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Abstract. Mission critical services and applications with computation-
intensive tasks require extremely low latency, while task offloading for
mobile edge computing (MEC) incurs extra latency. In this work, the
optimization of power consumption and delay are studied under ultra
reliable and low latency (URLLC) framework in a multiuser MEC sce-
nario. Delay and reliability are relying on users’ task queue lengths, which
is attested by probabilistic constraints. Different from the current liter-
ature, we consider a comprehensive system model taking into account
the effects of bandwidth, computation capability, and transmit power.
By introducing the approach of Lyapunov stochastic optimization, the
problem is solved by splitting the multi-objective optimization problem
into three single optimization problems. Performance analysis is con-
ducted for the proposed algorithm, which illustrates that the tradeoff
parameter indicates the tradeoff between power and delay. Simulation
results are presented to validate the theoretical analysis of the impact
of various parameters and demonstrate the effectiveness of the proposed
approach.

Keywords: Mobile edge computing · Resource allocation · Probability
constraints · Ultra reliable and low latency (URLLC) · Stochastic
network optimization

1 Introduction

5G mobile network promotes extensive and deep integrations with vertical indus-
try. The concept of Mobile Edge Computing (MEC) emerged and gradually
evolved as one of the possible basic core structures of 5G. As a structure under 5G
architecture, MEC adapts to dissimilar computing, caching and communication
deployments in various scenarios [1–4]. Relying on the structure MEC, mobile
network and Internet service achieve effective integration and further expand
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to other fields, like location service, advanced reality, Internet-of-Things, and
computation assistant. Ultra reliable and low latency communication (URLLC)
corresponds to services requiring low latency and high reliability, such as self-
driving, industrial automation, etc.

MEC system is located between wired network and wireless access point
and established by one or more MEC servers which are the core of the whole
system. By offloading computation-intensive tasks to nearby MEC servers could
significantly enhance the performance of user devices, including battery life and
latency [5]. Applying MEC on URLLC needs emphasis on reducing latency and
power consumption. Nevertheless, task offloading introduces extra latency, and
its efficiency relying highly on channel conditions. Therefore, it is of value to
consider bandwidth which is closely connected to channel conditions and wireless
radio resources [6].

Resource allocation on MEC has attracted great attention. You et al. pro-
posed a MECO system with multiple users to optimize energy consumption [7].
In [8], a joint allocation of computation and communication resources are stud-
ied in multi-user mobile cloud computing under power and latency constraints.
Work of [9] focus on completion time minimization and compare two different
access schemes. Furthermore, Liu et al. introduce stochastic network optimiza-
tion on MEC system and establish a multi-user multi-server system to study the
tradeoff between power and delay [10].

Nevertheless, [10] consider radio resource allocation and [11] considers vio-
lation constraints, channel condition on [11] is interference-related which makes
it complicated to estimate transmission rate. Also, CPU cores are independent
on servers with one-to-one correspondence to user devices on multi-user condi-
tion. In this case, queuing on servers can be simplified and better channel model
should be felicitated.

In our work, seeking clarification of the relationship between power and delay
indulges the optimization of our work. We consider an MEC system with multiple
mobile devices in which computing tasks arrive on mobile devices in a random
manner. Based on the Lyapunov optimization theory [12], the radio and compu-
tational resources are joint considered to make the power consumption minimize
under the latency and reliability constraints. Pickands-Balkema-de Haan theo-
rem of extreme value theory is used to descript the queue length which exceed
the threshold. And the results show the trade-off between power consumption
and latency of mobile devices.

The organization of this paper is characterized as follows. We describe a sys-
tem model that satisfies the requirements of URLLC structure in Sect. 2, latency
and reliability constraints are imposed in Sect. 3, and optimization problems are
schemed and solved in Sect. 4. Simulation results are displayed in Sect. 5 with
analysis, and we will conclude this paper in Sect. 6.

2 System Model

As shown in Fig. 1, a set U of UEs with local computation capacity is considered
in our system. A single server with N CPU cores deals with the tasks offloaded
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by UEs in parallel. Tasks are emerged by UEs and part of them are offloaded
to MEC server, meanwhile the UEs simultaneously process the rest of tasks
locally. Therefore, queues exist at both users and server side. Channel access
scheme is chosen as Frequency Division Multiple Access (FDMA), transmis-
sion rate is proportional to bandwidth. End-to-End delay includes transmission
delay on offloading condition and computing delay. Resource allocation directed
at URLLC works is reflected at computational resource allocation and power
control, and constrained by power consumption and delay.

Fig. 1. System model

2.1 Queuing Model at User Side

Tasks arrive in stochastically and follow an arbitrary probability distribution.
Task queue length is Qi(t) on time slot t ∈ {0, 1, 2, ...} for the user i ∈ U . Task
arrivals Au

i (t) meets Poisson task arrivals during time slot t with mean value γ
in the unit of bits and are independent and identically distributed [12]. Bu

i (t)
is the task accomplishment in time slot t in the unit of bits, in which the local
computation tasks Bu1

i (t) = τ
fu
i (t)
Li

and offloaded tasks Bu2
i (t) = τRi(t) are

both considered, Bu
i (t) = Bu1

i (t) + Bu2
i (t). Li denotes the required CPU cycle

frequency per bit, CPU cycle frequency is fu
i (t). The queue length on slot t + 1

(in the unit of bits) evolves as Qi(t + 1) = max {Qi(t) − Bu
i (t), 0} + Au

i (t). The
transmission rate at UE side for task offloading is

Ri(t) = αi(t)W log2

(
1 +

pi(t)Hi(t)
N0αi(t)W

)
. (1)

W is total system bandwidth, N0 is the power spectral density of the additive
white Gaussian noise, and αi(t) is a bandwidth allocation vector applying FDMA
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for user i ∈ U . Hi(t) denotes the channel power gain from user i ∈ U to the
server with transmit power pi(t).

For local computational resource and transmit power allocation, we impose
following constraints for each UE i ∈ U :⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i∈U

αi(t) ≤ 1

αi(t) ≥ 0
0 ≤ pi(t) ≤ pi

max

0 ≤ fu
i (t) ≤ fu

max

(2)

where pi
max and fu

max are the upper bound of transmission power and local
computational capability.

2.2 Queuing Model at Server Side

We denote the task offloading queue length as Zi(t) bits at the server side
on time slot t, the queue length at time slot t + 1 evolves as Zi(t + 1) =
max {Zi(t) − Bs

i (t), 0} + As
i (t), As

i (t) denotes task arrivals at server in time
slot t at server side, As

i (t) = min
{
max

{
Qi(t) − Bu1

i (t), 0
}

, τRt(t)
}
. Therefore

Zi(t+1) ≤ max {Zi(t) − Bs
i (t), 0}+ τRt(t). Computing accomplishment in time

slot t is Bs
i (t) = τ

fs
i (t)
Li

in which fs
i (t) is the CPU cycle frequency that allocated

to each CPU core to serve user i ∈ U .
At the server side, the computational resource is allocated by constraints as

follows: { ∑
i∈U

1 · {fs
i (t) > 0} ≤ N

fs
i (t) ∈ {0, fmax

s } , i ∈ U
(3)

where 1 {·} is an indicator function, fmax
s is the upper bound of the computa-

tional capability at server side.

3 Latency and Reliability Constraints

According to Little’s Law, the average queuing delay is proportional to the aver-
age queue length. However, relying only on the average queue length without
considering queuing length probability distribution to evaluate latency and reli-
ability lacks accuracy. Taking the statistic results of queue length and queuing
delay into account could increase accuracy immensely. Furthermore, violation
of the queue length and queuing delay constraints could decrease the reliability
of computation tasks. For instance, offloaded tasks would be deleted if a finite-
length queuing buffer is overloaded. So, we impose the queue length probability
constraint:

lim
T→∞

1
T

T∑
t=1

Pr (Qi(t) > du
i ) ≤ εu

i , (4)

in which du
i is the queue length bound, εu

i is the tolerable violation probability
and εu

i � 1.
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According to Pickands-Balkema-de Haan theorem for exceedances over
thresholds, when the threshold du

i is platitudinous high, the cumulative dis-
tribution function (CDF) of the excess part of the queue closely approaches
generalized Pareto Distribution (GPD) [13].

Applying Pickands-Balkema-de Haan Theory to our problem, the expecta-
tion and variance of the conditional excess queue value on user side are σu

1−ξu

and σ2
u

(1−ξu)
2(1−2ξu)

, where σu is the scale parameter and ξu is the shape param-
eter. The mean value and the variance of the CDF would decline while the
scale parameter and shape parameter are reduced. The threshold of the scale
parameter and the shape parameter are given as σu ≤ σth

u and ξu ≤ ξth
u .

Define the excess value of queue length of user i ∈ U on time slot t is
Xu

i (t)
∣∣
Qi(t)>du

i
= Qi(t) − du

i , and Y u
i (t) = [Xu

i (t)]2.
Time averaged mean value of excess queue length Xu

i and its second moment
Y u

i are:

Xu
i = lim

T→∞
1
T

T∑
t=1

E[Xu
i (t) |Qi(t) > du

i ] ≤ σth
u

1 − ξth
u

, (5)

Y u
i = lim

T→∞
1
T

T∑
t=1

E[Y u
i (t) |Qi(t) > du

i ] ≤ 2
(
σth

u

)2
(1 − ξth

u ) (1 − 2ξth
u )

, (6)

Likewise, the average queue length Zi(t) and average queuing delay on the server
side are proportional to the average task offloading rate. The queuing delay
probability constraint at server side is:

lim
T→∞

1
T

T∑
t=1

Pr

(
Zi(t)

R̃i(t − 1)
> ds

i

)
≤ εs

i , (7)

in which R̃i(t − 1) = 1
t

t−1∑
ω=0

Ri(ω), ds
i denotes the queuing delay bound and εs

i

denotes the tolerable violation probability at server side, εs
i � 1.

Define the excess queue length at server side for user i ∈ U on time slot t

as Xs
i (t)

∣∣∣Zi(t)> ˜Ri(t−1)ds
i

= Zi(t) − R̃i(t − 1)ds
i , and Y s

i (t) = [Xs
i (t)]2. We have

the expectation and variance of the conditional excess queue value on server side
as σs

1−ξs
and σ2

s

(1−ξs)
2(1−2ξs)

, and σs ≤ σth
s , ξs ≤ ξth

s , where σth
s and ξth

s are the
thresholds of scale and shape parameter at server side.

Thus, similar to the above, we have constraints as below:

Xs
i = lim

T→∞
1
T

T∑
t=1

E

[
Xs

i (t)
∣∣∣Zi(t) > R̃i(t − 1)ds

i

]
≤ σth

s

1 − ξth
s

(8)

Y s
i = lim

T→∞
1
T

T∑
t=1

E

[
Y s

i (t)
∣∣∣Zi(t) > R̃i(t − 1)ds

i

]
≤ 2

(
σth

s

)2
(1 − ξth

s ) (1 − 2ξth
s )

(9)
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At the user side, computational delay fu
i (t) and transmission delay Ri(t)

are inversely proportional. As users executing local computing tasks, allocating
higher local CPU cycle frequency could partially reduce computational delay. For
decreasing transmission delay, larger transmit power is needed instead. There-
fore, queue length constraints from both user side and server side have already
taken these two delays into account. On the other hand, UE’s battery consump-
tion would pay for higher computation capability and/or transmit power. Con-
sequently, the tradeoff between power and delay is fatal. As for server side, the
computational delay can be neglected, since a better CPU core with preferable
computing capability is focusing on the one UE’s offloaded task.

Teasing above factors, the end-to-end delay is composed by three compo-
nents:

– Queuing delay from both user side and server side;
– Computing delay from both user side and server side;
– Transmission delay for users’ task offloading.

4 Optimization Framework and Resource Allocation
Scheme

Denoting the user side computational resource allocation as fu(t) =(
fu

i (t),i ∈ U
)
, transmit power allocation as p(t) = (pi(t), i ∈ U), bandwidth

resource allocation as α(t) = (αi(t), i ∈ U), the server side computational
resource allocation as f s(t) = (fs

i (t), i ∈ U). The power consumption is influ-
enced by hardware architecture and CPU-cycle frequency fu

i (t), so we give out
the local power consumption as κ[fu

i (t)]3, P (t) =
∑
i∈U

(
κ[fu

i (t)]3 + pi(t)
)
.

We formulate an optimization problem as follows:

min
fu(t),p(t),α(t),fs(t)

lim
T→∞

1
T

T−1∑
t=0

E[P (t)]

s.t. (2) and (3) for resource allocation
(4) and (7) for queue length and delay
(5), (6), (8) and (9) for GDP

(10)

4.1 Lyapunov Optimization

The constraints above are dedicated to make corresponding virtual queues and
will be satisfied if the time averaged rate is stable. (11) shows the corresponding
virtual queues, and [·]+ = max{·, 0}.
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Q
(Q)
i (t + 1) =

[

Q
(Q)
i (t) + 1 · {

Qi(t + 1) > d
u
i

} − ε
u
i , 0

]+

Q
(X)
i (t + 1) =

[

Q
(X)
i (t) +

(

X
u
i (t + 1) − σth

u

1 − ξth
u

)

× 1 · {

Qi(t + 1) > d
u
i

}

, 0
]

Q
(Y )
i (t + 1) =

[

Q
(Y )
i (t) +

⎛

⎜

⎝
Y

u
i (t + 1) −

2
(

σth
u

)2

(1 − ξth
u ) (1 − 2ξth

u )

⎞

⎟

⎠
× 1 · {

Qi(t + 1) > d
u
i

}

, 0
]+

Z
(Z)
i (t + 1) =

[

Z
(Z)
i (t) + 1 ·

{

Zi(t + 1) > ˜Ri(t)d
s
i

}

− ε
s
i , 0

]+

Z
(X)
i (t + 1) =

[

Z
(X)
i (t) +

(

X
s
i (t + 1) − σth

s

1 − ξth
s

)

× 1 ·
{

Zi(t + 1) > ˜Ri(t)d
s
i

}

, 0
]+

Z
(Y )
i (t + 1) =

[

Z
(Y )
i (t) +

⎛

⎜

⎝
Y

s
i (t + 1) −

2
(

σth
s

)2

(1 − ξth
s ) (1 − 2ξth

s )

⎞

⎟

⎠
× 1 ·

{

Zi(t + 1) > ˜Ri(t)d
s
i

}

, 0
]+

(11)

Combining these virtual queues, we can get system queue vector Q (t) =(
Q

(Q)
i (t), Q

(X)
i (t), Q

(Y )
i (t), Z

(Z)
i (t),Z(X)

i (t), Z(Y )
i (t),i ∈ U

)
and then have the

Lyapunov function L (Q (t)) = 1
2

∑
i∈U

[(
Q

(Q)
i (t)

)2

+
(
Q

(X)
i (t)

)2

+
(
Q

(Y )
i (t)

)2

+
(
Z

(Z)
i (t)

)2

+
(
Z

(X)
i (t)

)2

+
(
Z

(Y )
i (t)

)2
]

and conditional Lyapunov drift-plus-

penalty for time slot t:

E
[
ΔL(t) + V P (t)|Q(t)

]

≤ C + E

[

−
∑

i∈U

[
Bu

i (t)
(
Q

(x)
i (t)Qi(t) + Au

i (t) + 2QY
i (t) · (

Qi(t) + Au
i (t)

)

+ 2
(
Qi(t) + Au

i (t)
)3)

+ Q
(Q)
i (t)

]
× 1 ·

{
max

{
Qi(t) − Bu

i (t), 0
}
+ Au

i (t) > dui

}

+
∑

i∈U

[(
τRi(t) − Bs

i (t)
)(

Z
(X)
i (t) + Zi(t) + 2ZY

i (t)Zi(t) + 2
(
Zi(t)

)3)
+ Z

(Z)
i (t)

]

× 1 ·
{
max

{
zi(t) − Bs

i (t), 0
}
+ τRi(t) > R̃i(t)d

s
i

}

+ V
∑

i∈U

(
κ[fu

i (t)]3 + pi(t)
)∣
∣
∣Q(t)

]

(12)

where V ∈ (0,+∞) is a non-negative Lyapunov tradeoff parameter in the unit of
bits2/W . According to Lyapunov Optimization Framework, the optimal solution
of our problem P is the upper bound of (12).

Resolve this problem into three optimization problems in one time slot : CPU
resources allocation at user side and server side, and transmission resource at
user side.
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4.2 CPU Computational Resource Allocation at User Side

Since the users are independent to each other, the optimal solution of CPU
computational resource at user side can be obtained directly by resolving the
above optimal problem.

Constraints at user side can be rewritten as:

min
0≤fu

i (t)≤fmax
u

∑
i∈U

V κ[fu
i (t)]3 − ai(t)τf

u
i (t)/Li (13)

with ai(t) = Q
(Q)
i (t) + Qi(t) + Au

i (t) +
(
Q

(X)
i (t) + Qi(t) + Au

i (t) + 2Q
(Y )
i (t)

× (Qi(t) + Au
i (t)) + 2(Qi(t) + Au

i (t))3
) × 1 · {Qi(t) + Au

i (t) > du
i }. Since users

are independent to each other, f∗
i (t) = min

{√
ai(t)τ
3V κLi

, fmax
u

}
is the answer after

differentiation.

Algorithm 1. User side bandwidth allocation
1: Make accuracy parameter μ = 10−7, allow maximum iteration number Imax = 200.
2: Initialize l = 0, αi(t) = 0, ˜λL = λL(t), ˜λU = λU (t).

3: while

∣

∣

∣

∣

∑

i∈U

αi(t) − 1

∣

∣

∣

∣

≥ μ and l ≤ Imax do

4: ˜λ = 1
2

(

˜λL + ˜λU

)

.

5: l = l + 1.

6: αi(t) = max
{

Ai

(

˜λ
)

, 0
}

.

7: if
∑

i∈U

αi(t) > 1 then

8: ˜λL = ˜λ.
9: else

10: ˜λU = ˜λ.
11: end if
12: end while

4.3 Transmit Power and Bandwidth Allocation at User Side

min
p(t),α(t)

∑
i∈U

V pi(t) + (bi(t) − ai(t)) τRi(t) (14)

with bi(t) = Z
(Z)
i (t)+Zi(t)+

(
Z

(X)
i (t) + Zi(t) + 2Z

(Y )
i (t) · Zi(t) + 2(Zi(t))

3
)

×{
Zi(t) + τRi(t) > R̃i(t − 1)ds

i

}
.

For user set U ′(t) =
{
i |i ∈ U, ai(t) ≤ bi(t)

}
, if ai(t) ≤ bi(t), the optimal

transmit power and bandwidth are p∗
i (t) = 0 and α∗

i (t) = 0. Only if the quantity
of local task buffer is larger than that on server side would the mobile device
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execute offloading. For U c(t) = U\U ′(t), apart from user i ∈ U ′(t), we consider
solving transmit power and bandwidth allocation through alternating optimiza-
tion. In each iteration, all numerical results are obtained in closed forms by
Lagrangian Method. The alternating minimization process ensures the global
optimal solution, which is literally termed as the Gaussian-Seidel Method.

– Transmit Power Allocation:

min
0≤pi(t)≤pmax

i ,i∈Uc(t)
V pi(t) + (bi(t) − ai(t)) τRi(t). (15)

On condition that the transmission bandwidth is fixed, we can get p∗
i (t) =

min
{

αi(t)W max
{

τ(ai(t)−bi(t))
V ln 2 − N0

Hi(t)
, 0

}
, pmax

i

}
.

– Transmission Bandwidth Allocation:
min

0≤αi(t)≤1

∑
i∈U

(bi(t) − ai(t)) τRi(t)∑
i∈U

αi(t) ≤ 1, i ∈ U c(t)

αi(t) > 0, i ∈ U c(t)

(16)

For a fixed transmit power, the Lagrangian method provides an efficient
way to obtain optimal results: L (α(t), λ(t)) =

∑
i∈Uc(t)

(bi(t) − ai(t)) ταi(t)W ·

log2
(
1 + pi(t)Hi(t)

N0αi(t)W

)
+ λ(t)

( ∑
i∈Uc(t)

αi(t) − 1

)
, λ(t) is the Lagrange multi-

plier, α∗(t) and λ∗(t) are the optimal results of this problem.
Applying the Karush-Kuhn-Tucker (KKT) conditions to our problem,

∂L(α(t),λ(t))
∂αi(t)

∣∣
αi(t)=α∗

i (t)

= τ (bi(t) − ai(t))
dRi(t)
dαi(t)

+ λ(t) = 0∑
i∈Uc(t)

α∗
i (t) − 1 ≤ 0

λ∗(t) ≥ 0

λ∗(t)

( ∑
i∈Uc(t)

α∗
i (t) − 1

)
= 0

(17)

When λ∗(t) > 0,
∑

i∈Uc(t)

α∗
i (t)−1 = 0; if λ∗(t) = 0,

∑
i∈Uc(t)

α∗
i (t)−1 ≤ 0. Also,

if transmit power pi(t) = 0, αi(t)
Δ= 0. dRi(t)

dαi(t)
is inversely proportional to αi(t),

and lim
αi(t)→+∞

dRi(t)
dαi(t)

= 0, lim
αi(t)→0+

dRi(t)
dαi(t)

= +∞. Apply bisection search over

[λL(t), λU (t)] for the optimal λ∗(t).⎧⎨
⎩

λL(t) = max
i∈U

τ (ai(t) − bi(t))
dRi(t)
dαi(t)

∣∣
αi(t)=1

λU (t) = max
i∈U

τ (ai(t) − bi(t))
dRi(t)
dαi(t)

∣∣
αi(t)→0

(18)

Obtain α∗
i (t) = max {Ai (λ∗(t)) , 0}, in which Ai (λ∗(t)) is the solution of

τ (bi(t) − ai(t))
dRi(t)
dαi(t)

+ λ∗(t) = 0. Detail of the solution is particulized in
Algorithm 1.
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4.4 Server Side CPU Computational Resource Allocation

At the server side, computational resource allocation is measured by CPU cycle
frequency which is solved as follows:

max
fs
i (t)

∑
i∈U

bi(t)τfs
i (t)/Li∑

i∈U

1 · {fs
i (t) > 0} ≤ N

fs
i (t) ∈ {0fmax

s } ,∀i ∈ U.

(19)

Solution to (19) is elaborated in Algorithm 2.

Algorithm 2. Server side computational resource allocation
1: Initialize k = 1 and U = Uc .
2: while k ≤ N and ˜U �= ∅ do
3: m∗ = argmaxi∈ ˜U{bi(t)/Li}.
4: fi∗(t) = fmax

j .
5: k = k + 1.
6: Uc = Uc\U ′.
7: end while

5 Numerical Results

We consider an MEC system with 8 users and 1 server, the server is deployed
with 8 CPU cores that can serve different users simultaneously. Maximum local
computation capability is 109 cycle/s and maximum computation capability at
server is 1010 cycle/s. Assuming the transmission frequency is 5.8 GHz with path
loss L = 60 + 20log10(5.8) + 24log10 d(dB). Users are evenly distributed near
the base station. d is the distance between base station and users. We set the
parameter du

i = 4τγ(bit), εu
i = 0.01, σth

u = 4τγ(bit), ξth
u = 0.3, ds

i = 20 s,
εs

i = 0.01, σth
s = 4τR̃i(∞)(bit), ξth

s = 0.3. Path loss increases with the trans-
mission frequency, the coherence time is 40 ms. A single wireless channel expe-
rience Rayleigh fading with unit variance. Slot length τ = 40 ms. Besides,
N0 = −174 dBm/Hz, W = 10 MHz, κ = 10−27 Watt s3/cycle3, Pmax

i = 20 dBm.
We first show the convergence of optimal objective function in (14) in Fig. 2.
As iteration time rises, the value of optimization objective function converge
to the minimum, which proves the validation of the our optimal framework.
V is the tradeoff factor (Lyapunov tradeoff parameter) that indicates the rela-
tionship between power consumption and latency in our work. Results in Fig. 3
show that, the power consumption at user side decreases as V increases, which
means the optimization lays particular emphasis on task queue length with small
V . On condition that V = 0, local power consumption is small because tasks
are unnecessary to be offloaded to MEC server and there is no offloading power
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Fig. 2. Iteration convergence of objective function in constraint (14).
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Fig. 3. Tradeoff between a UE’s average power consumption and task queue length.

consumption but the power consumption of local CPU computing. Main work
of optimization at this moment reflects on the control of task queue length. To
decrease the task queue length under the condition of having MEC server, users
offload data to server with its local CPU still functioning, so the power con-
sumption is high. With the increasement of V , optimization inclines to power
consumption and the requirement of queue length abates, while the server could
afford part of users’ tasks, therefore transmission power is smaller comparing to
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Fig. 4. Influence of probabilistic constraint on task queue length and V .
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Fig. 5. Power consumption versus V with various numbers of UEs.

local process, and the benefit of using MEC server emerges. Task queue length of
users and end-to-end delay are increasing as V increases. Local computing capa-
bility is limited and tasks come in continuously, therefore the local task queue
length is always longer than that on server. Also, the optimizations on power
consumption under both conditions emerge with increase of V and correspond
sacrifice part of the queue length, which explains that queue length is getting
longer as V increases. According to Little’s Law, delay is proportional to queue
length, and their variation trend converge gradually.

We consider the delay bound violation of task queue length in Fig. 4(a).
Adding the probabilistic constraints of task queue length potentially constraint
the delay of task queue and make performance of delay better. The CDF of task
queue length in Fig. 4(b) demonstrates this theory. With these probabilistic con-
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straints, the quantity of exceed task queue lengths suffer sharp decreases. And for
reducing queuing delay, higher CPU cycle frequency and/or higher transmission
power are/is required.

Furthermore, let’s focus on quantity of users M and CPU core number of
servers N in Fig. 5. For users who offload tasks on server, if N < M , computa-
tional resources can be allocated to each user and there is no extra delay; for
N > M , with limited CPU cores, allocation of computational resource demand
optimization which leads to additional waiting time.

6 Conclusion

In this work, we focus on MEC offloading structure under URLLC framework
with multiple users and single server. Each UE could process local computation
and offload tasks to servers and the tasks are piled up at both user and server
side. The offloading rate is proportional to bandwidth with a coefficient, and
the probability constraints claim restricts on task queue length. By applying
Lyapunov optimization framework on our work, we transfer constraints into
virtual queues and reform our constraints into three parts, different methods are
applied to solve these optimization problems. We analyze the influence of the
tradeoff factor and the probability constraints, discover that there is a tradeoff
between delay and power consumption, and the performance of delay with an
MEC server is better than no MEC situation. Quantity of UEs could increase
delay if it is larger than server’s CPU core number. Convergence of iteration and
the CDF of task queue length shows the accuracy of optimization.
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