
Network Emulation as a Service (NEaaS):
Towards a Cloud-Based Network Emulation

Platform

Junyu Lai1,2(&) , Jiaqi Tian1 , Dingde Jiang1 , Jiaming Sun1 ,
and Ke Zhang1

1 School of Aeronautics and Astronautics, University of Electronic Science
and Technologies of China, Xiyuan Ave no. 2006, Chengdu, China

{laijy,tianjq,jiangdd,sunjm,zhangk}@uestc.edu.cn
2 Science and Technology on Communication Networks Laboratory,

Shijiazhuang, China

Abstract. Network emulation is an essential method to test network architec-
ture, protocol and application software during a network’s entire life-cycle.
Compared with simulation and test-bed methods, network emulation possesses
the advantages of accuracy and cost-efficiency. However, legacy network
emulators are typically restricted in scalability, agility, and extensibility, which
builds barriers to prevent them from being widely used. In this paper, we
introduce the currently prevalent cloud computing and related technologies
including resource virtualization, NFV (network functional virtualization), SDN
(software-defined networking), traffic control and flow steering to the network
emulation domain. We design and implement an innovative cloud-based net-
work emulation platform, aiming at providing users Network Emulation as a
Service (NEaaS), which can be conveniently deployed on both public and pri-
vate clouds. We carried out performance evaluation and discussion on this
platform. It turns out, the platform can significantly outperform most legacy
network emulators regarding to the scalability, agility, and extensibility, with
much lower emulation costs.

Keywords: Network emulation � Cloud computing � NFV (network functional
virtualization) � SDN (software-defined networking) � Flow steering

1 Introduction

Modern networking systems are getting far more complicated than before. It is already
difficult to rely on theoretical methods to analyze network performance. Therefore,
network testing technologies are of great importance to the design and implementation
of network architecture, protocols and upper layer applications. There are mainly three
network testing methods.

Firstly, computer simulation is a technique whereby a software program models the
behavior of a network by calculating the interaction between the different network
entities (nodes, links, etc.). Most simulators use discrete event simulation, and the
simulation method cannot be very precise due to inaccurate models, although its

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
H. Song et al. (Eds.): SIMUtools 2019, LNICST 295, pp. 508–517, 2019.
https://doi.org/10.1007/978-3-030-32216-8_49

http://orcid.org/0000-0002-3558-2421
http://orcid.org/0000-0001-6641-5821
http://orcid.org/0000-0003-0284-5624
http://orcid.org/0000-0002-8290-1915
http://orcid.org/0000-0001-9929-6910
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_49&domain=pdf
https://doi.org/10.1007/978-3-030-32216-8_49

running speed is usually fast and the cost is pretty low. Secondly, a live test-bed is a
platform for conducting rigorous and transparent testing of network protocols and
applications. It is a prototype of the target network, and is the most accurate method
with the highest cost. Thirdly, network emulation is a technique for the performance
testing of original protocols and applications over a virtual network, which is different
from computer simulation where purely mathematical models are applied. A network
emulator appears to be a real network, and is with medium cost and high accuracy.

This paper focuses on network emulation, which has been researched for more than
half century. However, due to technology constraints, traditional network emulators
have been restricted in scalability, agility, and extensibility for a long time, which
significantly influenced their applications in a larger scale. This research introduces the
currently prevalent cloud computing and related ICT technologies including resource
virtualization, NFV, SDN, traffic control and flow steering to the network emulation
domain, aiming at eliminating the above restrictions. More preciously, the major
contribution of this paper is to design and implement an innovative cloud-based net-
work emulation platform, to provide users Network Emulation as a Service (NEaaS).
The NEaaS can be deployed either public or private cloud to satisfy diverse user needs.

The remaining part of this paper goes as follows. The related work in industry and
academia are briefly reviewed in Sect. 2, followed by the innovative design of the
cloud-based network emulation platform in Sect. 3, and its implementation details in
Sect. 4. Performance evaluation of the proposed emulation platform is presented in
Sect. 5. Finally, Sect. 6 concludes the paper and provides the outlook.

2 Related Work

In industry, in 2003, Wellington and Kubischta [1] from General Dynamics presented
an approach for integrating and testing wireless systems in the laboratory with real-time
emulation of ad hoc radio networks. In 2006, Yousefi’zadeh et al. [2] from Boeing
Company collaborated with University of California reported the addition of emulation
functionality to the NEWS testbed capturing fading wireless link effects. In 2007,
Bonney et al. [3] from Architecture Technology Corporation, developed a hardware-in-
the-loop emulator known as ABSNE that creates a controllable, repeatable, virtual
network environment. Also in 2007, Beuran et al. [4] from NICT of Japan, had pre-
sented the design of QOMET, a wireless LAN emulator, with a versatile two-stage
scenario-driven design. The details of the improved model and additional functionality
were given in 2008 [5], and in 2015 [6], the authors again presented a framework for
evaluating wireless network performance through emulation, using a hybrid design. In
2008, Ahrenholz et al. [7] from Boeing Phantom Works, presents CORE (Common
Open Research Emulator), a real-time network emulator that allows rapid instantiation
of hybrid topologies composed of both real hardware and virtual network nodes. Also
in 2008, Nickelsen et al. [8] from Aalborg University and FTW described how to create
reproducible test conditions by emulating the wireless links. In 2015, Soles et al. [9]
from University of West Florida, collaborated with Northrop Grumman Aerospace
Systems, researched on the need to provide an emulation method for studying the
interaction among diverse hardware and software components.

Network Emulation as a Service (NEaaS) 509

In academia, Giovanardi et al. [10–12] from University of Ferrara described the
emulation facility in the Simple Ad hoc simulator (SAM), which is able to emulate
many unicast routing protocols with a real exchange of signaling and data packets. In
2007, Maier et al. [13] from University of Stuttgart focused on scalable network
emulation problems, and present a comparison of different virtual machine (VM) im-
plementations (Xen, UML) and their virtual routing approach (NET). In 2009, Mehta
et al. [14], described a new emulation architecture that is scalable, modular, and
responds to real time changes in topology and link characteristics. In 2014, Balasub-
ramanian et al. [15] from Vanderbilt University, described a rapid development and
testing framework for a distributed satellite system. In 2015, To et al. [16] from
Universidad Galileo, presented the Dockemu tool for emulation of wired and wireless
networks.

Although there have already been a plenty of emulators as introduced above, most
of them are serving for dedicated purposes, and are to some extent, restricted in
scalability, agility, and extensibility. In the last decade, cloud computing and its related
ICT technologies have developed rapidly, which motivates the researchers to leverage
these promising technologies to be applied in developing network emulators in an
innovative manner.

3 Innovative Cloud-Based Network Emulation Platform

3.1 Vital Feature Requirements on Modern Network Emulator

Current networking systems appear to be with a large number of nodes, wired or
wireless links, and dynamic topologies, which introduces new requirements on modern
network emulators. Firstly, scalability. Emulator should support the number of emu-
lated nodes from several to tens of thousands, without changing the hardware and
software architecture. Secondly, agility. Building of a target emulation scenario should
be fast enough to satisfy the user QoE. Thirdly, extensibility. Emulator should be
extensible to hold newly appeared nodes and links in a convenient manner. Fourthly,
low-cost. Without sacrificing emulation accuracy, emulator can emulate larger scale
networks.

3.2 Network Node Emulation Scheme

The principle of network node emulation is to utilize the VMs created and allocated by
the cloud platform to imitate the nodes in target networks. More precisely, to emulate a
router node, the cloud platform calls the underlying hypervisor to create a VM instance,
and then allocates this VM to the emulator. Considering the fact that the targeted router
itself is a computer, it would be straight forward to adopt the allocated VM to emulate
that router.

510 J. Lai et al.

3.3 Network Link Emulation Scheme

Emulating target network links relies on using the virtual network links of the cloud
platform. The cloud virtual network consists of virtual links which connect multiple
VMs. Therefore, to emulate a specific link between two nodes in the target network, the
emulator sets a virtual link between the two corresponding VMs. The physical and mac
layer characteristics of the target link shall be accurately mapped to the network layer
attributes of the virtual network link.

3.4 Network Topology Emulation Scheme

Both wired and wireless network topology will change as time goes. For wired net-
work, the reason could be the failures happened on some certain links or nodes. While
for wireless network, it may be the consequence of link break caused by node mobility,
nodes failure, etc. To emulate network topology is to dynamically control and adjust
the virtual network links between the VMs in a fast enough manner to satisfy the
emulation needs.

3.5 Architecture of the Cloud-Based Network Emulation Platform

An architecture of the cloud-based network emulation platform is designed and pre-
sented in Fig. 1, which is divided into four layers: resource virtualization layers, cloud
computing layers, emulation core layers, and emulation interface layers.

Resource Virtualization Layer. Its functionality is to abstract, virtualize and pool all
sorts of underlying hardware resources. The major modules are included: (1) Compute
virtualization. This module creates VMs that acts like a real computer with an operating
system; (2) Network virtualization. The module combines hardware network resources
and network functionality into a single, software-based administrative entity; (3) Stor-
age virtualization. This module presents a logical view of all the physical storage
resources, treating all storage media in the system as a single pool of storage.

Fig. 1. Architecture of the cloud-based emulation platform.

Network Emulation as a Service (NEaaS) 511

Cloud Computing Layer. It is a cloud Operating System, responsible for providing
resources in different forms according to the upper layer’s requirements in real-time.
Primarily, this layer consists of three modules: (1) Resource management. The module
allocates and frees compute, network, and storage resources to satisfy the emulation
needs; (2) SDN. This module contains two type of entities, i.e., SDN controller and
virtual switch located in physical machine. Together with the network virtualization
module of the lowest layer, this module can provide traffic control and flow steering
functionalities, which are the key features to implement link and topology emulations;
(3) NFV. The module embodies the principle of node emulation. Each node in the
target network can be emulated by a generic VM with NFV enhancement, which
includes dedicated functionality implementations of the target node by means of
software.

Emulation Core Layer. It contains three modules covering node, link and topology
emulations, respectively, plus with one emulation database storing emulation status and
parameter values: (1) Node emulation. By calling the lower layer’s resource man-
agement and NFV module, this layer can accomplish the tasks of node emulation;
(2) Link emulation. The resource management and SDN modules were utilized to
control the accessibility among arbitrary nodes, together with network ports settings on
the emulated nodes to define the characteristics of the corresponding links; (3) Topol-
ogy emulation. This module still relies on the lower layer’s resource management and
SDN modules, and considers all the nodes and links, which form the emulated network
topology to be consistent with the target network; (4) Emulation database. The database
to record and store the parameter values of the emulated nodes, links and topologies.
The users can store an emulation scenario by means of writing the status of all its
elements into the database, and later on, the scenario can again be recalled according to
the database.

Emulation Interface Layer. Two types of interfaces are considered in the platform:
(1) User Interface. It provides users the graphic interface to accomplish a series of
typical emulation operations, such as creation of nodes, links, as well as topologies,
management of emulation scenarios, etc.; (2) Device Interface. The emulation platform
supports the connections to real network nodes. It could be either a single node or an
external network consisting of an amount of real nodes.

4 Implementation Details

The hardware components of the cloud based emulation platform is illustrated in
Fig. 2. It consists of a number of COTS computers and switches. More precisely, all
the computers are X86 based (i.e., AMD 1700X, 64G RAM, 500G SSD), five of which
are emulation nodes, the rest two are emulation and SDN controller, respectively.

512 J. Lai et al.

4.1 Implementation of Resource Virtualization Layer

Considering the balance among efficiency, generality, and cost, Linux Kernel based
Virtual Machine (KVM) is adopted as the hypervisor. KVM requires a CPU with
hardware virtualization extensions. A wide variety of guest operating systems work
with KVM, including many flavors and versions of Linux, BSD, Solaris, Windows,
OS X, Android, Solaris 10, etc. which support the emulation nodes installed with
diverse operating systems. KVM is installed and configured in each emulation node to
virtualize and pool all the compute, storage, and network resources. In particular, VMs
with diverse profiles are created on top of host machines by KVM, according to
emulation needs.

4.2 Implementation of Cloud Computing Layer

OpenStack, OpenDaylight (ODL), and Open vSwitch (OVS) are employed to imple-
ment the three modules in this layer. OpenStack is a free and open-source software for
cloud computing, mostly deployed as IaaS, whereby virtual servers and other resources
are made available to users. OpenStack consists of interrelated components that control
diverse hardware pools of compute, storage, and networking resources. Users either
manage it through a web-based dashboard, through command-line tools, or through
RESTful web services. OpenStack has a modular architecture with various project
names for its components. The goal of the ODL project is to promote SDN and NFV,
with a clear focus on network programmability. ODL is a modular open platform for
customizing and automating networks of any size and scale. In the emulation platform,
Openstack and OVS are deployed on the emulation and the emulation controller nodes.
ODL is installed on the SDN controller node. By using ODL plug-in to replace
OpenStack Neutron’s original ones, the designed functionalities can be achieved.

Fig. 2. Hardware components of the cloud-based emulation platform.

Network Emulation as a Service (NEaaS) 513

4.3 Implementation of Emulation Core Layer

The emulation platform is B/S model based. The primary functions, such as node, link
and topology emulations, are implemented in the web server side, together with the
database record the emulation status. Both of the web server and the database are
deployed on the emulation controller. Users can utilize any browser to access that web
server, and to accomplish their emulation tasks.

The web server includes node, link and topology emulation module. The node
emulation module is responsible for the creation, configuration, and deletion of the
emulated nodes. It mainly calls the OPENSTACK dashboard API to accomplish these
tasks. The link emulation module can then configure the emulated node’s network ports
to imitate the ports of the target nodes. Linux Traffic Control is the major tool adopted
to set the bitrate, delay and packet loss attributes of the network ports. The SDN
controller is also commanded by the link emulation module via ODL Controller API to
creation the virtual links connecting the emulated nodes. On the basis of node and link
emulation, the topology module supports the emulation for both the static topology
which keeps unchanged during the emulation, and the dynamic topology which
changes according to user settings or predefined trace files. All the above modules
programmed in Java at the server side, follows the MVC (Model, View and Controller)
design pattern.

As afore mentioned, a database module is designed to store emulation status.
MySQL is chosen to be the DBMS. Hieratical tables are built to record the emulation
parameter values and the relations.

4.4 Implementation of Emulation Interface Layer

This layer contains user interface and device interface modules, serving for different
purposes. The user interface is the front-end of the web server. Technologies, such as
HTML5, jQuery, Ajax, jTopo, etc. are employed to construct the web-based user
interface. Users can conveniently create and configure emulation scenarios. The web
pages designed for emulation tasks and their logical relations are given in Fig. 3. To
realize the united emulation between the emulation platform and a part of the real
network, the device interface module is developed. A real network device can be
directly attached to the emulation platform, and an inner agent, corresponding to the
external device will be created automatically, and will be connected to the external
device via a virtual L2 link. Figure 4 illustrates the implementation principles.

Fig. 3. Web pages designed for emulation tasks and their logical relations.

514 J. Lai et al.

5 Performance Evaluation

5.1 Performance Metrics Introduction

The proposed emulation platform can conquer most legacy emulator’s defects in
scalability, agility and extensibility. Therefore, the number of emulated nodes sup-
ported by the platform is chosen as the metric for scalability, while the creation time of
an emulation scenario is selected as the measure of agility. The platform can create
different types of emulated nodes and links only restricted by the VM and channel
templates, and thus has a very good extensibility.

5.2 Evaluation and Discussion

For the scalability evaluation, the number of emulated nodes a single emulation node
can support has been tested; the quantity of the emulated nodes supported by the
platform shall be the summation of the nodes all the physical nodes can emulate.
Experiments show that around 50 emulated nodes can simultaneously run on each
single emulation node, and for 5 emulation nodes of the same profile, 250 emulated
nodes shall be supported. The number can be linearly scaled up by simply increasing
the number of physical emulation nodes.

For the agility evaluation, a scenario with 100 emulation nodes is investigated. The
experiments of creating 10 emulated nodes on a single machine is carried out, and it
turns out 27 s is consumed, which means around 2.7 s are needed for creating one
emulation node. Since the platform has 5 physical emulation nodes, and each nodes can
create VMs independently, the time spent on building the scenario is around 5.4 s,
excluding the detailed configuration time for each node.

To summarize, the proposed platform’s performances on scalability, agility and
extensibility are much better than most legacy emulators.

6 Conclusion

Network emulation is regarded as the most promising network testing method due to its
balance on cost and accuracy. This paper focused on solving network emulation’s
inherent shortcomings in scalability, agility and extensibility. In particular, the paper

Fig. 4. Implementation principles for device interface module.

Network Emulation as a Service (NEaaS) 515

designed and implemented an innovative cloud-based network emulation platform
aiming at providing users NEaaS. Performance evaluation and discussion illustrated
that the proposed platform can effectively outperform legacy network emulators
regarding to scalability, agility, and extensibility.

The potential research work we have planned for the next step includes the fol-
lowing two points: Firstly, the cost of VM-based emulation is still high, light- weighted
virtualization technologies, i.e., Docker, will be investigated to replace VMs. Secondly,
the target network’s heterogeneous nodes of diverse hardware architectures, such as
ARM, Sparc, and Power PC, are currently emulated by X86 architected VMs, which is
inaccurate to some extent. Emulation for heterogeneous nodes will be further studied.

Acknowledgement. This work is partially supported by the Science and Technology on
Communication Networks Laboratory(Grant No. XX17641X011-03), the 54th Research Institute
of China Electronics Technology Group Corporation, and the National Natural Science Foun-
dation of China (Grant No. 61402085 and 61872051).

References

1. Wellington, R.J., Kubischta, M.D.: Wireless network emulation for distributed processing
systems. In: IEEE Military Communications Conference, 2003. MILCOM 2003, Boston,
MA, USA, vol. 1, pp. 475–480 (2003). https://doi.org/10.1109/MILCOM.2003.1290149

2. Yousefi’zadeh, H., Li, X., Furmanski, W., Lofquist, D.B.: Emulation of fading wireless link
effects in NEWS wired testbed. In: MILCOM 2007 - IEEE Military Communications
Conference, Orlando, FL, USA, pp. 1–7 (2007). https://doi.org/10.1109/MILCOM.2007.
4455162

3. Bonney, J., Bowering, G., Marotz, R., Swanson, K.: Hardware-in-the-loop emulation of
mobile wireless communication environments. In: 2008 IEEE Aerospace Conference, Big
Sky, MT, USA, pp. 1–9 (2008). https://doi.org/10.1109/AERO.2008.4526345

4. Beuran, R., Nguyen, L.T., Latt, K.T., Nakata, J., Shinoda, Y.: QOMET: a versatile WLAN
emulator. In: 21st International Conference on Advanced Information Networking and
Applications (AINA 2007), Niagara Falls, ON, Canada, pp. 348–353 (2007). https://doi.org/
10.1109/AINA.2007.116

5. Nickelsen, A., Jensen, M.N., Matthiesen, E.V., Schwefel, H.: Scalable emulation of dynamic
multi-hop topologies. In: 2008 The Fourth International Conference on Wireless and Mobile
Communications, pp. 268–273 (2008). https://doi.org/10.1109/ICWMC.2008.44

6. Beuran, R., Tariq, M.I., Miwa, S., Shinoda, Y.: Wireless network performance evaluation
through emulation: WiMAX case study. In: 2015 International Conference on Information
Networking (ICOIN),Cambodia, pp. 265–270 (2015). https://doi.org/10.1109/ICOIN.2015.
7057894

7. Ahrenholz, J., Danilov, C., Henderson, T.R., Kim, J.H.: CORE: a real-time network
emulator. In: MILCOM 2008 - 2008 IEEE Military Communications Conference, San
Diego, CA, USA, pp. 1–7 (2008). https://doi.org/10.1109/MILCOM.2008.4753614

8. Ramneek, Choi, W., Seok, W.: Wireless network mobility emulation over wired testbeds:
areview. In: 2015 17th International Conference on Advanced Communication Technology
(ICACT), Seoul, South Korea pp. 431–435 (2015). https://doi.org/10.1109/ICACT.2015.
7224832

516 J. Lai et al.

http://dx.doi.org/10.1109/MILCOM.2003.1290149
http://dx.doi.org/10.1109/MILCOM.2007.4455162
http://dx.doi.org/10.1109/MILCOM.2007.4455162
http://dx.doi.org/10.1109/AERO.2008.4526345
http://dx.doi.org/10.1109/AINA.2007.116
http://dx.doi.org/10.1109/AINA.2007.116
http://dx.doi.org/10.1109/ICWMC.2008.44
http://dx.doi.org/10.1109/ICOIN.2015.7057894
http://dx.doi.org/10.1109/ICOIN.2015.7057894
http://dx.doi.org/10.1109/MILCOM.2008.4753614
http://dx.doi.org/10.1109/ICACT.2015.7224832
http://dx.doi.org/10.1109/ICACT.2015.7224832

9. Soles, L.R., Reichherzer, T., Snider, D.H.: Creating a cost-effective air-to- ground network
simulation environment. In: Southeast Conference 2015, Fort Lauderdale, FL, USA, pp. 1–5
(2015). https://doi.org/10.1109/SECON.2015.7132897

10. Giovanardi, A., mazzini, G.: Emulation architecture implementation and design. In: 2006 3rd
Annual IEEE Communications Society on Sensor and Ad Hoc Communications and
Networks, Reston, VA, USA, pp. 723–728 (2006). https://doi.org/10.1109/SAHCN.2006.
288537

11. Giovanardi, A., Mazzini, G.: Ad hoc routing protocols: emulation vs simulation. In: 2005
2nd International Symposium on Wireless Communication Systems, Siena, Italy, pp. 140–
144 (2005). https://doi.org/10.1109/ISWCS.2005.1547673

12. Giovanardi, G., Mazzini, G., Veronesi, R.: Network emulation in the SAM simulator. In:
2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio
Communications, Berlin, Germany, pp. 1302–1306 (2005). https://doi.org/10.1109/
PIMRC.2005.1651651

13. Maier, S., Grau, A., Weinschrott, H., Rothermel, K.: Scalable network emulation: a
comparison of virtual routing and virtual machines. In: 2007 12th IEEE Symposium on
Computers and Communications, Las Vegas, NV, USA, pp. 395–402 (2007). https://doi.org/
10.1109/ISCC.2007.4381529

14. Mehta, D., Jaeger, J., Faden, A., Hebert, K., Yazdani, N., Yao, H.: A scalable architecture
for emulating dynamic resource allocation in wireless networks. In: MILCOM 2009 - 2009
IEEE Military Communications Conference, Boston, MA, USA, pp. 1–7 (2009). https://doi.
org/10.1109/MILCOM.2009.5379801

15. Balasubramanian, D., Dubey, A., Otte, W.R., Emfinger, W., Kumar, P.S., Karsai, G.: A
rapid testing framework for a mobile cloud. In: 2014 25th IEEE International Symposium on
Rapid System Prototyping, New Delhi, India, pp. 128–134 (2014). https://doi.org/10.1109/
RSP.2014.6966903

16. To, M.A., Cano, M.: DOCKEMU – a network emulation tool. In: 2015 IEEE 29th
International Conference on Advanced Information Networking and Applications Work-
shops, pp. 593–598. https://doi.org/10.1109/WAINA.2015.107

Network Emulation as a Service (NEaaS) 517

http://dx.doi.org/10.1109/SECON.2015.7132897
http://dx.doi.org/10.1109/SAHCN.2006.288537
http://dx.doi.org/10.1109/SAHCN.2006.288537
http://dx.doi.org/10.1109/ISWCS.2005.1547673
http://dx.doi.org/10.1109/PIMRC.2005.1651651
http://dx.doi.org/10.1109/PIMRC.2005.1651651
http://dx.doi.org/10.1109/ISCC.2007.4381529
http://dx.doi.org/10.1109/ISCC.2007.4381529
http://dx.doi.org/10.1109/MILCOM.2009.5379801
http://dx.doi.org/10.1109/MILCOM.2009.5379801
http://dx.doi.org/10.1109/RSP.2014.6966903
http://dx.doi.org/10.1109/RSP.2014.6966903
http://dx.doi.org/10.1109/WAINA.2015.107

	Network Emulation as a Service (NEaaS): Towards a Cloud-Based Network Emulation Platform
	Abstract
	1 Introduction
	2 Related Work
	3 Innovative Cloud-Based Network Emulation Platform
	3.1 Vital Feature Requirements on Modern Network Emulator
	3.2 Network Node Emulation Scheme
	3.3 Network Link Emulation Scheme
	3.4 Network Topology Emulation Scheme
	3.5 Architecture of the Cloud-Based Network Emulation Platform

	4 Implementation Details
	4.1 Implementation of Resource Virtualization Layer
	4.2 Implementation of Cloud Computing Layer
	4.3 Implementation of Emulation Core Layer
	4.4 Implementation of Emulation Interface Layer

	5 Performance Evaluation
	5.1 Performance Metrics Introduction
	5.2 Evaluation and Discussion

	6 Conclusion
	Acknowledgement
	References

