest distance between each source node ŝi in

the prediction result and node s∗
i which is the closest node to ŝi in the real sources

set. In the experiments, we mainly check the distribution of Δ to evaluate our
estimator.

3.1 Synthetic Networks

We do experiments on synthetic networks. First, we use the ER model to gen-
erate random networks. In this model, every node pair has the same connection
probability. The pseudocode of ER model is shown in Algorithm2, in which pER

controls the density of the network. The larger pER, the denser network. We set
network size N = 500, and then change the network density to investigate how
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Algorithm 2. ER Network Generation Algorithm
1: Input: total number of nodes N , connection probability pER.
2: Initialization: N := 500 and pER ∈ [0, 1].
3: for each nodes pair (i , j) do
4: Generate a random number r ∈ [0, 1].
5: if r < pER then
6: Add an edge between node pairs (i , j).

7: End If
8: End For
9: Output: G(N, pER).

the minimum error distance distribution change. The number of source nodes
is 2. The first approximation method (Eq. (8)) is employed in our estimator
with ε = 0.0001. We perform 1000 independent runs. In Fig. 1(a), we see that
when pER = 0.001, the probability of Δ = 0 is more than 0.5, which means
the identification accuracy is more than half. However, when pER increases, the
identification accuracy decreases accordingly.

Algorithm 3. Price Network Generation Algorithm
1: Input: strongly connected graph with m0 nodes, total number of nodes N , priority

connection probability ppri, the number of added edges for each new node m.
2: Initialization: add the end nodes of all directed edges in the initial network to

array Array, m0 := 5 N := 500, m := 3 and ppri ∈ [0, 1].
3: for N − m0 remaining nodes do
4: for i:=i to m do
5: Generate a random number r ∈ [0, 1].
6: if r < ppri then
7: Randomly select a node in Array and make sure that newly selected m

nodes are unique.
8: else
9: Randomly select a node that already exists in the network, and make

sure that newly selected m nodes are unique.

10: End If
11: End For
12: For each selected node, add a directed edge pointing to the newly added node,

and add the selected m nodes to Array.

13: End For
14: Output: G(N, ppri).

Then, we use the Price model to generate the scale-free networks with 500
nodes. The pseudocode of the Price model is given in Algorithm3, in which the
network heterogeneity is controlled by ppri. The larger ppri, the larger network
heterogeneity. As shown in Algorithm 3, we slightly modify the Price model by
reversing the direction of links, which is originally pointing from newly added
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Fig. 1. (a) Distribution of minimum error distance for the ER network. (b) Distribution
of minimum error distance for the Price network. (c) Accuracy of identification under
different ppri values in the Price network with 2 sources and 3 sources. ppri reflects the
heterogeneity of price network.

nodes to old nodes. This modification maintains the statistical property of the
model, while lead to the emerge of terminal nodes, which are fit for our model
setting, but do not exist in the original model. The number of source nodes is
2. The first approximation method (Eq. (8)) is employed in our estimator with
ε = 0.0001. We perform 1000 independent runs and calculate the distribution
of Δ for different network heterogeneity. In Fig. 1(b), we can see that Δ <
10, and this indicates the source nodes identified based on our estimator are
topologically very close to the real source nodes. Moreover, the larger p, the larger
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identification accuracy. For instance, when ppri = 0.8, Δ is more than 0.6, while
when ppri = 0.5, Δ decreases to less than 0.4. This means that heterogeneous
networks facilitate source identification.

Next, we increase the number of source nodes to 3. As shown in Fig. 1(c),
we obtain the same conclusion as in Fig. 1(b) that the identification accuracy
increases with network heterogeneity. Also, we can infer that the identification
accuracy decreases when the number of source nodes increases.

Fig. 2. (a) Distribution of minimum error distance for the GD96 d network. (b) Dis-
tribution of minimum error distance for the power-494-bus network.

3.2 Real-World Network

Finally, we do experiments on real-world networks including the GD96 d network
[23] and the power-494-bus network [23]. The GD96 d network contains 180
nodes and 229 edges, and the power network has 494 nodes, 1381 edges. Based
on these two networks, we compare the two approximation methods, Eqs. (8)
and (9), to see which one is better when employing in our estimator. For the
first approximation, we set ε = 1. For each network, 1000 independent runs are
performed. The simulation result on GD96 d network is shown in Fig. 2(a). We
can see that the identification accuracy of the FPT-based approximation is larger
than the ε-based approximation. The distribution of minimum error distance of
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the former is more to the left than the latter, which means in general the error
distance of FPT-based approximation is smaller than the ε-based approximation.

The initial power network dose not have any terminal nodes. Thus, we set all
the nodes with only one out-edge as terminal nodes, and randomly choose two
non-terminal nodes as the real infection sources. As shown in Fig. 2(b), we can
also see that the FPT-based approximation is better than the ε-based approxi-
mation for our estimator in terms of identification accuracy and minimum error
distance. The advantage of FPT-based approximation is that it can differentiate
the impacts of different source nodes better than the ε-based approximation.

4 Conclusion

In summary, we propose a method to identify multiple sources of random walk-
based epidemic spreading process. Our method is based on the maximum likely-
hood estimate. When deriving the estimator, we consider the different possibili-
ties of different source nodes infecting a terminal node and all possible spreading
paths from a source node to a terminal node. We propose two approximation
methods to quantifying the possibility of a certain source node in set s infecting
terminal nodes, which are ε-based approximation and FPT-based approxima-
tion. We validate our method on model networks and real-world networks by
investigating the distribution of minimum error distance. Experimental results
show that the performance of our method increases with network heterogeneity,
while decreases with network density. Moreover, the FPT-based approximation
is better than the ε-based approximation. Since we enumerate all possible node
combinations in the calculation, the time complexity of our identification method
is O(n|s∗|+1). In the future, we will develop fast algorithms to solve the multiple-
source identification problem.
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