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Abstract. Sensor-based condition monitoring systems are becoming an
important part of modern industry. However, the data collected from sensor
nodes are usually unreliable and inaccurate. It is very critical to clean the sensor
data before using them to detect actual events occurred in the physical world.
Popular data cleaning methods, such as moving average and stacked denoise
autoencoder, cannot meet the requirements of accuracy, energy efficiency or
computation limitation in many sensor related applications. In this paper, we
propose a data cleaning method based on multi-sensor spatiotemporal correla-
tion. Specifically, we find out and repair the abnormal data according to the
correlation of sensor data in adjacent time and adjacent space. Real data based
simulation shows the effectiveness of our proposed method.
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1 Introduction

The development of modern network technology, especially the development of the
Internet of Things (IoT), has made tremendous progress in industrial modernization. In
particular, the sensor-based device condition monitoring system is becoming an
important part of modern industry. In this kind of application, real time data mining of
sensor data to promptly make intelligent decisions is essential [1–3]. However, the data
collected from sensor nodes are usually unreliable and inaccurate due to the complex
environments, hardware limitations, wireless interferences, etc., which further influence
quality of raw data and aggregated results. Thus, it is extremely important to ensure the
reliability and accuracy of sensor data before the decision-making process.

Many data cleaning approaches have been proposed, such as supervised neural
network methods [5], unsupervised LOF algorithms [6–8], clustering algorithms [9, 10]
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and moving average [11]. Supervised algorithms usually require high computation
capability and large storage space, which are not suitable for data cleaning of low-
storage and low-power sensors. The unsupervised algorithms are designed to find a
continuous period of abnormal data, which is not suitable to find the isolated abnormal
point in the time series. Some time series based abnormal data detection algorithms also
have high time and space complexity, which are not suitable for sensor network
applications.

In many sensor-based applications, sensors are densely deployed and the sampling
frequency of each sensor is high. The data of individual sensor usually have high
temporal correlation, and the data of closed sensors usually have high spatial corre-
lation. In this paper, we propose a multi-sensor based data cleaning approach based on
the spatiotemporal correlation between sensor data, which can find and repair abnormal
data efficiently. The time and space complexity of the proposed method are very low,
so that the abnormal data can be found and repaired efficiently.

The remainder of this paper is organized as follows. In Sect. 2, we present the
models and assumptions of this work. We analysis the problem and propose our
algorithm in Sect. 3. Section 4 shows experimental results and analysis. Section 5
concludes this paper.

2 Models and Assumptions

We assume there are n sensors densely deployed in a surveillance region, each sensor
reports the data in a small time-slot cycle and all sensors are time synchronous. In this
case, the data reported from all sensors have temporal correlation and spatial correlation
[12].

Let xi;t be a report from the sensor i at time t. Spatial correlation means that the data
series of two sensors have similar trends if the two sensors are geographically closed to
each other. For example, let fx1;t; . . .; xm;tg and fx1;s; . . .; xm;sg be normal data sets of
m adjacent sensors at time t and s respectively. If the m adjacent sensors are closed
enough, then there exists a parameter L and a small threshold r, such that

L� r�fjxi;t � xi;sjg1� i�m � Lþ r: ð1Þ

Time correlation means that the data in a short period are usually similar with each
other. For example, let xm;tþ 1; xm;tþ 2; . . .; xm;tþDt

� �
be a normal data set of the m-th

sensor in Dt time slots. If Dt is small, then there exists a small threshold d, such that

max
1� i;j�Dt

fjxm;i � xm;jjg� d: ð2Þ

Sensors can produce abnormal data when working in unideal conditions. For
example, high volatility, characterized by a sudden rise of variance in the data, can be
caused by hardware failure or a weakening in battery supply. Single spikes, occasional
unusually high or low readings occurred in a series of otherwise normal reading, can be
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caused by battery failure. Intense single spikes that occur with high frequency may
indicate hardware malfunction [15].

Since the abnormal data is mainly generated by each sensor node itself, the
abnormal data generated by different sensors have no correlation, thus we can detect the
abnormal data according to the spatiotemporal correlation of the multiple sensors.

3 Problem Analysis and Algorithm Design

In this section, we discuss how to detect the abnormal data by spatiotemporal corre-
lation and how to repair the abnormal data.

Let X ¼ fX1;X2; . . .;Xng be the collected data from n sensors in T time-slots, where
Xi ¼ fxi1; xi2; . . .; xiTgT is the data set collected by sensor i and f�gT means the
transpose of f�g. The sequence of sensors is sorted according to the position of sensors,
such that sensors with close serial numbers are also close to each other. Then temporal
correlation refers to the relationship of the data in the column, while spatial correlation
refers to the relationship of the data in the line.

Let

DX ¼ fDx1;Dx2; . . .;Dxn�1g;

where Dxi ¼ fDxi1;Dxi2; . . .;DxiTgT and Dxit ¼ jxi;t � xiþ 1;tj. According to formula
(1), if both xi;t and xiþ 1;t are normal data, then there exists a parameter L and a small
threshold r, such that L� r�Dxit � Lþ r. Therefore, if Dxit is not in the region
½L� r; Lþ r�, then xi;t or xiþ 1;t may be abnormal data.

The parameter L is critical in this process. A general method to get L is to let it be
the mean of Dxi. However, when there are abnormal data, the average of Dxi can be far
away from the real gap between Xi and Xiþ 1. Then normal Dxit may be not in
½L� r; Lþ r�. To avoid this problem, we use the median of Dxi instead of mean, since
the abnormal data may cause large changes to the mean while have no impact to the
median.

If jxi;t � xiþ 1;tj is not in the region ½L� r; Lþ r�, we need to determine which one
of xi;t and xiþ 1;t is abnormal. According to formula (2), for adjacent timeslot t0 of t, if
jxi;t � xi;t0 j is bigger than the small threshold d, xi;t may be abnormal data. However, if
xi;t0 is also abnormal, it will cause a false positive. To address this problem, we take a
set of data with adjacent timeslots of t, say xi;Dt, and compute the median xi;Dt of xi;Dt.
Then if jxi;t � xi;Dtj[ d, we say xi;t is abnormal. When the abnormal data is detected,
we can require the abnormal data by replacing the abnormal data with xi;Dt.

The pseudo code for the proposed method is shown in Algorithm 1. Firstly, the data
set X of N sensors in T time slots are divided into several groups, where each group
contains data set of N sensors in m time. Then the entire data set is divided into
num ¼ T=md e groups, and each group is a m� N matrix. For each m� N matrix, we
calculate the differences between all adjacent columns to get the difference m� ðN � 1Þ
matrix Dk, and each Dk is a difference matrix of the Xk matrix. Secondly, for each
column of Dk, we find its median Lkj and specify a threshold r. For each matrix Dk, if
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jDk½i�½j� � Lkjj\r, the difference of Xk½i; j� and Xk½i; jþ 1� are normal, let Aij ¼ 1; if not,
one of Xk½i; j� and Xk½i; jþ 1� are abnormal, let Aij ¼ 0. Thirdly, for the value of Aij ¼ 1,
let Mij ¼ fXk½i; j�;Xk½i; jþ 1�; . . .;Xk½i; jþ k�g, and mij ¼ medianðMijÞ. Compare
jXk½i�½j� � mijjwith jXk½iþ 1�½j� � miþ 1;jj, if the former is greater than the latter, Xk½i�½j� is
the abnormal value; otherwise, Xk½i�½jþ 1� is the abnormal value. Finally, for the data
Xk½i�½j� judged to be abnormal values, the corresponding median mij is assigned to the
value, and the repair is completed.

Algorithm 1 : Data cleaning algorithm
Input: data set 1 2{ , ,..., }nX X X X= T

1 2{ , ,..., }i i i iTX x x x= ;Time series 
length of the matrix m; Thresholdσ ; The length of the time series used to 
calculate the median λ

S1: Building matrix D ,let [ ][ ] [ ][ 1] [ ][ ]D i j X i j X i j= + −
S2: Let /num T m= ⎡ ⎤⎢ ⎥  , divide the matrix D into num small matrices 
, 1, 2,...,kD k num= . At the same time, the X matrix is re-divided into num

matrices, and each kD matrix is a difference matrix of the kX matrix.
S3: for each matrix kD , calculate the median kjL of each column

if | [ ][ ] |k kjD i j L σ− < ,return [ ][ ] 1A i j =
S4: for each matrix kD , 

if [ ][ ] 1A i j =
let { [ , ], [ , 1],..., [ , + ]}ij k k kM X i j X i j X i j λ= + , ( )ij ijm median M=
Compare | [ ][ ] |k ijX i j m− with 1,| [ +1][ ] |k i jX i j m +− , if the former is 

greater than the latter, [ ][ ]kX i j is the abnormal value; otherwise, 
[ ][ +1]kX i j is the abnormal value.

S5: For all the data [ ][ ]kX i j judged to be abnormal values, the corre-
sponding median ijm is assigned to the value, and the repair is completed.

, 

We can see that the entire algorithm does not involve any complicated calculations,
just some addition and subtraction of a matrix, so the time complexity of the algorithm
is OðnÞ.

4 Experiment Analysis

We use the sensor data from Intel Labs to conduct experiments [14]. The data set
contains temperature data collected by 53 sensors deployed at the Intel Berkeley
Research Laboratory from February 28 to April 5, 2004. The sensor distribution is
shown in Fig. 1. The sensor records data twice per second and collects time-stamped
topology information every 31 s.

238 B. Shao et al.



As shown in Fig. 2(a), from the normal data of 53 sensors in one day, we can see
that they have similar trends. We take the sensor serial number as the x-axis and the
temperature value as y-axis, and randomly take the data of 50 adjacent moments. As
shown in Fig. 2(b), we can see that they have extremely similar trends. This shows that
our algorithm based on spatiotemporal correlation is applicable. In the experiment, we
let m ¼ 15, r ¼ 0:1.

As discussed in Sect. 2, there are usually 3 types of abnormal data, as shown in
Fig. 3. We add them to the raw data set as follows: 25% of data in 0–1000 time slots
are replaced by the first type of abnormal data; 1% of data in 1000–2000 time slots are
replaced by the second type of abnormal data; 20% of data in 2000–2500 time slots are
replaced by the third type of abnormal data. The data set with abnormal data is shown
in Fig. 4(a). After the first round repair, the result is shown in Fig. 4(b). After the

Fig. 1. The location of 54 sensors in the laboratory [14].

Fig. 2. Raw data of 53 sensors. (a) Spacial correlation (b) Temporal correlation
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second round repair, the result is shown in Fig. 4(c). After the third round repair, the
result is shown in Fig. 4(d). We can see that after three rounds repair, most of the
abnormal data are repaired.

Figure 5 shows the raw data of the No. 1 sensor and the data after three repairs. We
can see the repair effect of the algorithm more clearly.

(a) (b) (c)

Fig. 3. 3 abnormal data types. (a) High volatility; (b) Single spikes; (c) Intense single spikes.

(a)                                    (b)

(d) 

Fig. 4. The sensor data set with abnormal data and the three round repaired data. (a) The data set
of 53 sensors after adding abnormal data; (b) The data set after the first round repair; (c) The data
set after the second round repair; (d) The data set after the third round repair.
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We use the mean absolute error (MAE) to measure the accuracy of the algorithm.
The smaller the MAE, the higher accuracy of the algorithm.

MAE ¼ 1
T

XT

t¼1

ð�xt � xtÞ; ð2Þ

where xt is the raw dataset data and �xt is the repaired dataset data.
We compare our method (MSC) with moving smoothing [16] and stacked denoise

autoencoder (SDAE) [17]. The repair results of the three kinds of noise are shown in
Fig. 6. we can see that our method always has the smallest MAE.

(a)

(b)                          (c) 

(d)                                         (e)           

Fig. 5. The raw data of the No. 1 sensor and the data after three round repairs. (a) The raw
sensor data; (b) Sensor data with abnormal data; (c) The sensor data after the first round repair;
(d) The sensor data after the second round repair; (e) The sensor data after the third round repair.
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5 Conclusion

This paper proposes a multi-sensor abnormal data detection method based on temporal
and spatial correlation, which can indicate and repair the abnormal data according to
the correlation of sensor data in adjacent time and adjacent space. We then conduct
experiments with sensor data from Intel Labs to verify the effectiveness of our
approach.
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