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Abstract. Most of network management tasks in traffic engineering such as
traffic scheduling, path planning, both of them are required the accurate and fine-
grained network traffic. However, it is difficult to capture and estimate the
volume of network traffic due to its time-varying nature. In this paper, we study
the network traffic estimation scheme to estimate the fine-grained network
traffic. Firstly, the network traffic is constructed as a time series and the
autoregressive moving average (ARMA) method is used to characterize and
model network traffic. Secondly, in order to decrease the estimation errors of the
ARMA model, we use the optimization theory to adjust the estimation results.
We construct an objective function with constraints. We find that objective
function is an NP-hard problem, then we introduce a heuristic algorithm to find
the optimization results. Finally, to evaluate the performance of our proposed
scheme, we construct a simulation platform and compare our scheme with that
of the other methods in an SDN simulation platform. The simulation results
indicate that our approach is effective and our method can reflect the network
traffic characteristics.

Keywords: Network traffic � Traffic estimation � Software-defined network �
Optimization � ARMA

1 Introduction

With the rapid growth of applications in the power telecommunication network, net-
work performance and quality of service issues are increasing. In the case of limited
network resources, establishing a network traffic model, predicting network load, and
timely controlling or adjusting will greatly improve network performance and service
quality [1, 2]. Software defined network SDN is a new network innovation architecture
which is an implementation of network virtualization [3]. SDN separates the control
plane of the network device from the data plane and centralizes the control plane into
the controller for centralized management. The controller is the brain of the network
and has the global view of the network, and then it is flexible control the network traffic
and makes the network more intelligent as a pipeline, providing a good platform for
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innovation of core networks and applications. For time-frequency synchronization
applications in (SDN), the network traffic, especially end-to-end network traffic in the
network, represents the network-level behavior of users and applications. In the net-
work, the network traffic from the origin node to the destination node is called an OD
pair. There are many OD pairs in the network and the traffic for each OD pair directly
affects the performance of the SDN. However, the network traffic in networks is
difficult to be estimated and predicted due to their high variability over time. Therefore,
network traffic estimation has become one of the hottest topics and has received
increasing attention [4].

Liu et al. proposed two iterative algorithms to estimate TM between tomogravity
space and gravity space, and use similar-Mahalanobis distance as a metric to control
estimation errors in DCN(Data center network) [5]. Hashemi et al. presented a real-time
traffic network state estimation and prediction system with built-in decision support
capabilities for traffic network management [6]. Kawasaki et al. proposed a state-space
model that estimates traffic states over a two-dimensional network with alternative
routes available by a data assimilation technique that fuses probe vehicle data with a
traffic flow model [7]. Dias et al. presented a classification module for video streaming
traffic, based on machine learning, as a solution for network schemes that require
adequate real-time traffic treatment [8]. Nie et al. propose a novel network traffic
prediction approach based on a deep belief network [9]. Ermagun et al. studied
examines the spatiotemporal dependency between traffic links and model the traffic
flow of 140 traffic links in a sub-network of the Minneapolis-St [10]. Jiang et al.
investigated how to estimate and recover the end-to-end network traffic matrix in fine
time granularity from the sampled traffic traces which is a hard inverse problem [11].
Some of these methods had relatively large estimation errors, while others were very
sensitive to prior information [6, 11]. Hence, the above models and methods are
difficult to accurately capture network flow traffic, so it is still significantly necessary to
find more accurate model to depict network flow traffic, to lower the complexity of
algorithms, and to improve the estimation accuracy.

Different from these algorithms, this paper proposes a new estimation approach to
model the network traffic in power telecommunication network. Firstly, the network
traffic is described as linear-correlation random process over time and constructed as a
time series. Then, we use the autoregressive moving average (ARMA) to characterize
and model network traffic. Secondly, the ARMA model is trained to describe network
traffic changes over time. Additionally, network traffic sample data are used to establish
and determine the model parameters. In such a case, the ARMA model can be effec-
tively and correctly capture the dynamic nature of network traffic in power telecom-
munication networks. We can effectively estimate network traffic in the next time.
Then, we construct an objective function with constraints. We find that objective
function is an NP-hard problem, then we introduce a heuristic algorithm to find the
optimization results. Finally, to evaluate the performance of our proposed scheme, we
construct a simulation plat-form and compare our scheme with that of the other
methods in an SDN simulation platform.

The rest of this paper is organized as follows. Section 2 is a problem statement.
Section 2.1 is to derive our prediction approach. Section 3 is simulation results and
analysis. Finally, our work in this paper is concluded in Sect. 4.
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2 Problem Statement

Origin-Destination (OD) traffic refers to traffic between two nodes in the network.
Given the training set D : fXi; tigNi¼1 as the network traffic in power telecommunication
networks, where Xi is the number of training samples, Xi is the vector of network traffic
corresponding to time ti, then the network traffic can be represented as

X ¼ fxðt1Þ; xðt2Þ; . . .:; xðtNÞg ð1Þ

The flow traffic in the network is aggregated into the link on the transmitting path,
then the relationship between link load and traffic can be expressed as that

Y ¼ AX ð2Þ

where Y is a column vector representing link traffic, X is also a column vector rep-
resenting the traffic matrix and A is the routing matrix. The problem of flow calculation
is an inverse problem solving of an underdetermined and ill-conditioned system.

In the network, the flow traffic in networks can be presented as a time-series model
and has time correlation. The autoregressive moving average (ARMA) model is used to
predict the time series; it consists of the autoregressive (AR) model and the moving
average (MA) model. However, ARMA is more widely used and has lower prediction
errors than AR model and MA model. The AR model presents the correlation of flow
traffic in time, so the traffic sequence xð1Þ; xð2Þ; . . .; xðtÞ of a flow can be written as

xðtÞ ¼
Xp
i¼1

/ixðt � iÞþ ZðtÞ ð3Þ

where xðt � iÞ is the observed value of the predicted object, ZðtÞ is the error; /iði ¼
1; 2; . . .; pÞ are the autoregressive coefficients; p is the order. As the prediction object
xðtÞ is affected by its own change. The error ZðtÞ is the white noise, it is a random
sequence. The MA model of random error can be expressed as

ZðtÞ ¼ uðtÞþ h1uðt � 1Þþ h2uðt � 2Þþ � � � hquðt � qÞ

¼ uðtÞþ
Xq
i¼1

hiuðt � iÞ ð4Þ

where uðtÞ is the white Gaussian noise, so the mean and variance of uðtÞ are EðuðtÞÞ ¼ 0
and EðuðtÞ2Þ ¼ r2, respectively; q is the moving average order; hjðj ¼ 1; 2; . . .; qÞ are
the moving average coefficients. Then, the ARMA(p, q) model can be written as

xðtÞ ¼
Xp
i¼1

/ixðt � iÞþ uðtÞþ
Xq
i¼1

hiuðt � iÞ ð5Þ
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The accuracy of the ARMA(p, q) prediction is determined by the order p and
q. When q ¼ 0, the ARMA model becomes the AR model; and when p ¼ 0 the ARMA
model degrades the MA model. Then, we introduce the AIC (Akaike Information
Criterion) principle and BIC (Bayesian Information Criterion) principle to determine
the order of the ARMA model. The AIC criterion is a weighting function of the fitting
precision and the number of orders, and the model that makes the AIC function
minimum is considered to be the optimal model. Define the AIC criterion function as
follow:

AIC ¼ N log r̂2 þ 2ðpþ qþ 1Þ ð6Þ

BIC ¼ AICþðlogðNÞ � 2Þðpþ qþ 1Þ ð7Þ

where N is the number of sampling points; r̂2 is the variance of the filling residual.
Then, we take the order of the best ARMA(p, q) model.

In the SDN-based network, we use the pull-based scheme to collect coarse-grained
network traffic statistic. We use the ARMA(p, q) model to predict the network traffic

x̂ðtÞ = ARMA(xðtÞÞ ð8Þ

With the ARMA model, we estimate traffic with the measured time series xðtÞ.
However, estimation results of flows have big errors with the actual flow traffic. In the
network, the link load reflects the integrated traffic transmission in the network. So, we
use the pull-based method to obtain the fine-grained link load Y in networks. We try to
decrease the network traffic error, the objective function can be written as

f ¼ Y � AX̂
�� ��

2 þ X̂
�� ��

2 ð9Þ

In order to decrease the deviation between the estimations and the actual traffic
results, we construct an objective function to optimize the estimation results. The
objective function with constraints as

minf
s:t:
C1 : X � 0
C2 : Ym � P

n
amnX̂

C3 :
PN

i¼1 xij ¼
PN

j¼1 xji

8>>>>><
>>>>>:

ð10Þ

where X̂ is estimated by the ARMA model. Constraint C1 shows the link load is non-
negativity; constraint C2 is a limitation of flows on each link; constraint C3 represents
that the traffic that input and output a switch are constants, i is the source node and j is
the destination node. In the network, the routing matrix A has M rows and N columns.
However, the OD pairs are much larger than links, namely: M � N, then the routing
matrix A is an underdetermined matrix, therefore, there are infinite traffic matrices X.
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The objective function (10) is an NP-hard problem and is difficult to solve directly.
Then, we use a heuristic method to solve it.

2.1 Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) algorithm is one of the heuristic algorithms which
utility the swarm intelligence computational model based on the natural swarm sys-
tems. The particle swarm optimization is an optimization technique based on the
sociological behavior associated with birds flocking, which is a population-based
stochastic optimization technique, so it is suitable to solve the non-linear optimization
problem. The particle swarm optimization algorithm is a robust swarm optimization
method which dynamically adjusts according to the particle movement velocity and the
particle companions’ status.

PSO is initialized with a population of random solutions and searches for optimal
by updating particles’ positions. The velocity of particles is influenced by three com-
ponents namely, initial, cognitive and social components. Each particle updates its
previous velocity and position vectors according to the following model.

mkðtþ 1Þ ¼ wmkðtÞþ c1r1ðPbestkðtÞ � xkðtÞÞ
þ c2r2ðGbestðtÞ � xkðtÞÞ

ð11Þ

xkðtþ 1Þ ¼ xkðtÞþ mkðtþ 1Þ ð12Þ

which xkðtþ 1Þ and mkðtþ 1Þ represent the particle position and the particle moving
velocity respectively. The term c1 and c2 denote the personal and global learning
factors respectively which are also defined as constants. Pbestk and Gbest are the
personal best and global best of each particle respectively. r1 and r2 are both random
values in the range ½0; 1�. The term w is the inertia weight.

For PSO, the personal best status and the goal best statue are the two terms which
should be shared among all the particles. We assume that there are K particles in the
swarm, due to that there are N flows in the network, so each particle has expressed a
vector with the set of flows, then each particle can be written as the vector xk ¼
½xk1; . . . ; xkn; . . . xkN � for each particle position and the velocity vector can be written
as vk ¼ ½vk1; . . .; vkn; . . .vkN �. Each particle flying based on its personal best status and
the global best status during each iteration.

3 Simulation Result and Analysis

3.1 Simulation Environment

In this section, we perform some simulations to evaluate the performance of our pro-
posed algorithm AMPSO. In order to justify the performance of our method, we con-
struct a simple network topology with Mininet, and use Ryu as a controller. We use Iperf
to generate some origin-destination (OD) pairs and measure the traffic at different nodes
deployment at different places in the network. The PCA, SRSVD [12], WABR [8]
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are the methods studied has better performance. Here we compare AMPSO against
them. The mean absolute error (MAE), mean relative error (MRE) for the network in
traffic are for different methods. Finally, we discuss the performance improvement of
AMPSO against PCA, SRSVD, WABR. In our simulation, we use the first 300 time
slots as the training set to train the prediction model, and then we embed the prediction
model into optimization module and insert them into the controller to measure the
network traffic and validate the performance of all algorithms.

Figure 1 shows the prediction results of network traffic flows, where network traffic
flows f is selected randomly from the origin-destination (OD) pairs in the network. As
our simulation tests, other OD traffic pairs holds similar results. Without loss of gen-
erality, we only discuss the network traffic flows f1 in this paper. In Fig. 1, we find that
the network traffic flow is fluctuation over time as the blue line in Fig. 1. The network
traffic estimation results of AMPSO can catch the trend of network traffic. Next, we
will further discuss the performance of our algorithm, and compare our method against
other algorithms. Although network traffic in Fig. 1 can intuitively reflect the charac-
teristics of network traffic, it is difficult to observe the fluctuation characteristics of
network traffic in detail. To further verify the performance of the proposed algorithm,
we use the indicators MAE and MRE to analyze the estimation error of the network
traffic. We repeated the simulation 100 runs to avoid the randomness of the simulation
process.
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Fig. 1. Measurement results of network traffic.
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The mean absolute errors and mean relative errors over time for the network traffic
are defined as:

MAE ¼ 1
K

XK

i¼1
x̂iðtÞ � xiðtÞj j ð13Þ

MRE ¼ 1
K

XK

i¼1

x̂iðtÞ � xiðtÞj j
xiðtÞ ð14Þ

where i ¼ 1; 2; . . .;K, K indicates the number of repetitions in the simulation process,
and x̂iðtÞ indicates the network traffic measurement, and xiðtÞ is the actual network
traffic generate by Iperf in the network.

The mean absolute errors of the network traffic over time are shown in Fig. 2. We
can find that for network traffic WABR and SRSVD exhibit lower relative errors while
PCA holds the larger prediction bias. For Fig. 2, we can also see that that SRSVD
holds the lowest relative errors. This shows us that in contrast to PCA, WABR and
SRSVD, AMPSO holds a better performance of the network traffic prediction, while
AMPSO holds the best prediction ability. We can also find that the AMPSO has the
lowest fluctuation over time in terms of mean absolute errors than the other three
algorithm, and has mean absolute error is smallest than the other three algorithms.
AMPSO can more effectively model the network traffic with time-varying and corre-
lation features.
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Fig. 2. Mean absolute errors for network traffic.
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Fig. 3. Mean relative errors for network traffic.
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Fig. 4. The CCDF of the mean relative errors for network traffic.
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Figure 3 depicts the mean relative errors of the network traffic. The mean relative
errors reflect the ratio of estimation errors. Figure 3 shows that AMPSO has the lowest

mean relative errors than that of the PCA, WABR and SRSVD, and most of the mean
relative errors of AMPSO is smaller than 0.1, which means that the estimation error is
smaller than 10%. Then, the AMPSO is effective to estimate the network traffic in the
power telecommunication networks.

Figure 4 depicts the curve of the CCDF (Complementary Cumulative Distribution
Function) of mean relative errors for the different measurement methods. Mean relative
errors are the standard deviation of the residuals, it shows how concentrated the data is
around the line of actual flow traffic. The CCDF of the measurement Mean relative
errors error in Fig. 4 reflects that 10% mean relative errors of the flow of the AMPSO,
SRSVD, WABR, PCA is more than 0.078, 0.146, 0.229 and 0.435, respectively. So,
the network traffic measurement scheme of AMPSO is stable and can reflect the
network traffic with the mean relative error lower than 0.078.

Now, we analyze the performance improvement of AMPSO relative to the other
three algorithms for the network traffic. Figure 5 exhibits the performance improve-
ment ration of network traffic flow. In Fig. 5, AMPSO attains the performance
improvement of about 7.4%, 12%, 25% against SRSVD, WABR, PCA, respectively.
This clearly denotes that compared with PCA, WABR, and SRSVD, our algorithm can
more accurately model the network-level network traffic. Moreover, Fig. 5 also tell us
that relative to PCA and WABR, our scheme can reach larger performance
improvement.
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Fig. 5. Improvement ratio of network traffic.
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4 Conclusions

This paper uses the ARMA method to model network traffic in power telecommuni-
cation networks. By the ARMA model, we can capture the dynamic and time-varying
features over time of the network traffic. Network traffic is converted into a time series
which can be predicted by the ARMA model with some history data. Then we use the
optimization theory to decrease the estimate errors. Because the objective function of
the optimization process is an NP-hard problem, we propose to use a heuristic algo-
rithm to find the solution. Then, we introduce the PSO to optimize the network traffic.
Finally, we perform some simulation to verify the performance of the proposed
algorithm in this paper. Simulation results show that the proposed approach in this
paper is feasible.
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