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Abstract. For the diagnosis of large-scale local devices, the traditional cen-
tralized fault diagnosis systems are becoming incompetent to meet the
requirement of real-time monitoring. This paper proposes the Distributed hier-
archical Fault Diagnosis System (DFDS). Specifically, DFDS implements fault
monitoring by an improved Sparse Auto-Encoder (SAE) on the monitor layer,
classifies faults and identifies unknown faults by an improved random forest on
the classification layer, learns new knowledge and updates the system on the
decision layer. We apply DFDS in the laboratory data of Case Western Reserve
University to verify the efficiency of the proposed system. The experimental
results show that our method can accurately detect the fault and accurately
identify the fault type.

Keywords: Sparse auto-encoder � Distributed fault diagnosis � Fault
classification � Random forest

1 Introduction

Condition monitoring is essential for safe and reliable working operation of electric
power system such as transformer, GIS and High voltage circuit breaker. In recent
years, artificial intelligence (AI) technology has developed rapidly, and many AI based
methods have been developed to solve equipment failure problems such as neural
networks [1, 2], fault trees [3, 4], fuzzy theory [5, 6] and deep learning [7–9].

The traditional fault diagnosis method generally collects raw device information of
multiple local sensors and uploads them to the terminal device. The terminal device
extracts the original device signal characteristics and performs intelligent diagnosis.
The diagnostic complexity of this process is usually high and takes a lot of time. In
addition, each device has different faults and different fault handling methods. In this
case, the fault diagnosis system is required to identify the fault on each device to
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achieve the purpose of dynamic real-time monitoring. After the fault is identified, it can
be processed in time. The traditional centralized fault diagnosis system cannot meet the
above challenges.

This paper proposes a distributed artificial intelligence fault diagnosis system that is
superior to the traditional centralized fault diagnosis system in large-scale equipment
fault diagnosis. The proposed multi-level hierarchical fault diagnosis model is to
monitor the original information in real time through the Sparse Auto-Encoder [16]
(SAE) on the local monitoring layer (i.e., each device sensor), and report the fault
signal for further processing. The improved random forest model is used in the fault
classification layer to classify the detected faults and identify the unknown faults,
which are uploaded to the decision-making layer for further processing. In summary,
the contributions of this article are as follows:

(1) A novel distributed fault diagnosis framework and its implementation are pro-
posed, which map multiple stages of device diagnosis to a distributed multi-level
hierarchy.

(2) The fault monitoring model FM-SAE is embedded on the local device for large-
scale real-time monitoring.

(3) Accurate classification of known faults and identification of unknown faults is
achieved through an improved random forest model.

The rest of this paper is organized as follows. Section 2 outlines the architecture of
the proposed distributed hierarchical fault diagnosis system. Section 3 introduces the
implementation of the fault monitoring function of the model. Section 4 introduces the
implementation of fault classification and update functions. Section 5 shows experi-
mental results and analysis. Section 6 concludes this paper.

2 System Outline

In this section, we outline the architecture of the proposed Distributed hierarchical
Fault Diagnosis System (DFDS) and describe how the system completes the process of
device fault diagnosis through inter-level cooperation.

Equipment fault diagnosis is generally divided into a series of processes such as
feature extraction, state detection, and fault classification. Due to the wide distribution of
equipment, in order to provide timely fault monitoring for these devices, the primary
layer of DFDS should be distributed on each device to reduce the complexity of the entire
diagnostic process by making decisions directly on the original signal. Considering the
diversity of equipment failures, if necessary, the secondary diagnostic layer subsystems
can cooperate with each other and jointly diagnose, and the detected unknown faults
should be reported to the superior diagnostic layer in time. Since the faults of each device
are different, and the identified unknown faults are different, the third-level diagnostic
layer should process the unknown faults in time to update the diagnostic knowledge of
the secondary diagnostic layer subsystem, thereby improving the overall diagnostic
level.

Based on the above starting point, the DFDS diagnostic system is divided into three
layers: local monitoring layer, fault classification layer and decision-making layer.
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Each of the three layers processes the respective tasks, and simultaneously commu-
nicates with each other to achieve the purpose of fault diagnosis. As shown in Fig. 1:

In DFDS, The local monitoring layer is mainly responsible for detecting faults and
reporting them to the fault classification layer in time. Directly process the original
signal through the improved Fault Diagnosis Sparse Auto-Encoder (FM-SAE) model to
determine if the device is faulty. Real-time monitoring of local devices is implemented
without sending any information to the higher level diagnostic layer unless a fault
signal is detected. For the detected fault signal, send it to the fault classification layer.

The fault classification layer is responsible for feature extraction of the received
signals, classifying the faults and identifying unknown faults by improving the random
forest. The fault classification layer may separately manage the local devices by
multiple terminal devices, or may simultaneously manage multiple local devices by
only one terminal device. They form multiple task nodes on the same level, they deal
with problems independently of each other and are related to each other on the model,
reducing the complexity of the diagnostic task.

The decision layer is responsible for the self-learning and updating of the entire
system knowledge. By processing the unknown fault signal sent from the fault clas-
sification layer, learn new knowledge and update the system in real time.

DFDS completes the entire diagnostic process by implementing fault monitoring
locally, classifying and updating at the terminal. Its various levels process their own
tasks and coordinate with each other to achieve maximum fault diagnosis accuracy.

3 Fault Monitoring

This section describes the first phase of the model, the fault monitoring function, which
is implemented by the local monitoring layer based on the improved sparse auto-
encoder FM-SAE.

Local monitoring 
layer

Device Device Device

Fault classification 
layer

Decision layer

Fig. 1. The framework of DFDS.
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3.1 Theory of the Sparse Auto-Encoder Algorithm

The automatic encoder is a classic neural network whose purpose is to obtain the
reduced-dimensional expression of the data H = {h1, h2, …, hm} through training
based on the input data set X = {x1, x2, …, xm}. This dimension-reduced feature is
processed so that it can express the input better, and it has good performance in tasks
such as classification monitoring [10–12]. The network structure of a single hidden
layer AE is shown in Fig. 2, where the self-encoder is divided into two parts, the
encoder and the decoder.

Assume aðlþ 1Þ
i represents the activation value of the i-th neuron in the (l + 1)-th

layer of the self-encoding neural network, then alþ 1
i ¼ f zðlþ 1Þ

i

� �
, f ðzÞ is the neuron

activation function, zlþ 1
i is the weighted sum of the input values of the i-th neuron in

the (l + 1)-th layer, and its expression is:

zlþ 1
i ¼

XSl
j¼1

wðlÞ
ij xj þ bli; ð1Þ

where wl
ij represents the weight coefficient connecting the j-th neuron of the l-th layer

and the i-th neuron of the (l + 1)-th layer, bðlÞi represents the bias term of the (i + 1)-th
neuron of the (l + 1)-th layer, Sl is the number of neurons in the l-th layer. The neuron
activation function often uses the sigmoid function f zð Þ ¼ 1

1þ e�z whose value range is
[0, 1], or use the tanh function f zð Þ ¼ ez�e�z

ez þ e�z whose value is [− 1, 1].
Adding a sparsity limit to the self-encoder, that is, at the same time, only some

hidden layer nodes are ‘active’, thus obtaining a sparse self-encoder. Based on this, KL

Fig. 2. A single hidden layer AE network structure.
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dispersion is introduced to measure the similarity between the average activation output
of a hidden layer node and the set sparsity q:

KL q q̂j
��� � ¼ q log

q
q̂j

þ 1� qð Þ log 1� q
1� q̂j

; ð2Þ

where q̂j ¼ 1
m

Pm
i¼1

ajxðiÞ
� �

, m is the number of training samples, ajx
ðiÞ is the corresponding

output of the j-th node of the hidden layer for i samples. In general we set the sparse
factor q = 0.05 or 0.1. The larger the KL dispersion, the larger the difference between
q and q̂j, and the KL dispersion equal to 0 means that the two are completely equal, that
is, q ¼ q̂j. Therefore, we can add KL dispersion as a regular term to the loss function to
constrain the sparse rows of the entire self-encoder network:

Jsparse W ; bð Þ ¼ 1
m

Xm
i¼1

1
2

xi � x̂ikk 2 þ k
2

Xnl�1

l¼1

XSl
i¼1

XSlþ 1

j¼1

W2
l þ b

XS2
j¼1

KL q q̂j
��� �

; ð3Þ

where k is the weight decay constant; nl is the number of neural network layers; b is the
coefficient that controls the unit of the sparse constraint, and S2 is the number of hidden
layer units.

3.2 The Implementation of Emerging New Classification

Sparse Auto-encoder automatically learns features from unlabeled data and gives better
characterization than raw data. Based on this, we use sparse autoencoder to learn
features from the original signal of the normal device and send the trained model to the
local device. Then the device identifies the test sample according to the model. If the
characteristics of the sample have a significant error compared to the characteristics of
the normal signal, the sample is considered to be a fault signal and sent to the superior
diagnostic layer.

Assume X ¼ xi; yið Þf gni¼1, xi ¼ ftijgcj¼1 is the training sample data set, where xi
represents the i-th training data, yi 2 Y ¼ 1f g is the xi corresponding label (note that
only the normal device data is included in X), the xi feature dimension is c, tij repre-
sents the j-th feature of the data xi. X̂ ¼ x̂i; yið Þf gni¼1, x̂i ¼ fhijgvj¼1 is the SAE output
data set of the training sample, where x̂i represents the i-th output data, the x̂i feature
dimension is v, and hij represents the j-th feature of the data xi; X 0 ¼ x0i; y

0
i

� �	 
m
i¼1,

x0i ¼ ft0ijgcj¼1 is the test sample data set, where x0i represents the i-th test data, y0i 2 Y ¼
1; 2; . . .;Kf gðK[ 1Þ is the corresponding label. Calculate the output feature center Mj

of the normal class:

Mj ¼ 1
n

Xn
i

hij ð4Þ
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The wave matrix D of the i-th data is constructed by calculating the Euclidean
distance between hij and Mj:

dij ¼ hij �Mj

���� ð5Þ

Calculate the feature threshold matrix hj:

hj ¼ 1
n

Xn
i

dij ð6Þ

If h0ij �Mj [ khj, y0i 6¼ 1, else y0i ¼ 1
where k is the control threshold.

4 Fault Classification and Update Implementation

This section describes the model fault classification and update function. The fault
classification of the model is responsible from the fault classification layer. This layer
receives the fault data transmitted by the local monitoring layer. The data includes
known faults and unknown faults. The fault classification layer is responsible for
classifying known faults and identifying unknown faults. For the detected unknown
faults, upload them to the decision-making layer, and the decision-making layer
specifically identifies the unknown fault and makes an update decision.

4.1 Implementation of the Fault Classification Layer

Since many previous work showed that completely random trees have been success-
fully applied to the classification problem [13–15]. We improved the random forest
model to implement the function of the fault classification layer.

Assume X ¼ xi; yið Þf gni¼1 is the training sample data set, Where xi represents the
i-th training data, yi 2 Y ¼ 1; 2; 3; . . .;Kf g is the corresponding label; X 0 ¼ x0i; y

0
i

� �	 
m
i¼1

is the test sample data set, where x0i represents the i-th test data, y0i 2 Y ¼
1; 2; . . .;Mf g M[Kð Þ is the corresponding label; Randomly selecting a plurality of

sample data from the training set X, and then randomly selecting one feature value of the
data to divide the sample data into two subtrees, repeating the above two steps to
continuously construct the child node until the number of data of the child node reaches
the upper limit, then the construction of one tree is complete. Let A ¼ x1; x2; x3; . . .; xmð Þ
be the training instances that fall into the same leaf node, then build the ball O for set A,
The center of A is defined as: c ¼ 1

m

P
x2A x, the radius of the ball O centered on c:

r ¼ distðc; eÞ, where e is the farthest example of the distance c in A, and the labelðOÞ is
the label that appears themost in setA. During testing, the test instances that fell into these
balls were known fault, and the test instances that fell outside the ball were unknown
fault.
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Figure 3 shows the process of constructing and classifying a complete random tree:
Step1: Obtain a random forest model F according to the training data set X, which

includes t random trees f1; f2; f3; . . .; ftf g;
Step2: In each tree, build a ball O for an instance that falls into the same leaf node;
Step3: For test case x0i, x

0
i is defined in the category tag of the j-th tree as:

labelðx0iÞ ¼ Vmax fj x0i
� �	 
t

j¼1

� �
;

fj x0i
� � ¼ labelðOÞ if x0i falls in a spherical area O

new else

�
;

ð7Þ

where fj x0i
� �

represents the label class calculated by the j-th tree for the input data x0i,

which divides the x0i into known or unknown classes. The function Vmax fj x0i
� �	 
t

j¼1

� �
indicates that the label category with the highest frequency of occurrence calculated by
all trees is output. If labelðx0iÞ ¼ new, put the test instance into the buffer until the
number of buffers reaches the upper limit and send it to the decision-making layer.

4.2 Decision-Making Layer Implementation

The unknown fault data uploaded by the fault classification layer may contain multiple
unknown faults. The decision-making layer needs to detect it. If the data contains
multiple unknown faults, correctly classify them, learn their characteristics and update
the fault classification layer model.

For data set S ¼ xif gni¼1 containing multiple unknown faults, we use the K-means
clustering algorithm to cluster them. Since the K-means clustering algorithm requires
the user to specify the number of clusters, the number of clusters that are too large or
too small will make the data classification unreliable. Therefore, finding the optimal
number of clusters is the key to achieving classification.

Fig. 3. The process of constructing and classifying a complete random tree.
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We use the Silhouette Coefficient to determine the number of clusters. The
Silhouette Coefficient is a cluster validity index that combines the degree of agglom-
eration ai and the degree of separation bi, where bi is the average distance of all other
instances in the cluster to which the i-th instance belongs, and bi is the average distance
from the i-th instance to all instances in any cluster that does not contain the instance,

then the Silhouette Coefficient of the i-th instance is si ¼ bi�aið Þ
max ai;bið Þ, the value is [−1, 1],

the larger the value, the better the clustering effect.
The specific classification processes are as follows:

(1) Determine the number of clusters as N ¼ 1� r
ffiffiffi
n

p
, n is the number of cluster

data, r is the control threshold.
(2) For the N-th cluster, calculate the contour coefficient of each data, and obtain

s Nð Þ ¼ 1
n

Pn
i¼1

si, then the optimal number of clusters is bestn ¼ argmaxðsðNÞÞ.
(3) Output k-means clustering results according to bestn.

5 Experimental Results and Analysis

This paper uses the fan end bearing vibration data released by the Case Western
Reserve University Bearing Experimental Center as the fault data for model verifica-
tion. The data sampling frequency is 12 kHz. Six data types included in the data, which
are the normal state, the inner ring fault F1, the rolling element fault F2, the central
fault of the outer ring corresponding to the load zone F3, the central orthogonal fault of
the outer ring corresponding load zone F4, and the center opposite fault of the outer
ring corresponding load zone F5.

From the original signal, we collected 500 segments for each fault, each segment
contains 1024 data points. Therefore each type of signal is represented by 500 data, and
a total of 3000 data are considered for analysis.

The size of the original data in the high dimensional space is 3000 � 1024.
For the local detection layer, we used a subset of 70% normal data for training to

obtain the FM-SAE diagnostic model. We will have 30% normal data set and F1 as test
set 1; 30% normal data set, F1 and F2 as test set 2; 30% normal data set, F1, F2 and F3
as test set 3; 30% normal data set, F1, F2, F3 and F4 as test set 4; 30% normal data set,
F1, F2, F3, F4 and F5 as test set 5. Figure 4 shows that after learning the characteristics
of normal data, the FM-SAE separately characterizes the normal data and the fault data
in the test set. Figure 4(a) (b) (c) show the fluctuations of three kinds of raw data, Fig. 4
(e) shows the normal data characteristic characterized by FM-SAE, and Fig. 4(f) (g) are
the two fault data features characterized by FM-SAE. For a more intuitive display and
normal data, the characteristics are shown in red. We can see that after learning the
normal data characteristics, FM-SAE can easily distinguish it from other faults because
their characteristics are very different.
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The network structure definition of FM-SAE consists of two hidden layers whose
hidden layers contain 500 and 200 nodes, respectively. Figure 5 shows the identifi-
cation fault accuracy curve with two methods (SAE and FM-SAE for monitoring
anomalies). For SAE, it needs to learn the characteristics of all the faults to be clas-
sified, and classify it on this basis, which is not feasible in practical use. In the case of
an increase in the number of faults, we can see that the classification accuracy is
significantly reduced, because it is wrongly classified fault. FM-SAE only needs to
learn normal data characteristics, and the classification accuracy remains basically the
same when the type of failure increases.

Fig. 4. Characterize normal data and fault data characteristics.
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Fig. 5. Identification fault accuracy curve of two methods.
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For the fault classification layer, we extract all the original fault data features,
including the mean, standard deviation, peak, skewness, wave factor, crest factor and
pulse factor, the feature data set size is 2500 � 6. Using 70% of F1, F2 fault char-
acterization data for training to obtain a random forest model, leaving 30% of F1, F2
fault data and other fault data for testing. We will extract 70% F1, F2, F3 as the training
set; extract the remaining 30% F1 as test set 1, remaining 30% F1 and all F4 as test set
2, remaining 30% F1 and all F4, F5 as test set 3, remaining 30% F1, F2 and all F4, F5
as test set 4, remaining 30% F1, F2, F3 and all F4, F5 as test set 4.

In order to verify the effectiveness of the improved random forest model classifi-
cation in the fault classification layer, the effects of changing the number of trees and
the number of fault types included in the unknown data set on the accuracy of fault
classification detection are observed. During the experiment, other parameters are set
unchanged. The experimental results are shown in Fig. 6. As shown in Fig. 6(a), the
accuracy of the fault detection classification increases with the number of trees. When
the number of trees exceeds 60, the accuracy of the fault detection classification
increases slowly. From Fig. 6(b), in the case of five kinds of tests involving different
types of faults, the fault classification accuracy rate is basically maintained above 92%.

For the decision-making layer, we use the three fault data sets F1, F2, and F3 to
consider the case where N is equal to 1 to 20, cluster each N value and find the
corresponding Silhouette Coefficient. Figure 7 shows the relationship between N and
the Silhouette Coefficient. When the data is clustered into three categories, the
Silhouette Coefficient is the highest.
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Fig. 6. Relationship between model parameter changes and fault classification accuracy.
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6 Conclusion

In this paper, we propose a new distributed multi-level hierarchical fault diagnosis
system based on SAE and random forest, called DFDS, for real-time monitoring of
equipment. It can correctly classify faults and identify unknown faults while moni-
toring faults. Then, we verified the effectiveness of the system through experiments and
evaluated the performance of each part to show the validity of the model. It provides
new ideas for troubleshooting.
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