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Abstract. With the development of communication networks, a lot of new
applications emerge in the power telecommunication access networks, which
have many new features and properties of the network traffic. These features are
important for modeling the network traffic in the network-level. This paper
propose a new feature extraction and network traffic model method. Firstly, we
analyze the features of network traffic in time-frequency domain. Then, we use
discrete wavelet transform to exploit the features of network traffic in the time
domain and frequency domain. We run multi-fractal discrete wavelet transform
(MDWT) for network traffic to decompose them into different frequency
component and train an artificial neural network to predict the low- and high-
frequency components of network traffic, and use them to reconstruct the
network traffic. Finally, in order to validate our network traffic model, we
conduct the network traffic prediction on the actual data. Simulation results
show that our approach is feasible.

Keywords: Network traffic � Multi-fractal � Discrete wavelet transform �
Power telecommunication access networks

1 Introduction

With development of the communication network, there are many new applications
appeared in power telecommunication access networks and the network architecture
has become more complexity in the recent years, so there are more features has
appeared in the telecommunication networks, which leads to a huge challenge for the
network management [1, 2]. There are many researches show that flow traffic in the
network has important statistical characteristics, such as correlation and self-similarity,
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as well as in the power telecommunication access networks [3, 4]. The complex
behavioral characteristics of network traffic are usually manifested in bursts on time
domain and frequency domain.

In order to increase the performance of the network, it is important for network
managements to obtain the accurately model to demonstrate the features of network
traffic. Accurate traffic prediction models can influence the planning and optimization
of the network. The end-to-end traffic in the network shows the data transmission in the
network-level behaviors, this is very significant for the network planning, network
management and service quality improvement which provided by the operators and
service providers. So the end-to-end network traffic has attracted much attention of
researchers and operators around the world [5]. The network traffic in the network are
changed over time and there are many features for different types of applications and
network devices.

Flow traffic model in the network is very hard. However, the flow traffic in the
network has multi-scale features, so we can learn more information about network
traffic and construct an approximate model for the end-to-end traffic in the network
through feature analysis and feature extraction. The back propagation (BP) neural
networks and multi-population quantum genetic algorithm are used to improve the
prediction precision of network traffic. Since the neural network has a long conver-
gence time, so the multi-population quantum genetic algorithm is proposed to adjust
the initial weights and thresholds of the BP neural network to decrease the convergence
time [6]. The dynamic programming (DP) based time-normalization algorithm is
proposed to detect anomaly traffic in the network [7]. The spatio-temporal correlation
of normal traffic and the sparse nature of anomalies are used to detect the anomalous
traffic in the network with lacking of sufficient flow-level measurements [8].

The feature analysis is used to detect the anomalous traffic in the network [9].
Moreover, the model-based network event detection framework is built by analyzing
and extracting the feature of network traffic [10]. The continuous wavelet transforms
based on multi-scale analysis are performed to detect the anomalous in the high-speed
backbone networks [11]. The combination of unsupervised feature extractor and
anomaly detector to construct an anomaly detection model for high-dimensional spaces
[12]. Additionally, from the network-wide traffic perspective, the anomalous of the
network traffic can be correctly detected via signal transformations [13]. The manifold
similarity index and manifold learning technology are used to study the spatial-
temporal characteristics of highway traffic flow [14]. The time-frequency analysis of
end-to-end traffic is used to localize traffic features of time-frequency properties and
reconstruct network traffic in large-scale communication networks [15]. There are
many methods to extract the network traffic and use them to model the network traffic,
however, the prediction errors of these proposed methods are large.

This paper proposed a new scheme MDWT to accurately and effectively predict the
network traffic in the network. Network traffic modeling and predicting of network
traffic is very hard due to the network traffic has highly fluctuation over the time. In this
paper, we analyze the features of the network traffic in the time-frequency domain.
Then, we use the discrete wavelet transform to exploit the features of the network traffic
in the time domain and frequency domain. Then, we run MDWT for network traffic to
decompose the network traffic and train an artificial neural network to predict the
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low- and high-frequency component, and use them to reconstruct the network traffic.
Simulation results show that our approach is effective and promising.

The architecture of this paper as follow. In Sect. 2, we describe the scheme pro-
posed and analysis the features of the network traffic, and propose the algorithm
MDWT. In Sect. 3, we do some simulations and compere the performance of different
methods for modeling the network traffic. In Sect. 4, we make a conclusion about our
work in this paper.

2 Problem Statement

Flow is also defined as a sequence of packets which are sent from origin nodes to
destination nodes. We usually call the origin node and the destination node as an
origin-destination (OD) pair. In the power telecommunication access networks, the
flows of OD pairs have the characteristics such as correlations, self-similarity and
time-varying. The traffic of flows changes over the time, therefore, it is very difficult to
use mathematical models to depict the network traffic of flows in the network. The
network traffic changes over time, then we represent the network traffic in the power
telecommunication access network at time t as xðtÞ where t ¼ 1; 2; 3; . . .. Since the
traffic in the network has the correlations on the frequency-domain and time-domain,
respectively, so we characterize the time-frequent features of the network traffic. Due to
the complex of the flow traffic, we extract the some features firstly from the network
traffic. In the signal process domain, wavelet transform is often used to analyze the
multi-scale feature of signals. Then, we use the wavelet method to process the flow
traffic in the network.

Discrete wavelet transform (DWT) is a mathematical transformation of the one-
dimensional discrete signal xðtÞ, it decomposes the signals into the some orthogonal
one-dimensional signals. For the network traffic which has the time-frequent features,
so we decompose it into two orthogonal one-dimensional signals to decompose the
signals, namely time-domain and frequency-domain. In DWT, signals are usually
decomposed into the smooth signal after time shifting /ðtÞ in the time-domain and the
detail signals of the scale changing hðtÞ in the frequency-domain. As we know that the
network traffic at different slots have then correlations and self-similarity. Then, the
smooth signals /ðtÞ the time-domain are low-pass signals and the detail signals at
frequency-domain hðtÞ are high-pass signals. So, signals can be written with the basic
function as

/l;kðtÞ ¼ 2�l=2/0ð2�lt � kÞ; k 2 Z ð1Þ

hl;kðtÞ ¼ 2�l=2h0ð2�lt � kÞ; k 2 Z ð2Þ

where h0 and /0 are the basic function bases which are orthogonal with each other,
l is the scale coefficient, and k is the index of basic orthogonal basis.
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The network traffic xðtÞ can be reconstructed with basic orthogonal basis as

xðtÞ ¼
X
k

cðkÞ/l;kðtÞþ
X
k

XL
l¼0

dðkÞhl;kðtÞ ð3Þ

where l is the level coefficient, cðkÞ and dðkÞ are the scaling and translation coefficient,
respectively. k is the index of basic orthogonal basis. Then, we can obtain the scale
coefficient and wavelet coefficient of wavelet transform with iteration method:

clðkÞ ¼ 2�1=2ðclþ 1ð2kÞþ clþ 1ð2kþ 1ÞÞ ð4Þ

dlðkÞ ¼ 2�1=2ðclþ 1ð2kÞ � clþ 1ð2kþ 1ÞÞ ð5Þ

where clðtÞ donates the scale coefficient, and dlðtÞ donates the wavelet coefficient.
Then, from the Eq. (3), we can obtain the scale coefficient

clþ 1ð2kÞ ¼ 2�1=2ðclðkÞþ dlðkÞÞ ð6Þ

clþ 1ð2kþ 1Þ ¼ 2�1=2ðclðkÞ � dlðkÞÞ ð7Þ

The flow traffic from origin node i to destination node j can be expressed as
xijðtÞ ¼ xijð1Þ; xijð2Þ; . . .

� �
, where t is the measured slot. So, the network traffic can be

represented as a waveform transform with limited duration and frequency

xijðtÞ ¼
X1
k¼�1

clijðkÞ2�L=2/ð t
2L

� kÞþ
X1
k¼�1

XL
l¼1

dlijðkÞ2�l=2hð t
2l
� kÞ ð8Þ

where /ðtÞ and hðtÞ are basic orthogonal basis of smooth signals and detail signals.

xlowij ðtÞ ¼
X1
k¼�1

cijðkÞ2�1=2/ð t
2
� kÞ ð9Þ

xhighij ðtÞ ¼
X1
k¼�1

dijðkÞ2�1=2hð t
2
� kÞ ð10Þ

then, we use xlowij ðtÞ and xhighij ðtÞ to express the low frequency components and high
frequency components, respectively.

The network traffic in the network-level can be collected by sampling the end-to-
end flow, and the collected network traffic in the network-level is actually a time series
signal xijðtÞ, so the multi-fractal analysis of the network traffic becomes into analyze the
network traffic sampling sequence.
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xijðtÞ ¼ xijð1Þ; xijð2Þ; . . .
� � ð11Þ

where xijðtÞ is the network traffic from origin node i to destination node j at time slot t.
From Eq. (9), we use the Haar wavelet as the origin signals, so the /ðtÞ and hðtÞ can be
expressed as

/ðtÞ ¼ 1; 0� t� 1
0; otherwise

�
ð12Þ

hðtÞ ¼
1; 0� t� 1=2
�1; 1=2� t� 1
0; otherwise

8<
: ð13Þ

The network traffic xijðtÞ exhibits different scale features on each orthogonal basis.
Then we use the Haar wavelet to execute the wavelet transform on the network traffic
xijðtÞ to find the scale coefficient clðkÞ� �

and wavelet coefficient dlðkÞ� �
, respectively.

Then we use the network traffic xijðtÞ as the input and use the as the clðkÞ� �
and

dlðkÞ� �
as the output to train an artificial neural networks to obtain the model which

predict the coefficient of xlowij ðtÞ and xhighij ðtÞ. Then, we reconstruct the network traffic as
follow:

x̂ijðtÞ ¼ xlowij ðtÞþ xhighij ðtÞ ð14Þ

With low- and high-frequency components which are predicted by artificial neural
network, we con model the network traffic in the network. This model can accurately
predict network traffic, and help operators to manage the network. Now we show the
process of our algorithm as follows:

Step 1: Obtain the discrete network traffic xðtÞ as the initial traffic data set.
Step 2: Based on Eqs. (3)–(7), carry the wavelet transform with Haar wavelet to
obtain the scale coefficients clðkÞ� �

and wavelet coefficient dlðkÞ� �
.

Step 3: By Eqs. (11)–(13), make the scale coefficients and wavelet coefficient as the
output and make the measured network traffic xijðtÞ

� �
as input to train an artificial

neural networks which used predict scale coefficients and wavelet coefficient.
Step 4: Use the prediction result of the scale coefficients and wavelet coefficient in
step 3 to calculate the low frequency components xlowij ðtÞ and high frequency

components xhighij ðtÞ.
Step 5: According to Eq. (14), we reconstruct the network traffic x̂ijðtÞ.
Step 6: Save the results to file and exit.
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3 Simulation Results and Analysis

In this section, we make some simulations to verify the performance of the algorithm
MDWT proposed in this paper. Then, we use the actual data in the simulations to
compare the performance of our algorithms. The actual data is collected from the
Abilene backbone network in the United States validate MDWT. Then, we make a
comparison about the performance with other methods that principal component
analysis (PCA), WABR [15] which have been widely studied for the network traffic
modeling. The network traffic prediction results of MDWT method has been discussed
in the following. Then, we talk about the relative errors of the network traffic prediction
of different methods. Finally, we discuss the prediction errors of them. In the simu-
lation, the front 500 points data are used to train the model we proposed and the last
1500 points are used to compare the prediction errors of the network traffic for different
methods.

Figure 1 curves the actual traffic and prediction results network traffic of network
traffic flows 67 and 107, where the flows 67 and 107 are randomly selected from the
144 ODs in the Abilene backbone network, as well as the network traffic of other ODs
has the similar trend in our simulations. Then, we make a discussion about prediction
results of the OD 67 and 107 as an examples here. The end-to-end traffic of flows in the
network-level can reflect the data transmission of the network. Figure 1(a) indicates
that the actual network traffic has the time-varying nature, and the prediction results is
similar with the actual traffic in the network, this means that the model proposed in this
paper can extract the network features accurately of OD 67. Likewise the flows 107, the
prediction results of flow 107 is closed with the actual network traffic and it also show
our method is feasible. From Fig. 1, we very clearly know that the network traffic in
each slot has the vary-time nature and the vary-time nature of network traffic of OD 67
is much larger than the network traffic of flow 107, however, our algorithms can also
capture the network traffic with the high accuracy.

Then, we talk about the prediction errors of our algorithm and other methods. Since
the end-to-end traffic in the network changes over time, it is very hard and meaningless
to compare the absolute errors of the network traffic. Inspired by the existing resear-
ches, we compare the relative errors of different methods over the time. In order to
reduce the randomness of the prediction process, we run many times to calculate the
average relative errors here. The relative errors of the prediction traffic can be expressed
as:

reiðtÞ ¼ 1
N

XN
n¼1

ŷiðtÞ � yiðtÞj j
yiðtÞ ð15Þ

where N is the running times, we set it as 300 here, and yiðtÞ is the network traffic of
end-to-end flow i at time t, ŷiðtÞ is the prediction result of network traffic of flow i at
time slot t.
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Figure 2 exploits the average relative errors of the network traffic prediction results
of OD 67 and 107 for different methods. From Fig. 2(a), we know that the network
traffic prediction results of OD 67 hold lowest relative errors for MDWT, while the
relative errors basic of the prediction results for PCA is the largest of them, this shows
that the traffic prediction performance of MDWT is well. Importantly, the fluctuation of
the relative errors over time is more stable for the MDWT than PCA and WBAR, and
the average relative errors of MDWT is the lowest of them. Thus, the MDWT can more
accurately and effectively model the features of end-to-end traffic in the network. With
the model MDWT, we can predict the network traffic more accurately than previous
methods in the network.

In the following, we use the Root Mean Square Error (RMSE) to further compare
the performance for above three algorithms. The RMSE are given as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

ðreiðtÞÞ2
vuut ð16Þ

where K is the length of the sampling windows. reiðtÞ is the relative errors of the flow i
at time slot t. The RMSE can more clearly shows the accuracy and the stability of the
model.
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Fig. 1. Prediction results of network traffic of OD 67 and 107.
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Figure 3 exhibits the RMSE of relative errors of prediction results of end-to-end
network traffic of OD 67 and 107 for different models. Figure 3(a) shows the RMSE of
relative errors f prediction results for OD 67, when the average relative errors is about
0.5, the probability of MDWT, WABR and PCA are 95%, 30% and 5%, respectively.
This shows that the relative errors of prediction results of MDWT is smallest of the
three methods. The CDF curve of the MDWT is very steep, it means the network traffic
prediction results of MDWT is more accurate than PCA and WABR, and the perfor-
mance of network traffic prediction of the MDWT is stable. Similarly, for network
traffic of OD 107, the green curve shows that MDWT can more accurately model the
network-level network traffic. When the average relative errors is about 0.3, the
probability of MDWT, WABR and PCA are 95%, 10% and 5%, respectively. This also
shows that the relative errors of prediction results of MDWT is smallest of the three
methods. Then, from Fig. 3, we know that the proposed method MDWT can accurately
model the network traffic and keep better modeling performance for network traffic
than the previous method PCA and WABR.
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Fig. 2. The average relative errors for network traffic of OD 67 and 107.
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4 Conclusions

This paper studies the network traffic modeling and prediction in the power telecom-
munication access networks. Because network traffic fluctuates greatly over time, so it
is very hard to model the network traffic. This paper propose a method to model and
predict the network traffic. Firstly, we analyze the time-frequency features of the net-
work traffic in the time-frequency domain. Then, we use the discrete wavelet transform
to exploit the features of the network traffic in the time domain and frequency domain.
Then, we run MDWT for the network traffic to decompose the network traffic and train
an artificial neural network to predict the low-frequency component and high-
frequency component. Finally, we do some simulations to verify our network traffic
model and predict the network traffic. Simulation results show that our approach is
effective and promising.
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