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Abstract. The traffic flow prediction of cellular network requires low
complexity and high accuracy, which is difficult to meet using the existing
methods. In this paper, we propose an long short-term memory (LSTM)
network based traffic flow prediction in which we consider temporal corre-
lations inherently and nonlinear characteristics of cellular network traffic
flow data. We use Back Propagation Through Time (BPTT) to train the
LSTM network and evaluate the model using mean square error (MSE)
and mean absolute error (MAE). Simulation results show that the pro-
posed LSTM network based traffic flow prediction for cellular network is
superior to the stacked autoencoder network based algorithm.

Keywords: Deep learning · Long short-term memory (LSTM) ·
Traffic flow prediction · Cellular network

1 Introduction

With the popularity of smart phones and the upgrading of wireless commu-
nication techniques, the demand for data services increases rapidly. Thus, the
resource allocation place the critical role for meeting the demand. However, the
environment is changed dynamically and the resource allocation based on infor-
mation at the current moment has a certain time delay, it can not satisfy the
demand for resource at the current moment. So traffic flow prediction in cellular
network is imperative requirement.

There are many traditional methods for predicting traffic flow in cellu-
lar network. For example, In [1], Auto-Regressive Integrated Moving Average
(ARIMA), fractional ARIMA, artificial neural network (ANN), and wavelet-
based predictors were used for wireless traffic prediction and analyzed compu-
tational complexity. The joint Kohonen maps and ARIMA time series models
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method was proposed in [2] which is a short-term traffic prediction. A theory
which aims to model the univariate traffic condition data flow as a seasonal
autoregressive integrated moving average process was proposed in [3]. In wire-
less networks, information theory techniques are proposed in [4] for discrete
sequence prediction. A multi-resolution finite impulse response neural network
learning algorithm based on the maximum overlap discrete wavelet transform
was proposed in [5] for network traffic prediction (real world aggregated Ether-
net traffic data).

With the development of machine learning techniques, various machine learn-
ing methods are used for wireless network traffic flow prediction, the experimen-
tal results show that these methods have effectively improved the accuracy of
traffic flow prediction. The joint principal component analysis and time series
model was proposed in [6] to predict the fluctuation of Internet traffic in the
international IP transmission network. An ANN model based on Multilayer Per-
ceptron was proposed in [7] to predict Internet traffic flow in IP networks. Three
methods for accurately predicting traffic in TCP/IP-based networks were pre-
sented in [8], which included a neural network integration methods and two adap-
tive time series methods (ARIMA and Holt-Winters) respectively. A short-term
network traffic prediction algorithm LSVM-DTW-K based on Chaos Theory
and Support Vector Machines was proposed in [9] for wired and wireless campus
networks. In [10], the traffic model based on Elman-NN network was used to
predict future traffic and the results showed that this method can achieve better
performance. In addition, it also includes traffic flow prediction problems when
incomplete data exist. There are many other methods of machine learning that
have been proposed for traffic prediction, [11–13].

Deep learning has developed rapidly, and prediction methods based on deep
learning have also developed, such as in transportation and communication net-
works. In [14], a stacked autoencoder model (SAE) to learn general traffic flow
characteristics, after extracting the traffic characteristics, then this method uses
top-level logistic regression to predict traffic flow. Two different artificial neu-
ral network methods are proposed in [15], which are multilayer perceptrons and
stacked autoencoder for predicting Internet traffic. An underlying deep belief
network (DBN) and top-level multitask regression layer deep learning model
was proposed in [16], where DBN is used for unsupervised feature learning. The
deep learning models that has been used to perform traffic flow prediction that
do not fully consider the correlation between time series. Recently, LSTM net-
work has been developed and extensively used on time series prediction, such as,
for TCP/IP networks, a model that combines LSTM with deep neural networks
was proposed in [17], which utilized autocorrelation features to improve the accu-
racy of network traffic prediction. So, LSTM network takes full account of the
temporal correlation of time series and can remember some of the information
entered before so that to exploit the relationship between these time series and
improve the prediction accuracy. In this paper, we proposed a LSTM network
based traffic flow prediction for cellular network. Time series data were highly
related, so we can utilize LSTM that can reserve long-term memory to learn the
basic characteristics of cellular network traffic flow data in the cell.
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The rest of the paper is organized as follows. We describe the system model
in Sect. 2. The LSTM network based traffic flow prediction is described in Sect. 3.
The simulation results of the proposed LSTM network based traffic flow predic-
tion for cellular networks are provided in Sect. 4. In Sect. 5, conclusion is offered.

2 System Model

The system considered in this paper consists of one micro cell which serves K
users as shown in Fig. 1. In this paper, we consider the uplink traffic flow data of
the micro cell. The data was collected every time slot and each time slot consists
of n minutes. Denote x〈t〉 as the traffic flow data at tth time slot. In this network,
we want to use the collected traffic flow data {x〈1〉, x〈2〉, x〈3〉, · · · , x〈T 〉} from T
time slots to predict the volume of traffic flow x〈T+1〉 at the (T + 1)th time slot.

Fig. 1. A simple cellular network

3 LSTM Network Based Traffic Flow Prediction

3.1 LSTM Network

Figure 2 shows the structure of LSTM network used for predicting traffic flow. As
shown in Fig. 2, we use T consecutive traffic flow data {x〈1〉, x〈2〉, x〈3〉, · · · , x〈T 〉}
as the input to the LSTM network to predict cellular traffic flow x〈T+1〉 at the
T + 1 time slot. The traffic flow prediction requires T time steps at a time, and
each time step corresponds to an LSTM cell. The LSTM network adopts a self-
looping method in which only one data can be entered into the network at a
time.

The basic component of LSTM network is the LSTM cell as shown in Fig. 3,
the tth LSTM cell corresponds to the tth time step, which has the ability to
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Fig. 2. The structure of LSTM network

Fig. 3. The structure of LSTM cell

remove or add information to a cell’s state through a well-designed structure
consisting of three different kinds of gates, which are “input gate”, “output
gate” and “forget gate” [18]. Each gate is a feedforward network layer which
consists of one hidden layer, the number of hidden layer neurons denoted as P
which is called LSTM cell units. The gate is a way of letting messages pass by
and overcoming the vanishing gradient and the exploding gradient. The gate
has the ability to choose whether to pass the information by itself and the gate’s
output value is in the range of (0,1), where 1 means “completely reserved”, 0
means “completely discarded”. σ(x) is the gate function, which is usually chosen
as sigmoid function so that the gate function can be expressed as

σ(x) =
1

1 + exp−x
(1)

According to Fig. 3, the input of the LSTM cell is h〈t−1〉, x〈t〉, c〈t−1〉, where
c〈t−1〉 is the cell state at the t − 1 time step, h〈t−1〉, the output value of cell
state at the t − 1 time step. The output value of the LSTM cell is x̂〈t+1〉 at the
t time step.
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In LSTM network, i〈t〉, f 〈t〉, and o〈t〉 denote the output value of “input
gate”, “forget gate” and “output gate”, which represented by (2), (3) and (4),
respectively. The output value of the forget gate decides whether the content of
the cell state at t−1 time step will add to the update cell state at the t time step.
The output value of the input gate decides whether new candidate values c̃〈t〉

could add to cell state, where c̃〈t〉 is expressed as (5). Then, combine c̃〈t〉 and
c〈t−1〉 can get the update cell state c〈t〉, which indicates the update contents
of the cell state stored at the t time step and the cell state is expressed as (6).
The output value of the output gate decides whether the updated cell state can
influence the output of the LSTM cell, the output value of cell state is expressed
as (7) [17].

i〈t〉 = σ(Wi [h〈t−1〉, x〈t〉] + bi) (2)

f 〈t〉 = σ(Wf [h〈t−1〉, x〈t〉] + bf ) (3)

o〈t〉 = σ(Wo [h〈t−1〉, x〈t〉] + bo) (4)

c̃〈t〉 = tanh(Wc [h〈t−1〉, x〈t〉] + bc) (5)

c〈t〉 = i〈t〉 ∗ c̃〈t〉 + f 〈t〉 ∗ c〈t−1〉 (6)

h〈t〉 = o〈t〉 ∗ tanh c〈t〉 (7)

which the parameters Wc , Wi , Wf and Wo are weight matrixes corresponding
to the network structure of cell state, input gate, forget gate, and output gate,
the dimension of them is P × (P + 1), bc , bi , bf , bo are bias vector corresponding
to the network structure of cell state, input gate, forget gate, and output gate,
the dimension of them is P × 1 and tanh(x) is represented as expx − exp−x

expx +exp−x . The
h〈t〉 can get the predicted traffic flow value x̂〈t+1〉 through the linear regression
layer. Because LSTM network is a self-looping architecture and the parameters
it uses for each time step are shared, we continue to train the LSTM network
and update these parameters to make predictions more accurate.

For the data of sequence length T , the output of the T th LSTM cell is also
the predict traffic flow data of the LSTM network and the output of the LSTM
network needs to consider the input of the previous T − 1 time step.

3.2 Training LSTM Network

When training the LSTM network, we firstly initialize all parameters, usually
to a very small number close to 0 and initialize c〈0〉 and x̂〈0〉 to 0. Selecting M
number of epochs during training, each epoch consists of N batches, the size of
each batch is J which means that each batch contains J sequences, each sequence
is {x〈1〉, x〈2〉, x〈3〉, · · · , x〈T 〉}. When we set the parameters we must follow that
the batch multiplied by the batch size equals the number of training data set.
Initialize c〈0〉 and x̂〈0〉 for the end of each batch size training, the epoch indicates
that the data of the training set is trained several times, and the batch indicates
that the training set is divided into several parts and input into the network for
training.
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We use Back Propagation Through Time (BPTT) to train the network [19].
Given a set of training samples {x〈1〉, x〈2〉, x〈3〉, · · · , x〈t〉, · · · , x〈m〉}. For the net-
work, we choose the time series of length T as input, and the value of (T + 1)th
time slot as label. For every batch, the loss function is represented by (8) [20]

L〈J〉
(
x̂〈t+1〉, x〈t+1〉

)
=

1
J

J∑
t=1

(
x〈t+1〉 − x〈t+1〉

)2

(8)

and the whole loss function is showed in (9)

L (x̂, x) =
1
m

m∑
t=1

(
x̂〈t+1〉 − x〈t+1〉

)2

(9)

where x̂〈t+1〉 is the prediction of traffic flow at t time slot, x〈t+1〉 is the actual
value at t + 1 time slot.

W∗ = Ŵ∗−α
∂L (x̂, x)

∂W∗
(10)

Where α is learning rate for training LSTM network, Ŵ∗ denotes W∗ at
previous time step, and W∗ can represent Wc , Wi , Wf and Wo . When we
adjust the parameters of this network, the objective is to minimize the whole
loss function of the network.

4 Simulation Results

In this section, we make the evaluation standard to calculate the accuracy of
prediction. There are two evaluation standards included in this paper, which
are the mean absolute error (MAE) and the Mean Square Error (MSE) [14].
Given a set of training samples {x〈1〉, x〈2〉, x〈3〉, · · · , x〈t〉, · · · , x〈m〉}, the length
of training set is m. The definitions of them are shown as follows respectively

MAE =
1
m

m∑
t=1

∣∣∣x̂〈t〉 − x〈t〉
∣∣∣ (11)

MSE =
1
m

m∑
t=1

(
x̂〈t〉 − x〈t〉

)2

(12)

The cellular network traffic flow data set is collected from the cell which is
collected every 15 min, and finally a total of 3,500 data. 80% of historical data
was used for training set to train the network, and the rest of historical data
was used for test set to test the performance of the network. In this paper, we
use the Keras framework to build the LSTM network module [21], which is a
deep learning framework and the underlying library uses theano or tensorflow.
When training the LSTM network model, we found that setting the parameters
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Fig. 4. MSE over epochs

M = 300, N = 175, J = 20, T = 12 and P = 4 to train the LSTM network will
get the optimal cellular network traffic flow prediction result.

As shown in Fig. 4, LSTM has a fast convergence rate, which can achieve
the best prediction accuracy when the time of epoch is 150 compared to the
stacked autoencoder which need epoch 100 times to reach the current optimal
prediction, so we choose M = 150. From the LSTM curve, it can be seen that
the MSE will fluctuate a little during the training process but it will decrease at
last. This is because when the new data input to the network, it may not have
been trained well to make prediction. When the network is trained well, if you
continue to increase the number of training epoch, it will lead to overfit, MSE
will always rise.

Figure 5 shows that the variation of MSE with the number of LSTM cell units
in the hidden layer in each gate. There is a sharp drop in MSE when the number
of LSTM cell units changing from 1 to 4, which indicate that the prediction
accuracy is gradually increasing, and the MSE reaches the minimum value when
the number of LSTM cell units is 4, where the prediction effect is the best. Then
the MSE starts to rise with the number of LSTM cell units increasing, while the
prediction accuracy decreases, we choose P = 4. Because the LSTM is composed
of complex nonlinear functions, the structure is complex to explain. This result
can help us to choose the best local value of the cell unit number to make the
best prediction for the traffic flow data.

In order to reflect the performance of LSTM in traffic flow prediction, we do
a comparative experiment with a stacked autoencoder network. We use the same
data set, the same data distribution, and the optimal parameters adjustment.
After training network convergence, we get the perform comparison of the LSTM
network and stacked autoencoder network, as shown in Table 1. According to
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Fig. 5. MSE changes with the number of LSTM cell units in the hidden layer in each
gate

Fig. 6. Training data prediction

Table 1. Performance comparison of the LSTM network and Stacked autoencoder

Model MAE MSE

LSTM network 1.43 3.40

Stacked autoencoder 2.23 4.16

the results of comparison, we can make the conclusion that the LSTM network
improve the accuracy of the cellular network traffic flow prediction.
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Fig. 7. Testing data prediction

Figure 6 shows the prediction of training data. As can be seen from the
Fig. 6, the actual data we collected is periodic at most of the time and meets the
data requirements of the LSTM network. The traffic flow prediction results of
the LSTM network more closely resemble the actual data compared to stacked
autoencoder network.

Figure 7 shows the partial prediction data of the testing data. As can be seen
from the Fig. 7, our trained LSTM network gains high performance on the test
set, indicating that LSTM network has a good generalization capability.

5 Conclusion

In this paper we proposed a deep learning based traffic flow prediction model. We
extract a time series from the real-time traffic flow of the cellular networks. Then
we train a deep learning model called LSTM network using these time series.
Since the traffic flow at the current time is highly correlated with the previous
time, the LSTM network is quite suitable for the prediction. And our simulation
results showed that the proposed LSTM network gain significant performance.

From a practical aspect, with the real-time traffic flow as inputs, the output
of the LSTM network will benefit greatly in resource allocation for the service
provider. In addition, the high accuracy of the LSTM network traffic flow pre-
diction in the proposed scheme ensures an engaging user experience.
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