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Abstract. The existence of jammer and the limited buffer space bring
major challenge to data transmission efficiency in high-frequency (HF)
commuication. The data transmission problem of how to select transmis-
sion strategy with multi-channel and different buffer states to maximize
the system throughput is studied in this paper. We model the data trans-
mission problem as a Makov decision process (MDP). Then, a modified
Q-learning with additional value is proposed to help transmitter to learn
the appropriate strategy and improve the system throughput. The sim-
ulation results show the proposed Q-learning algorithm can converge to
the optimal Q value. Simultaneously, the QL algorithm compared with
the sensing algorithm has better system throughput and less packet loss.

Keywords: Anti-jamming · Dynamic spectrum access · Q-learning ·
High-frequency(HF) communication · Markov decision process (MDP)

1 Introduction

The high-frequency (HF) (3–30 MHz) communication which is mainly used in
transmitting important telegram and low bit-rate speech and image, plays a sig-
nificant role in military, disaster relief and long voyage [1–3]. The main challenge
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for data transmission in HF networks is to find appropriate channel selection
strategy. This is for several reasons. First, the available HF spectrum resources
are limited due to narrow bandwidth and multi-user accessing. Second, the time-
varying characteristic which caused by the ionospheric variation makes the com-
munication unstable. Third, there exists different kind of jamming including
natural and malicious jamming with development cognitive radio [4,5] and the
intelligent technologies [6,7], the jammer becomes more and more intelligent.
In this paper, we mainly consider the data transmission problem in jamming
environment.

The traditional anti-jamming methods in HF networks mainly include power
control [8–10], frequency hopping (FH) [11,12] and automatic link establish-
ment (ALE) [13,14]. The power control enhances communication performance
by the game theory to find the optimal Nash Equilibrium(NE) point. The FH
extensively used in real equipments switches in several frequencies to reduce the
influence of fading and jamming. Now, the adaptive FH [11] and intelligent FH
[12] technologies have attracted great attention. The power control and frequency
hopping, however, are not able to deal with the intelligent jamming. The auto-
matic link establishment (ALE) has been developed to the fourth generation,
which aims to make link establishment more intelligent and faster. However, the
ALE technology becomes weak, when the state of environment changes rapidly.

To cope with the complicated jamming environment, the reinforcement learn-
ing which can interact with environment and learns to get action by the reward,
has attracted lots of attention [15–20]. [15] uses the Q-learning to fight against
the sweep jamming considering the Markov channel model, and the simulation
result shows that the agent can avoid jamming totally. [16,17] have settled the
intelligent jamming by the reinforcement learning. However, the reinforcement
learning is nor able to resist the complex and changeable jamming. The deep
reinforcement learning (DRL) combining the deep learning and reinforcement
learning is proposed to deal with above challenge [18–20]. In [18,19], the input
of deep neural network uses the spectrum waterfall, and then acquires the opti-
mal anti-jamming decision by training.

Most of existing anti-jamming studies only considered how to find the idle
channels to avoid jamming and assume that the time of each data transmission
is fixed. They ignored the transmission demand and the limited buffer space.
In actual networks, the agent would send appropriate data packets according
to the buffer and the environment state. The agent will send data packets as
much as possible in the time gap between previous jamming and next jamming.
Therefore, the agent should not only choose the idle channel, but also decide
how many packets should send. Currently, many literatures [21,22] have studied
data transmission problem in an unknown environment. However, they do not
consider the existence of malicious jamming. Therefore, it is a meaningful task
to solve the data transmission problem in jamming environment.

In this paper, we study the data transmission problem for high-frequency com-
munication in the jamming environment using a modified Q-learning method. The
problem is challenging due to following reasons: (1) the time-varying channels; (2)
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the existence of malicious jamming; (3) the limited buffer space. The communi-
cation probability is proposed to deal with the time-varying characteristic in [23].
Motivated by [15,21], a modified Q-learning algorithm is proposed, which con-
siders the balance of exploration and exploitation to optimize data transmission.
Different from [15], the new system state is defined including the previous trans-
mission channel, the current jamming channel, and the number of data packets in
buffer. The state transmission is formulated as a markov decision process(MDP),
which aims to maximize the throughput. Simulation results show that the mod-
ified Q-learning algorithm can avoid jamming effectively and data transmission
compared with the sensing algorithm.

The main contributions of this paper are summarized as follow:

– The data buffer is considered and the time of each transmission is not fixed.
The data transmission problem in HF jamming environment is formulated as
a MDP, in which the new state contains the previous transmission channel,
the current jamming channel, and the number of data packets in buffer is
used.

– We proposed a modified Q-learning algorithm to solve data transmission prob-
lem. The modified Q-learning balances exploration and exploitation of action
selection, which reduces the convergence time to optimal Q value.

The rest of the paper is organized as follows. In Sect. 2, the system model is
introduced, and the data transmission problem is formulated as a MDP problem.
The Q-Learning-based data transmission scheme which proves to converge to the
optimal strategy is proposed in Sect. 3. Section 4 gives the simulation results and
analysis. Finally, we draw a conclusion in Sect. 5.

2 System Model and Problem Formulation

2.1 System Model

As depicted in Fig. 1, we consider a high-frequency (HF) communication system
which is composed of a transmitter, a receiver and a jammer. The point-to-
point from the transmitter to receiver is considered and there are M available
channels denoted by M = {1, 2, · · · ,M}. The jammer intending to damage the
point-to-point communication generates jamming signals in modes like comb,
sweeping and intelligence. We assume that the transmitter and the jammer keep
the transmitting power unchanged all the time. The data packets generated
according to task demands are stored in the buffer. The maximum length of
the buffer is L. We assume that the arriving data packets follow the Poisson
distribution with the arrival rate λ. When the buffer is full, the packets arrive
later will be lost. When one packet is jammed by the jammer, the receiver
will not get this packet and then tell the transmitter to send it again. The
transmission schedule is decided by the transmitter based on the channel and
buffer state. The transmitter can get the current jamming channel by wide band
spectrum sensing(WBSS). In each transmission, the transmitter selects a channel
and sends several packets to the receiver. The transmitter must comprehensively
consider the channel state and the number of packets in the buffer.
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Fig. 1. System model.

Channel State. The HF communication achieves the long-distance depend-
ing on ionosphere to reflect signals. The ionosphere, however, is influenced by
various factors like season, weather, location and solar activity [1]. The above
factors make the HF channel time-varying and hard to predict. Therefore, the
HF channel state is hard to be modeled as a Markov chain which is widely used
in other literatures [24,25]. As shown in Fig. 2, the transmission will fail, when
the channel is deep fading or jammed by jammer. For example, the channel 2 is
unavailable in time-slot 5 with deep fading, 5 and 7 with jamming. Motivated
by [23], the communication probability of channel is defined to describe the
communication performance. It is a statistical concept, which can be calculated
by long-time observation. The communication probability of the M available
channels is denoted by P = {p1, p2, · · · , pM}, where pi means that the data is
transmitted successfully with pi, when the transmitter chooses channel i.

Buffer State. The arriving packets follow the Poisson distribution with the
arrival rate λ, which means that there are dk arriving packets with probability
P (dk) = e−λTk(λTk)dk/dk! in k-th transmission, where Tk is k-th transmission
time. We assume the buffer length is lk at the beginning of k-th transmission.
If the number of transmitted packets is lTk , the number of arriving packets is lAk
and the number of packets which are jammed or suffer deep fading is lJk , then
the buffer length after k-th transmission is

lk+1 = min(L, lk + lAk + lJk − lTk ), (1)

where L is the maximum length of buffer. Since the buffer space is limited, if
the number of packets is more than L, packet loss happens. It is noted that the
buffer state of k+1-th transmission is only associated with the k-th buffer state.
Thus, the buffer state is a Markov state and the transition probability is denoted
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by p(lk+1|lk, bk), where bk is the of number of packets selected to transmit in
k-th transmission.

2.2 Problem Formulation

In this section, we formulate the data transmission problem in HF networks as a
Markov decision process(MDP) and give the explanation of the state, the action
and the utility.

We consider the data transmission with limited buffer space in jamming
environment. In Fig. 2, let the available channels M = 3, the buffer length L =
6 and the jammer generates the sweeping jamming. We assume the time-slot
of jamming denoted by TJ and the time to transmit each packet are fixed.
However, the transmitter can choose different number of packets to transmit in
each transmission according to the buffer state. As shown in Fig. 2, there is a
gap between adjacent interference in the same channel. For the transmitter, it
would like to send all its packets in the buffer if it can find the gap. However,
the gap it choose may not be enough for all packets transmission, and then the
jamming happens which makes it has to retransmit these packets. Thus, in each
transmission, the transmitter has to choose a better channel which can support
more packets be transmitted without being jammed.

Fig. 2. The data transmission process in HF networks.

The system state in k-th transmission is defined as sk = (fn
k , fJ

k , lk), where
fn

k is the communication channel in last transmission, fJ
k is the jamming channel

obtained by WBSS at the beginning of the transmission and lk is the current
buffer length. The process of data transmission in HF networks is actually a pro-
cess of state transition. It is obvious that the next system state sk+1 is obtained,
after the transmitter executes an action according the current state sk. The next
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state is only associated with the current state and previous states have no effect
on it, which can be expressed as

p(sk+1|sk, sk−1, · · · , s1) = p(sk+1|sk), (2)

where p(·) is the transition probability. Therefore, we can model the problem of
data transmission as a Markov Decision Process (MDP) [26].

Action Set. The transmitter has to select an action which contains the channel
and the number of packets at the beginning of k-th transmission. The channel
selection is denoted by ck ∈ {1, 2, · · · ,M} and the packets to transmit is bk ∈
{0, 1, 2, · · · , lk}, where lk is current buffer length. For easy analysis, we map the
two actions to a new action ak, i.e., f : (ck, bk) → ak. The map f is expressed
as ak = f(ck, bk) = bk · M + ck. Therefore, we denote the action set as A =
{1, 2, · · · , (L + 1)M}.

System Utility. In this paper, our goal is to maximize the system throughput.
In the state sk, we assume the number of packets which are not jammed is nsucc

after taking action ak = f(ck, bk). Since the channel is unstable, the average
packets transmitted successfully is denoted by

N(sk, ak) = p(ck) × nsucc, (3)

where p(ck) is the communication probability of channel ck. more packets are
transmitted successfully, the larger system throughput is. Thus, the system util-
ity is proportional to the average packets.

The more packets are in the buffer, the arriving packet may be lost with
larger probability because of the limited buffer space. We define the pressure
value of the buffer as f(sk, ak) = exp(θ × lk), where θ is the pressure coefficient
[21]. The less pressure value means less packets loss. Therefore, the system utility
is inversely proportional to the buffer pressure. At the same time, the number of
jammed packets is denoted by nJam. We define the jamming value as J(sk, ak) =
exp(β × nJam). Thus, combining the buffer pressure and the jamming degree,
the loss of data transmission is expressed as

H(sk, ak) = f(sk, ak) × J(sk, ak). (4)

The system utility, which is related to the packets transmitted successfully
and the transmission loss, is described as

uk = u(sk, ak) = N(sk, ak)/H(sk, ak). (5)

In this paper, we want to maximize the throughput performance of the HF
networks by online learning method. The action ak is related to the history
data transmission strategies {a1, a2, · · · , ak−1} and history utility information
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({u1, u2, · · · , uk−1}). Our problem is to find the optimal data transmission strat-
egy to maximize the cumulative expected throughput [15]

P : max E[
k∑

i=1

ui(ai)], ai ∈ A. (6)

According to previous analysis, the data transmission problem is modeled
as a MDP problem. The reinforcement learning(RL) which interacts with the
environment to find the optimal action is widely used for the MDP problem [15–
19]. As the system state and the action are discrete, the Q-learning is suitable
to solve the data transmission problem. In the next section, we will propose a
modified Q-learning algorithm and prove the convergence of it.

3 Q-Learning-Based Data Transmission Scheme

The Q-learning algorithm interacts with the environment and learn to obtain the
optimal action in a online-learning way. The Q-value table is used to evaluate
the performance of the action. In the state sk, the agent takes an action ak

according to the Q-value table, then, it obtains instantaneous reward rk and
switch to next state sk+1. At the same time, it updates the Q-value table. The
more detailed explanation about Q-learning can be found in [27].

In the learning process, the agent interacts with the environment to find the
optimal actions, considering the immediate reward and the future rewards. The
discounted future rewards under a policy π is defined as

V π(sk) =
+∞∑

j=k

γj−kuj , (7)

where 0 < γ < 1 is the discount factor. Then, the corresponding Q value can be
formulated as

Q(sk, ak) ← rk + γV π(sk+1). (8)

Our goal is to maximize the discounted utility. According to the Bellman
equation [18], the Q value by replacing the rk and V π(sk+1) can be expressed as

Q(sk, ak) ← uk + γ max
ak+1

Q(sk+1, ak+1). (9)

Different from [15] and [18] in which the number of available actions is small,
the number of the actions in this paper is calculated as M(L+1). Since the action
set is large, the normal Q-learning may converge to the optimal Q value with
large steps. Motivated by [21], we proposed a modified Q-learning algorithm in
jamming environment. It is important to balance the exploration and exploita-
tion of the large action set for Q-learning algorithm. In order to choose the action
effectively, a additional value is added to find the optimal action quickly [21].
The additional value can reduce the convergence time by taking advantage of
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history rewards and adjusting the explore range. The action ak is selected by
following equation,

ak = arg max
a

(Q(sk, a) + Add(sk, a)). (10)

The additional value Add(sk, a) which can help to find the optimal with less
learning steps is expressed as

Add(sk, a) = Cp

√
2 ln k × min{1/4, Va(k)}/Ta(k), (11)

where Cp is a greater than zero [28], and Ta(k) is the number of times that
action a has been executed after k transmissions. Va(k) is the bias factor, which
is defined as

Va(k) = σ2
a(k) +

√
2 ln k/Ta(k), (12)

where σ2
a(k) is the utility variance. The variance can reflect the volatility of the

action. It can be calculated by

σ2
a(k) =

Ta(k)∑

i=1

u2(si(a), a)/Ta(k)−(
Ta(k)∑

i=1

u(si(a), a)/Ta(k))2, (13)

where si(a) is the i-th of states which have selected the action a. The above
action selection method with the additional value makes the best of history
rewards and chooses the action with larger reward, which is the exploitation
characteristic of the system. Simultaneously, it will explore the action which is
not selected or rarely selected, which reflects the exploration of the system.

When the transmitter chooses an action ak according to the state sk and the
above method, it obtains the reward rk = uk, and then it updates the Q values
as follow:

Qk+1(sk, ak) = (1 − α)Qk(sk, ak) + α(rk + γ max
a

(Qk(Sk+1, a)), (14)

where α(0 < α ≤ 1) is the learning rate which is defined as α = 1/(1 + Tak
(k)),

and γ is the discount factor.
In the jamming environment, the transmitter performs the modified algo-

rithm to adjust the transmission strategy at the beginning of each transmission.
The Fig. 3 shows the time-slot of the modified Q-learning algorithm. At the
beginning of k-th transmission, the current state sk = (fn

k , fJ
k , lk) is obtained

according the last transmitting channel, the jamming channel by WBSS and the
buffer length. In the TA period, the receiver feedbacks the jammed packets nJ

to the transmitter by ACK. The current jamming channel fJ
k+1 is obtained by

WBSS in the TW period. During the TL, the transmitter observes the buffer
length lk+1 and obtains the next state sk+1 = (fn

k+1, f
J
k+1, lk+1). At the same

time, it updates the Q values according to (14). The detailed process of the
modified QL algorithm is shown in Algorithm1.
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Fig. 3. The time-slot structure of the modified QL algorithm.

Algorithm 1. The modified Q-learning-based HF data transmission algorithm
1: Set parameter γ, simulation time K, and the time index k = 0.
2: Initialize the action recording vector Tk = 0 and the Q value Q(s, a) = 0.
3: Initialize the jamming channel fJ

0 by WBSS and the buffer length l0 ≤ L, choose
the initial transmitting channel fn

0 , and acquiring the initial state s0=(fn
0 , fJ

0 , l0).
4: While k < K, do
5: if k < 1000
6: Select an action ak randomly.
7: else
8: Calculate the additional value

Add(sk, a) = Cp

√
2 ln k × min{1/4, Va(k)}/Ta(k).

9: Select action according to (10)
ak = arg max

a
(Q(sk, a) + Add(sk, a)).

10: end
11: Upgrade the action recording vector Tak(k) = Tak (k) + 1.
12: Execute ak, and obtain the reward rk based on (5).
13: Receive the ACK from the receiver, calculate the buffer length lk+1.
14: Obtain fn

k+1 according to ak and the fJ
k+1 by WBSS, Then the next state is

sk+1 = (fn
k+1, f

J
k+1, lk+1).

15: Calculate α = 1/(1 + Tak (k)).
16: Update Qk(sk, ak)

Qk+1(sk, ak) = (1 − α)Qk(sk, ak) + α(rk + γ max(Qk(Sk+1, ak+1)).
17: k = k + 1
18: End while
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4 Simulation Results and Discussion

In this section, we define the parameters of the HF network and study the
performance of the proposed algorithm. In the simulation, a network containing
a jammer, a receiver and a transmitter is considered. The length of buffer in
the transmitter is L = 7. The number of available HF channels is M = 4.
We assume the jammer generates the sweeping jamming. The data transmission
performance is compared with the sensing algorithm. The detailed simulation
parameters are shown in Table 1.

Table 1. Simulation parameters.

Parameters Value

Number of available channels M = 4

Buffer length L = 7

Channel communication probability P = [0.8, 0.85, 0.9, 0.95]

Jammer time-slot /ms Tjam = 2

Transmission time of each packet /ms Td = 0.8

ACK transmission time /ms TACK = 0.1

WBSS time /ms TWBSS = 0.2

Simulation steps K = 25000

Buffer pressure coefficient θ = 0.5

Jammed pakcet press coefficient β = 0.5

Arrive rate λ = [0.6, 0.7, · · · , 1.3]

Learning rate α = (0, 1]

Discount factor γ = 0.8

Index weight Cp = 1/
√

2

Transmission power of each packet /mw Psignle = 0.3

Figures 4 and 6 show the time-frequency diagram of the transmitter and the
jammer at the initial and convergent stage, respectively, in which the red squares
represent the sweeping jamming, the green squares are the data transmission and
the blue squares are the WBSS and ACK transmission. As shown in Fig. 4, at
the initial stage, there are mass of the overlapping squares which represent data
transmission being jammed. At the same time, Figs. 5 and 7 show the buffer
length after each transmission. It can be noted that the pressure of the buffer is
large because of the jammed packets. However, it is noted that the transmitter
can choose right transmission action to avoid the jamming after the Q-learning
stage, which is depicted in Fig. 6. At the same time, The pressure of buffer is
small after the learning phase which is shown in Fig. 7.

Figure 8 shows the Q value changing curve in the learning process at the
state s(1, 2, 4) for different actions. From the figure, we can see that the Q value
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Fig. 4. Time-frequency diagram at initial stage. (Color figure online)

curve converges to a stable value. At the sate in which last transmission is in 1-th
channel, the jammer is in 2-th channel and the buffer length is 4, the transmitter
learns the jamming pattern and acquires the optimal action. As shown in figure,
the transmitter will select the action a = (4, 4) which sends 4 packets in the
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Fig. 5. The buffer state at initial stage.
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Fig. 6. Time-frequency diagram at convergent stage. (Color figure online)

channel 4. It finds the optimal action in the state s(1, 2, 4). The convergence of
the algorithm is verified.

Figure 9 shows the system throughput under two different algorithms con-
taining the proposed QL algorithm and the sensing algorithm. The sensing algo-
rithm is that each transmission randomly selects an action according to the
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Fig. 7. The buffer state at convergent stage.
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Fig. 9. Throughput comparison of different algorithms.

current sensing result. The throughput is calculated after each 100 transmis-
sions, which is the ratio between sum of packets transmitted successfully and
the total time. From the Fig. 9, we can find that the two algorithm have almost
equivalent system throughput with small packet arriving rate. Because the pres-
sure of the buffer is small, there are not enough packets to transmit. With the
packet arriving rate increasing, the number of packets in the buffer gradually
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Fig. 10. Average packet loss of different algorithms.

increases which brings larger system throughput. Since the QL algorithm can
learn to select appropriate action by interacting with the jamming environment,
it has a better system throughput performance in the unknown and jamming
environment.

Since the buffer space is limited, more packets will be lost, when the arriving
rate of packet is large. As shown in Fig. 10, the average packet loss of each trans-
mission is compared with different algorithms. With the arriving rate increasing,
the packet loss is growing and it is almost linear. Because the sensing algorithm
chooses the action randomly according to current sensing result, there are more
jammed packets which make more packet loss than the QL algorithm.

5 Conclusion

In this paper, we considered the data transmission problem with jamming envi-
ronment in the HF environment. To cope with the unstable characteristic of
HF channel, the communication probability was used. A modified Q-learning
algorithm has been proposed to optimize the strategy selection and achieve bet-
ter communication performance. The data transmission problem in the jam-
ming environment which was formulated as a MDP problem, was solved by the
proposed algorithm. The proposed algorithm adding the additional value could
balance the exploration and exploitation of action. The simulation results con-
firmed the convergence of the proposed QL algorithm and indicated that the QL
had higher system throughput and less packet loss than the sensing algorithm.
This paper only considered sweeping jamming. In the next step, the intelligent
jammer will be further studied.
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