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Abstract. AutoDock is a widely used simulation platform for Protein-ligand
docking which is a simulator to provide the field of computer-aided drug design
(CADD) with conveniences. Protein-ligand docking establishes docking models
and study interaction between the receptor and the ligand, as a part of the most
important means in drug development. Protein-ligand docking problem is of
great significance to design more effective and ideal drugs. The experiments are
simulated on AutoDock with six weighted algorithms such as Lamarckian
genetic algorithm, a genetic algorithm with crossover elitist preservation, arti-
ficial bee colony algorithm, ABC_DE_based hybrid algorithm, fireworks algo-
rithm, and monarch butterfly optimization. The diversity of search function
constructed by different evolutionary algorithms for separate receptors and
ligands is applied and analyzed. Performances of distinct search functions are
given according to convergence speed, energy value, hypothesis test and so on.
This can be of great benefit to future protein-ligand docking progress. Based on
the work, appearances are found that performances of the same algorithm vary
with different problems. No universal algorithms are having the best perfor-
mance for diverse problems. Therefore, it is important how to choose an
appropriate approach according to characteristics of problems.

Keywords: Evolutionary computation � Swarm intelligence � Protein-ligand
docking � Search function

1 Introduction

In developing period of drug design, inefficiency and high cost is becoming increas-
ingly problematic. Computer-aided drug design (CADD) steps up the process and
opens up ideas of drug design as a basis. An indispensable part of CADD is protein-
ligand docking. Protein-ligand docking is a practical approach for CADD. The simu-
lation process makes use of the characteristics of receptors and the interaction between
receptors and molecules to solve the problem [1–3]. To combine small molecules with
protein macromolecules, the position of small molecules should be reasonably adjus-
ted, the ideal location and interaction of the combination is detected according to the
complementary principle of docking, and finally a stable complex conformation is
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obtained. The purpose is to find the best binding sites between ligands and receptors
[4].

Steps to solve the protein-ligand docking problem on the simulation platform
contain the scoring function and the search algorithm. The scoring function evaluates
the energy value of different conformations, which is used to evaluate the binding
conformation of ligands and receptors computer simulations predicted. In the process
of docking, the binding affinity between ligand and receptor is supposed to be obtained
accurately. As the basis of optimization, the scoring function can be directly an
adaptive value in the optimization algorithm [5–8]. Scoring function is the key to
optimization problems and plays an important role in the results of molecular docking
and virtual screening.

Evolutionary algorithms construct the search algorithms. Some researchers have
improved these methods on efficiency. Morris published in the paper [9–11] introduces
genetic algorithm with Lamarck on the platform of AutoDock (Lamarckian genetic
algorithm, LGA) to solve the docking problem [12]. Guan B in the paper [13] proposed
a genetic algorithm with crossover elitist preservation (CEPGA) to solve the protein-
ligand problem. Some researchers released some modified swarm intelligence algo-
rithms to the protein-ligand problem such as the artificial bee colony algorithm
(ABC) [14], ABC_DE_based hybrid algorithm (ADHDOCK) [15]. Evolutionary
algorithms are widely applied in many fields, such as data analysis and network
optimization [16–20]. Some swarm intelligence algorithms also have good perfor-
mance in the search process such as fireworks algorithm (FWA) [21], monarch but-
terfly optimization (MBO) [22].

The AutoDock platform simulates algorithms [23] to settle protein-ligand docking
problem. Algorithms have their advantages in different test cases. In this paper, six
algorithms are carried out on AutoDock to make a fair comparison, such as LGA,
CEPGA, ABC, ADHDOCK, FWA and MBO. Results of solving protein-ligand
docking problems of algorithms are calculated and analyzed such as convergence
speed, energy value, and hypothesis test. According to analysis, search algorithms have
respective advantages and disadvantages in settling the protein-ligand docking
problem.

2 Materials and Methods

2.1 Simulation Platform

AutoDock is a universal simulation software for protein-ligand docking. Many
researchers study the protein-ligand docking problem on this platform. AutoDock is an
open source molecular simulation software developed and maintained by the Olson
laboratory at the Scripps Research Institute [23]. The taken version is AutoDock 4.2.

In this study, AutoDock simulates the protein-ligand docking process. The optimal
combination location needs to consider the geometric structure matching of the protein
and the ligand and the energy value of the combined position. AutoDock evaluates the
resulting conformation and searches for a suitable conformation. The platform uses a
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specific scoring function to make an evaluation. The search algorithm constructed by
the evolutionary computation algorithm searches for the optimal solution.

2.2 Materials

Six protein-ligand complexes [24] were chosen from the Brookhaven PDB to compare
the performance of the docking techniques. Six docking problems are summarized as
test cases in the following:

• HIV-1 Protease/XK263 (1hvr): The cyclic urea HIV-protease inhibitor, XK-263,
has ten rotatable bonds, excluding the cyclic urea’s flexibility.

• Streptavidin/Biotin (1stp): Biotin, also known as vitamin H or coenzyme R, is a
water-soluble B vitamin. Streptavidin/biotin is one of the most tightly binding non-
covalent complexes.

• McPC-603/Phosphocholine (2mcp): Phosphocholine is an intermediate in the
synthesis of phosphatidylcholine in tissues. The recognition of phosphocholine by
FabMcPC-603 is mainly because of the influence of ArgH52.

• b-Trypsin/Benzamidine (3ptb): Benzamidine is a reversible competitive inhibitor of
trypsin, trypsin-like enzymes and serine proteases. The recognition of benzamidine
by b-trypsin is mainly because of the polar amidine moiety and the hydrophobic
benzyl ring.

• Dihydrofolate Reductase/Methotrexate (4dfr): Methotrexate is an antimetabolite
that attacks proliferating tissue and selectively induces remissions in certain acute
leukemias.

• Influenza Hemagglutinin/Sialic Acid (4hmg): The recognition of sialic acid by
influenza hemagglutinin is chiefly because of hydrogen bonding.

2.3 Algorithm Analysis

This paper implements and runs the algorithms on the AutoDock, namely LGA,
CEPGA, ABC and ADHDOCK, FWA, MBO. The test cases are the same. On the same
platform, the performances of six different algorithms are equally compared. Six dif-
ferent evolutionary algorithms are listed below to state the principle of algorithms.

• Lamarckian Genetic Algorithm (LGA): Lamarckian genetic algorithm is coupled
with the local search for the genetic algorithm. Local search refers to the current
solution around an optimal solution until finding the local optimal solution algo-
rithm. If the solution is not a local optimal solution, the local search can find the
optimal solution around the solution. In the search for molecular conformation,
local search has the advantage of no need for gradient information about district
energy patterns, thus promoting torsional space search.

• Genetic Algorithm with Crossover Elitist Preservation (CEPGA): Good genes from
parents can no longer produce good individuals through crossover operation, as
original genetic algorithms do not retain the parents of the elitist individual.
A crossover elitist preservation (CEP) mechanism incorporated into genetic algo-
rithm is applied to solve protein-ligand docking problems. The crossover elitist
preservation mechanism can make sure not to discard optimal solution while
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speeding the operation up. In this way, the next generation will be more suitable for
the competition of elitist parents and their descendants. Besides, an optimal solution
in near space of current solutions which included in GA can be selected by a local
search.

• Artificial Bee Colony Algorithm (ABC): The basic structure is divided into the
employed bees phase, the onlooker bees phase, and the scout bees phase. The
employed bees store information about the food source and share it with other bees
with a certain probability. The number of employed bees is the number of food
sources. An employee bee is only related to a food source. The onlooker bees
observe the dance of employed bees in the hive to determine which food source to
choose. Scout bees randomly search for new food sources next to the hive.

• ABC_DE_Based Hybrid Algorithm for protein–ligand docking (ADHDOCK):
ABC_DE_based hybrid algorithm is an algorithm for protein–ligand docking, while
integrating differential evolution algorithm (DE) and artificial bee colony algorithm
(ABC). ABC and DE, two typical optimization methods that have been widely used
in various fields, execute in parallel and have the same population during the
present algorithm. ADHDOCK incorporates an adaptive population partition
mechanism to distribute two subpopulations partition automatically to ABC and
DE. On account of the reasonable allocation of computing resources, ADHDOCK is
uniquely positioned to take the advantages of ABC and DE, and then avoid local
optimum.

• Fireworks Algorithm (FWA): FWA presents a new search manner which searches
the potential space by a stochastic explosion process within a local space. At first, N
fireworks are initialized randomly. The quality is evaluated to determine the
explosion amplitude and the number of sparks for each firework. And fireworks
explode and generate different types of sparks within their local space. Finally, N
candidate fireworks are selected among the set of candidates, which includes the
newly generated sparks as well as the N original fireworks. In order to ensure
diversity and balance the global and local search, the explosion amplitude and the
population of the newly generated explosion sparks differ among fireworks.

• Monarch Butterfly Algorithm (MBO): MBO simulates the migration behavior of
the monarch butterflies in nature. In MBO, all the monarch butterfly individuals are
only idealized and located in two lands such as Southern Canada and the northern
USA (land 1) and Mexico (land 2). Monarch butterflies of two positions are updated
in two ways. At first, the offsprings are generated by migration operator which can
be adjusted by the migration ratio. Subsequently, the positions of other butterflies
are tuned by butterfly adjusting operator. In other words, the search direction of the
monarch butterfly individuals in MBO algorithm is mainly determined by the
migration operator and butterfly adjusting operator. Also, the migration operator
and butterfly adjusting operator can be implemented simultaneously.
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3 Materials and Methods

3.1 Parameters Setting

In the process of performance testing, each algorithm must be reasonably set the
parameters. LGA, CEPGA, ABC, ADHDOCK, FWA and MBO are compared at the
AutoDock platform. The initial population is set as 50. These algorithms terminate
when the energy function evaluations reach 1.5 � 106 for each run. The AutoDock
platform runs every search algorithms 20 times to solve given test cases. The search
algorithm is evaluated the docking results by analyzing the convergence, stability and
hypothesis testing.

3.2 Convergence Analysis

According to set iterations, the energy value obtained by the algorithm is used to
determine the convergence of the algorithm. Figure 1 is the convergence diagrams of
the six algorithms for each test case.

The slope of ADHDOCK and ABC in Fig. 1(a) is the smallest, which is at the
better convergence position and gets lowest energy value. Moreover, LGA converges
slowly and finds the energy close to the lowest. In Fig. 1(b), the slope and the energy
value of ABC are in good agreement with our expectation. With the increasing of
iterations, results of LGA are approaching the lowest. The convergence rate of CEPGA
and FWA is moderate, while the result is relatively high. In Fig. 1(c), the energy value
of MBO is getting better as the number of iterations increases and MBO gets the best
energy finally. The convergence rate of other algorithms is moderate. In Fig. 1(d), the
slope of MBO is stable which can prevent from falling into the local optimal solution
early, and MBO has the lowest energy. The convergence rate of all the algorithms in
Fig. 1(e) is relatively equal. LGA gets better results. In Fig. 1(f), the convergence rate
of LGA is the slowest. ABC get the best energy value whose results change distinctly
with the number of iterations increasing. The convergence rate and the solution quality
of the same algorithm differ in different test cases.

3.3 Algorithm Stability Analysis

Figure 2 shows box plots for each test case. The minimum, the first quartile, the
median, the third quartile, the maximum and the outliers of the energy values are
calculated to mark on the box plot. The range from the minimum to the maximum
shows the variation range of data. The interquartile range shows the likely variation
range. The outliers are points out of the range. The protein-ligand docking problem is
an optimization problem in need of minimum value. When the shown value or the
median value is lower, the algorithm has better solving performance. The box plot with
smaller range shows that the algorithm has stability.

According to Figures, the median energy value of ADHDOCK is the lowest in
Fig. 2(a) and its minimum energy value is lowest. In Fig. 2(b), ABC finds smaller
energy value and the range of ABC is also smallest. In Fig. 2(c), the minimum energy
of MBO is lowest. The median energy of ADHDOCK is lowest. The range of CEPGA
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is the smallest while its results are not good. In Fig. 2(d), MBO gets lowest energy. The
range of values of ABC is smallest in Fig. 2(e). And LGA has lowest energy. The
median energy of ADHDOCK is lowest. In Fig. 2(f), the median and minimum of the
energy of ABC are lowest. The range of FWA is the smallest while its result is not
good. It is observed that the distribution of the same algorithm is different for different
test cases.
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Fig. 1. This figure shows the convergence graphs of the six algorithms for each test case. Neval
is the number of iterations of the function, and the ordinate is the energy value generated by the
docking of the function after iterating specified times.: (a) Convergence diagram of 1hvr;
(b) Convergence diagram of 1stp; (c) Convergence diagram of 2mcp; (d) Convergence diagram
of 3ptb; (e) Convergence diagram of 4dfr; (f) Convergence diagram of 4hmg.

Comparative Study of Evolutionary Algorithms 603



3.4 Hypothesis Test Results

On six test cases, compared algorithms run for 20 times. Table 1 demonstrates the
hypothesis test results. The difference factor p-value determines the quality of the
result. In the experiment, a is settled as 0.05. If p-value < 0.05, the current algorithm is
superior to the compared algorithm. If p-value > 0.95, the current algorithm is inferior
to the compared algorithm. If 0.05 < p-value < 0.95, it shows that the performance of
the two algorithms is not very different on this test case.

Some phenomena can be seen through the results of the hypothesis test. For 1hvr,
ADHDOCK is better than four compared algorithms. For 1stp, ADHDOCK is better
than three compared algorithms. For 4hmg, ABC is better than four compared
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Fig. 2. This figure shows the box plots for each test case. (a) Box plot of 1hvr; (b) Box plot of
1stp; (c) Box plot of 2mcp; (d) Box plot of 3ptb; (e) Box plot of 4dfr; (f) Box plot of 4hmg.
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algorithms. ABC is better than three compared algorithms for 1hvr, 1stp, and 3stp. For
1hvr, MBO is better than three compared algorithms. For 1stp, 2mcp, 4df, and 4hmgr,
LGA is better than three compared algorithms. Accordingly, from results of the
hypothesis test, there is not an algorithm better than others for given six test cases.

Table 1. Results of hypothesis tests

PDB ABC ADHDOCK FWA MBO CEPGA LGA

1hvr ABC – 0.443 0.016 0.054 0.007 0.003
ADHDOCK 0.562 – 0.019 0.009 0.009 0.005
FWA 1 1 – 1 0.702 0.998
MBO 0.947 0.905 0.021 – 0.012 0.020
CEPGA 1 1 0.299 1 – 0.998
LGA 1 0.996 0.018 0.997 0.003 –

1stp ABC – 0.342 0.001 0.002 0.001 0.348
ADHDOCK 0.665 – 0.001 0.001 0.002 0.605
FWA 1 0.999 – 0.475 0.142 1
MBO 0.998 0.989 0.528 – 0.179 0.998
CEPGA 0.999 0.997 0.857 0.822 – 0.996
LGA 0.650 0.396 0.001 0.002 0.001 –

2mcp ABC – 0.768 0.001 0.368 0.001 0.933
ADHDOCK 0.231 – 0.001 0.170 0.001 0.881
FWA 0.999 1 – 0.987 0.007 0.999
MBO 0.630 0.832 0.013 – 0.004 0.956
CEPGA 0.999 1 1 1 – 1
LGA 0.063 0.116 0.002 0.005 0.003 –

3stp ABC – 0.353 0.004 0.006 0.001 0.731
ADHDOCK 0.647 – 0.067 0.194 0.001 0.787
FWA 0.997 0.934 – 0.732 0.190 0.999
MBO 0.944 0.806 0.267 – 0.007 0.986
CEPGA 1 1 1 1 – 1
LGA 0.268 0.216 0.001 0.732 0.003 –

4dfr ABC 0.053 0.205 0.018 0.001 0.749
ADHDOCK 0.948 0.613 0.138 0.004 0.998
FWA 0.796 0.388 0.170 0.028 0.909
MBO 0.984 0.862 0.827 0.095 0.999
CEPGA 0.999 0.996 0.971 0.138 1
LGA 0.250 0.002 0.009 0.170 0.001

4hmg ABC – 0.014 0.036 0.014 0.005 0.490
ADHDOCK 0.986 – 0.969 0.429 0.502 1
FWA 0.962 0.030 – 0.057 0.001 1
MBO 0.985 0.570 0.945 – 0.523 0.999
CEPGA 0.995 0.495 0.999 0.470 – 1
LGA 0.510 0.032 0.005 0.004 0.001 –
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4 Results Discussion

The primary purpose of this paper is to explore the differences between different
evolutionary algorithms in protein-ligand docking. The research shows that search
functions constructed by different evolutionary algorithms can achieve satisfactory
results respectively under different environments or requirements. In study as men-
tioned, the results of algorithms are different due to the change of problems. Under
parameter setting above, ADHDOCK has highlighted performance for 1hvr, ABC has
good performance for 1stp and 4hmg, MBO is best for 2mcp and 3ptb, LGA has good
performance for 4dfr. Evaluations of algorithms on six protein-ligand complexes are
different.

In general, the experiments show that affected search functions check molecular
pairs. Performances of algorithms vary with test cases to be solved.

5 Conclusions

Experiments mentioned above demonstrate that different search functions have dif-
ferent effects on respective problems. For every algorithm solving protein-ligand
problem, it can perform pretty well in some cases while it has terrible performance in
other cases. Consequently, there are no multipurpose algorithms concerning different
test cases. Presented algorithms have apparent advantages in specified problems, not in
common use. Therefore, it is vital to choose a suited method which is implemented on
the same simulation platform to solve protein-ligand problem.
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