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Abstract. The current network attacks on the network have become very
complex. As the highest level of network security situational awareness, situa-
tion prediction provides effective information for network administrators to
develop security protection strategies. The generative adversarial network
(GAN) is a popular generation model, which is difficult to train, collapse mode
and gradient instability in this network. A Wasserstein distance as a loss
function of GAN is proposed. And a difference term is added on the loss
function. The improved Wasserstein-GAN (IWGAN) is to improve the classi-
fication precision of the situation value. Compared with other forecasting
methods, the results show that the method has obvious advantages.
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1 Introduction

The network security situation prediction is the ultimate goal in the network security
situation awareness (NSSA) [1]. NSSA on the premise of extracting and understanding
the security element information of real network. Through the observation and analysis
of history and current data. Furthermore, the future security trend of the network is
speculated.

In the field of network security, situation prediction has become a hot spot. The
network security situation prediction is based on the situation value obtained by the
network security data in a period of time.

Based on the deepening of machine learning, generative adversarial Network
(GAN) [2] is another form based on the micro-generation network, the training of GAN
needs to achieve Nash equilibrium, the training of GAN model is unstable. On this
basis also made a lot of improvements, such as DCGAN [3] and LSGAN [4]. But in
practice this approach does not completely solve the problem. Wasserstein-GAN
(WGAN) [5] had a very good effect. In this paper, WGAN is applied to network
security, and an improved WGAN situation prediction method is proposed. Taking full
account of the dependence of different situation factors, using the correlation of the
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situation factor time dimension to predict the future network security situation factors,
the influence of the historical network security situation on the future situation is more
objectively reflected.

2 A Method of Situation Prediction Based on Improved
WGAN

2.1 Generative Adversarial Network

GAN consists of two models, generating model G and discriminant model D, random
noise z through G generation as far as possible to follow the real data distribution of the
sample G(z), discriminant model D can determine whether the input sample is real data
x or generate data G(z). Both G and D can be non-linear mapping functions, such as
multilayer perceptron. The optimization goal is to achieve Nash equilibrium so that the
generator estimates the distribution of data samples. The process of GAN is shown in
Fig. 1:

2.2 GAN Core Principle Description

The discriminant is a two classification model. The training discriminant is the process of
minimizing the cross entropy. The Eð�Þ is the calculation of expected value, x is sampled
from the real data distribution pdataðxÞ, and Z is sampled in a priori distribution pzðzÞ. In
order to learn the distribution of data x, the generator constructs a mapping space g z; hGð Þ
by a priori noise distribution pzðzÞ, and the corresponding discriminant mapping function
is D x; hdð Þ. The probability of outputting a scalar to represent x as real data is:

min
G

max
D

V D;Gð Þ ¼Ex�PdataðxÞ ½logDðxÞ�
þ Ez�PzðzÞ ½logð1� DðGðzÞÞÞ�

ð1Þ

It can obtain the optimal state of the discriminant D when the generator G is fixed by
the formula (1). For a specific sample x, PrðxÞ is the real sample distribution, PgðxÞ is the
generator produced by the sample distribution, it may come from a real distribution or a
generation distribution, and its contribution to the formula (1) Loss function is:

Generator
G

Discriminant
D

Real data x

Random Noise 
z

Discriminant
results

Generate
samples G(z)

Fig. 1. GAN flow chart.

Network Security Situation Prediction Based on Improved WGAN 655



�PrðxÞ½logDðxÞ� � PgðxÞ½logð1� DðxÞ� ð2Þ

So that its derivative of D(x) is 0, it concludes:

�PrðxÞ
DðxÞ þ PgðxÞ

1� DðxÞ ¼ 0 ð3Þ

The best discriminant for simplification is:

D�ðxÞ ¼ PrðxÞ
PrðxÞþPgðxÞ ð4Þ

This result is intuitively easy to understand, and is to look at the relative proportions
of a sample x from the actual distribution and the probability of generating the
distribution.

Substituting formula (1), and then a simple transformation can be obtained:

Ex�PdataðxÞ log
PrðxÞ

1
2 ½PrðxÞþPgðxÞ�

þ

Ez�PzðzÞ log
PgðxÞ

1
2 ½PrðxÞþPgðxÞ�

� 2 log 2
ð5Þ

The transformation is to introduce two important similarity metrics for KL diver-
gence [6] and JS divergence [7]:

KL P1 P2kð Þ ¼ Ex�P1 log
P1ðxÞ
P2

ð6Þ

JS P1 P2kð Þ ¼ 1
2
KL P1

P1 þP2

2

����
� �

þ 1
2
KL P2

P1 þP2

2

����
� �

ð7Þ

So the formula (5) can be written as:

2JS P1 P2kð Þ � 2 log 2 ð8Þ

Under the approximate optimal discriminant, the loss of the minimized generator is
equivalent to minimizing the JS divergence. The gradient (approximate) of the gen-
erator is 0, and the gradient disappears. Under the condition of KL divergence, the
problems such as the gradient imbalance and the penalty imbalance lead to mode
collapse [8].

The problem of mode collapse is caused by the gradient disappearance of GAN, the
unbalanced gradient and the unbalanced punishment. In GAN, the Wasserstein distance
[9] is introduced as the loss function, because of its superior smoothing characteristic
relative to KL divergence and JS divergence, the gradient vanishing problem can be
solved theoretically.
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2.3 An IWGAN Algorithm Description

WGAN’s biggest contribution is to use Wasserstein distance to replace the JS diver-
gence or KL divergence in GAN, greatly alleviate the problem of GAN difficult to
train, Wasserstein distance also called Earth-mover (EM) distance, defined as follows:

W Pr;Pg
� � ¼ inf

c�
Q

ðPr;PgÞ
Eðx;y� cÞ x� yj jj j½ � ð9Þ

The
QðPr;PgÞ is a collection of all possible joint distributions of Pr and Pg

combined, The lower bound that can be taken to this expectation in all possible joint
distributions is defined as Wasserstein distance.

Since the Wasserstein distance definition formula (9) cannot be directly solved, it
can be transformed into the following form with an existing theorem:

W Pr;Pg
� � ¼ 1

K
sup
fk kL �K

Ex�Pr f ðxÞ½ � � Ex�Pg f ðxÞ½ � ð10Þ

This process has been proved by the literature [10]. How this distance is solved.
First you need to introduce a concept Lipschitz continuous [11]. It’s actually an extra
restriction on a continuous function f that requires a constant to satisfy any two ele-
ments and within the defined domain:

f x1ð Þ � f x2ð Þj j �K x1 � x2j j ð11Þ

At this time the Lipschitz constant of the function f is K.
In particular, we can define a series of possible function fw with a set of parameter

w, at which point the solution formula (9) can be approximated to the following form:

KW Pr;Pg
� � ¼ max

w: fwk kL �K
Ex�Pr fwðxÞ½ � � Ex�Pg fwðxÞ½ � ð12Þ

A discriminant network fw with the parameter w and the last layer is not a Non-
linear activation layer is constructed, and the loss function of the discriminant is given
under the condition that the w does not exceed a certain range:

L ¼ �Ex�Pr fwðxÞ½ � þEx�Pg fwðxÞ½ � ð13Þ

The Lipschitz limit is that the gradient of the discriminant does not exceed K
(K = 1), and a loss term can be added to the end of the formula to reflect this, which is
a difference function, and the loss function is:

ð14Þ
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In other words, they are still sampling randomly on distribution px̂, but two at a
time, and then ask them to have a line slope of nearly 1. To limit the distance between
the true and false samples, the specific difference can play a role, given the following
proof.

Theorem: Loss function adding difference term can stabilize gradient value.
Analysis: The discriminant is to try to pull large real sample and the distance

between the sample, without the difference limit, usually also want to add a weight
Clipping. But it is the overall effect on the sample space, it will inevitably lead to
gradient disappear or gradient explosion. The difference is only the true and false
sample concentration area, and the gradient is limited to 1 near, controllability is very
strong.

Proof: Known xr � pxrxr � pxr ; supposing e�Uniform 0; 1½ � is randomly interpo-
lated in the middle of xr and xg, namely:

bx ¼ exr þ 1� eð Þxg ð15Þ

At this time bx satisfied with the distribution of pbxr , random sampling on pbxr , in
which to select two different values, for example x1 � px̂; x2 � px̂, these two values are
real samples and generate samples of the concentration of the selection, control the
distance between them, to limit it, can prevent the distance too large or too small
distance, to distinguish the discriminant has brought good results. A simple comparison
between weight clipping and differential was made, and the advantage of difference
was obviously seen.

The Fig. 2 shows that the gradient value changes very little after using the dif-
ference term, which gives the discriminant an unexpected effect on the distinction
between real and generated samples. ■
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Fig. 2. Gradient value comparison
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In conclusion, the IWGAN successfully solves the following problems of GAN:
Solving the instability problem of GAN training thoroughly, no longer need to be
careful about the training degree of balance generator and discriminant; the problem of
collapse mode is solved and the diversity of generating samples is ensured; The
problem with WGAN is that The discriminant is a multilayer network. The weight
clipping is used directly when dealing with Lipschitz constraints, but this method
restricts the parameters to the clip range.

In short, a difference is added to the loss function of the difference term, and by
judging whether the new loss function is eligible, the generator and the discriminant
will be re-trained until the requirement is reached, and the parameters are updated
through the Adam algorithm.

The specific algorithm is as follows:

x P x P
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3 Flow Chart of Situation Forecast

In the WGAN prediction model, the convolution neural network (CNN) [12] is used in
the generator G and discriminant D, which is also a kind of deep convolution coun-
termeasure generation network, the concrete model is shown in Fig. 3:

This article is the before X’s days of data as the input of the generator, generate a
distribution. The distribution equivalent to PgðxÞ. After X’s days of data as a real data
input discriminant. The final distribution equivalent to PrðxÞ. The discriminant will be
judged in the before X’s days of data distribution and after X’s days of the data to

G

D
Real

samples

Generate
samples

Enter the noise under
a division

Input

Generating model: Rotating the
volume neural network

Discriminant models: Convolution
neural networks

Fake two
classifier

Fig. 3. Deep convolution Confrontation Generation network
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Fig. 4. IWGAN prediction flow chart
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distinguish. Constantly update the network to reach the probability of approximately 1
of the state. That is to predict the situation before X’s days is not going to develop into
the situation after X’s days.

IWGAN Security situation forecast Flowchart (Fig. 4):

3.1 Generative Adversarial Network

Analysis of the attack characteristics of security data, uncertainty and continuity, this
paper selects a company from July to September 95 days of firewall, IDs and other
historical log information as the original dataset [13]. Make a sample of the daily log
information.

Because the security situation value is random, the dimensional difference is big, in
order to raise the model the training speed, the situation value carries on the extremum
standardization processing, the processing formula is as follows:

X̂ ¼ X � Xmin

Xmax � Xmin
ð16Þ

The upper Xmin and Xmax are the smallest and largest situation values in the sample.
X and X̂ are the situation values before and after treatment. The network security
situation data after the extreme value standardization is shown in Fig. 5.

Figure 5 represents a change curve in the situation value in 95 days of log infor-
mation. In order to deal with the one-dimensional time series samples which are worth
to the situation assessment, the topological order dimension is determined to be 5. The
refactoring results are shown in Table 1.
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Fig. 5. The value of network security situation after extremum

Network Security Situation Prediction Based on Improved WGAN 661



3.2 Analysis and Comparison of Experimental Results

Convergence Analysis
After the data is refactored, the specification is tanh [−1, 1]. The batch size in Mini-
batch training is 64. All parameter initialization is randomly obtained from the normal
distribution of (0 0.02) and the slope of the Leakyrelu is 0.2.

A WGAN loss function with a difference item and no difference is added, as shown
in Fig. 6. The former is IWGAN, the later is WGAN. It can be seen clearly that the
difference function has brought some effect to WGAN.

Compared with Other Prediction Methods
Comparing the IWGAN prediction method with the common GAN improvement
methods, such as WGAN, DCGAN and LSGAN, the results are shown in Fig. 7.

We can see from Fig. 7 that the IWGAN prediction method works well. This is
because it solves the problem of gradient imbalance and collapse mode.

Table 1. Training data refactoring results

Input sample Output sample

X1;X2;X3;X4;X5 X6

X2;X3;X4;X5;X6 X7

. . . . . .

X74;X75;X76;X77;X78 X79

. . . . . .

Number of iterations

Er
ro

r

WGAN
IWGAN

Fig. 6. Variation curve of difference with iterative times
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4 Conclusion

This paper presents an IWGAN network security situation prediction method, estab-
lishes the cyclic neural network model for the real network environment, extracts the
network security situation factor training model and forecasts the future network
security change trend. Using historical log information, such as firewall and IDs 95
days from July to September, as the original data set, the results show that the method
is feasible and of high accuracy.
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