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Abstract. To address the problems of the slow convergence and inefficiency in
the existing adaptive PID controllers, we proposed a new adaptive PID con-
troller using the Asynchronous Advantage Actor-Critic (A3C) algorithm.
Firstly, the controller can parallel train the multiple agents of the Actor-Critic
(AC) structures exploiting the multi-thread asynchronous learning characteris-
tics of the A3C structure. Secondly, in order to achieve the best control effect,
each agent uses a multilayer neural network to approach the strategy function
and value function to search the best parameter-tuning strategy in continuous
action space. The simulation results indicated that our proposed controller can
achieve the fast convergence and strong adaptability compared with conven-
tional controllers.
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1 Introduction

The PID controller is a control mechanism of loop feedback, which is widely used in
industrial control system [1]. Based on the investigation of conventional PID controller,
the adaptive PID controller adjusts parameters online according to the state of the
system. Therefore, it has better system adaptability. At present, the majority of the
adaptive PID controllers are as follows: The fuzzy PID controller [2], which adopts
the ideology of matrix estimations like [3, 4]. It takes the error and the error rate as the
input and adjusts the parameters by querying fuzzy matrix table in order to satisfy the
requirement of the self-tuning PID parameters. The limitation of this method is that it
needs much more prior knowledge. Moreover, this method has a large number of
parameters, so that it needed to be optimized [5].

The adaptive PID controller [6, 7] can achieve effective control without identifying
the complex nonlinear controlled object using the good approximation ability of the
neural network to nonlinear structure. It is difficult to obtain the teacher signals in the
supervised learning process. The evolutionary adaptive PID controller [8] has difficulty
in achieving real-time control because it requires less prior knowledge [9]. The
adaptive PID controller based on reinforcement learning [10] solves the problem that
the teacher’s signal is difficult to obtain by unsupervised learning process. What is
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more, the optimization of the control parameters is simple. The Actor-Critic
(AC) adaptive PID [11, 12] is the most widely used in the reinforcement-learning
controller. However, the convergence speed of the controller is affected by the corre-
lation of the learning data in the AC algorithm [13].

Google’s DeepMind team proposed the Asynchronous Advantage Actor-Critic
(A3C) learning algorithm [14]. This algorithm adopts multi strategies such as [15] to
train multiple agents in parallel, each agent will experience different learning state, so
the correlation of the learning sample is broken while improving the computational
efficiency [16]. This algorithm has been applied in many domain [17, 18].

Under the several problems in view of discovery, the contributions of this paper are
as follows:

1. To address the problem of data relevance and the teacher signal, we draw lessons
from the A3C algorithm that enhancing the learning rate with an aim to train agent
in the parallel threads.

2. In order to improve the precision and adaptive ability of the controller, we use two
BP neural network to approach policy function and value function separately.

3. Extensive simulation results and discussions demonstrated that our proposed
adaptive PID controlling algorithm outperforms the conventional PID controlling
algorithms.

In Sect. 2, we present the related work about the adaptive controller. In Sect. 3, we
present our design of A3C-PID controller. Section 4 describes the result that we apply
A3C-PID to the position control of stepper motor. Section 5 discusses the results
achieved so far and presents some directions for further work.

2 Related Work

The conventional PID controlling algorithms can be roughly classified into two cate-
gories including the neural network PID controllers and reinforcement learning PID
controllers.

2.1 Related Works with Adaptive Controller Based on Neural Network

The paper [19] proposed a method utilizing the neural network to reinforce the per-
formance of PID controller for the nonlinear system. Although the initial parameters of
neural network can be determined by artificial test, it is not enough to ensure the
reliability of the manual result. Based on this, the author of [20] adopt the genetic
algorithm to obtain the optimal initial parameters of the network. However, the genetic
algorithm is easily to fall into local optimum. In order to solve the problem, author of
[21] appended the immigration mechanism, 10% of the elite population and the inferior
population were selected as the variant population, to the neural network adaptive PID
controller.
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2.2 Related Works with Reinforcement Learning Adaptive Controller

The authors of [10] proposed a PID controller that combining the ASN reinforcement
learning network with fuzzy math. Despite this method does not need too much
accurate training samples compared the neural network PID, its structure is too com-
plex to guarantee the real-time performance for itself. In view of this point, literature
[22] designed an adaptive PID controller based on Actor-Critic algorithm. The con-
troller has simple structure that formed just one RBF network. However, it conver-
gences slowly owing to the learning sample of Actor-Critic algorithm is relevance.

3 A3C Adaptive PID Control

3.1 Structure of A3C-PID Controller

The design of A3C adaptive PID controller is to combine the asynchronous learning
structure of A3C with the incremental PID controller. Its structure is as shown in
Fig. 1. The whole process is as follow: for each thread, the initial error em tð Þ ¼
y0 tð Þ � y tð Þ enters the state converter to calculate Dem tð Þ ¼ em tð Þ � em t � 1ð Þ
D2em tð Þ ¼ em tð Þ � 2 � em t � 1ð Þþ em t � 2ð Þ and output the state vector Sm tð Þ ¼
em tð Þ;Dem tð Þ;½ D2em tð Þ�T. Then the Actor (m) maps the state vector Sm tð Þ to three
parameters, Kp Ki and Kd, of PID controller. The updated controller acts on the
environment to receive the reward rm tð Þ. After n times, Critic (m) receives Sm tþ nð Þ
which is the state vector of the system. Finally it produces the value function estimation
VðStþ n;W 0

vÞ and n-step TD error dTD, which are viewed as the important basis for
updating parameters. The formula of the reward function is shown as Formula (1)

rm tð Þ ¼ a1r1 tð Þþ a2r2 tð Þ ð1Þ

r1 tð Þ ¼ 0; em tð Þj j\e
e� em tð Þ; other

�
r2 tð Þ ¼ 0; em tð Þj j � em t � 1ð Þj j

em tð Þj j � em t � 1ð Þj j; other

�

Fig. 1. Adaptive PID control diagram based on A3C learning
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In the next step, the Actor (m) and the Critic (m) send their own parameters W 0
am,

W 0
vm and the generated dTD into the Global Net to update Wa and Wv with the policy

gradient and the descend gradient. Accordingly, the Global Net passes their Wa and Wv

to Actor (m) and Critic (m), making them continue to learn new parameters.

3.2 A3C Learning with Neural Networks

Multilayer feed-forward neural network [23], also known as BP neural network, is a
back-propagation algorithm for multilayer feed-forward networks. It has strong ability
for nonlinear mapping and is suitable for solving problems with complex internal
mechanism. Therefore, the method uses two BP neural networks respectively to realize
the learning of policy function and value function. The network structure is as follows:

As shown in Fig. 2, the Actor network has 3 layers:

The first level is the input layer. The input vector S ¼ em tð Þ;Dem tð Þ;D2em tð Þ� �T
represents the state vector. The second layer is the hidden layer. The input of the hidden
layer as follows:

hik tð Þ ¼ Pn
i¼1 wikxi tð Þ � bk k ¼ 1; 2; 3. . .20 ð2Þ

Where, k represents the number of neurons in the hidden layer, wik is the weights
connected the input layer and the hidden layer, bk is the bias of the k neuron. The
output of the hidden layer as follows:

hok tð Þ ¼ min max hik tð Þ; 0ð Þ; 6ð Þ k ¼ 1; 2; 3. . .20 ð3Þ

The third layer is the output layer. The input of the output layer as follows:

yio tð Þ ¼ Pk
j¼1 whohoj � bo o ¼ 1; 2; 3 ð4Þ

e(t)

∆e(t)

∆2e(t)
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Fig. 2. Network structure of Actor-Critic
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Where, o represents the number of neurons in the output layer, who is the weights
connected the hidden layer and the output layer, bo is the bias of the k neuron.

The output of the output layer as follows:

yoo tð Þ ¼ log 1þ eyio tð Þ� �
o ¼ 1; 2; 3 ð5Þ

Actor network does not output the value of Kp Ki and Kd directly, but output the
mean and variance of the three parameters. Finally, the actual value of Kp, Ki and Kd is
estimated by the Gauss distribution. The Critic network structure is similar to the Actor
network structure. As shown in Fig. 3, the Critic network also uses BP neural networks
with three layers’ structure. The first two layers are the same as the layers in the Actor
network. Obviously, the difference lies in the output layer of the Critic network which
has only one node to output the value function VðSt;W 0

vÞ of the state.
In the A3C structure, Actor and Critic networks use n-step TD error method [24] to

learn action probability function and value function. In the learning method of this
algorithm, the calculation of the n-step TD error dTD is realized by the difference
between the state estimation value VðSt;W 0

vÞ of the initial state and the estimation value
after n-step, as followed:

dTD ¼ qt � V St;W
0
v

� � ð6Þ

qt ¼ rtþ 1 þ crtþ 2 þ � � � þ cn�1rtþ n þ cnV Stþ n;W
0
v

� �

The 0\c\1, represents the discount factor, is used to determine the ratio of the
delayed returns and the immediate returns. W 0

v is the weight of the Critic network.
The TD error dTD reflects the quality of the selected actions in the Actor network. The
performance of the system learning is:

E tð Þ ¼ 1
2
d2TD tð Þ ð7Þ

After calculating the TD error, each Actor-Critic network in the A3C structure does
not update its network weight directly, but updates the Actor-Critic network parameters
of the central network (Global-Net) with its own gradient. The update formulas are as
follows:

Wa ¼ Wa þ aa dWa þrw0a log p a s;W 0
a

��� �
dTD

� � ð8Þ

Wv ¼ Wv þ ac dWv þ @d2TD
�
W 0

v

� � ð9Þ

Where Wa, which is stored by the central network, is the weight of Actor network,
W 0

a represents the weights of Actor network in AC structure, Wv is the weight of Critic

502 Q. Sun et al.



network in the central network, W 0
v represents the Critic network weights for each AC

structure, aa is the learning rate of Actor and ac is the learning rate of Critic.

4 Position Control of Two Phase Hybrid Stepping Motor

4.1 Modeling and Simulation of Two Phase Hybrid Stepping Motor

In this paper, a two phase hybrid stepping motor is used to control in the simulation
experiment. Firstly, we need to establish a mathematical model, however the two phase
hybrid stepping motor is a highly nonlinear mechanical and electrical device, so that it
is difficult to accurately describe it. Therefore, the mathematical model of a two phase
hybrid stepping motor is studied in this paper. It is simplified and assumed to be as
follows: The magnetic chain in the phase winding of the permanent magnet varies with
the rotor position according to the sinusoidal law. The magnetic hysteresis and the eddy
current effect are not considered while the mean and fundamental components of the air
gap magnetic conductance are considered. The mutual inductance between the two
phase windings is ignored. On the basis of the above limit, the mathematical model of
the two phase hybrid stepping motor can be described by the Eqs. 10–14.

ua ¼ L
dia
dt

þRia � kex sinðNrhÞ ð10Þ

ub ¼ L
dib
dt

þRib � kex sinðNrhÞ ð11Þ

Te ¼ �keia sinðNrhÞþ keie cosðNrhÞ ð12Þ

J
dx
dt

þBxþ TL ¼ Te ð13Þ

dh
dt

¼ x ð14Þ

In above formulas, ua and ub are two-phase voltage and current respectively of A
and B, R is winding resistance, L is winding inductance, ke is torque coefficient, h and
x are rotation angle and angular velocity of motor respectively, Nr is the number of
rotor teeth, Te is electromagnetic torque of hybrid stepping motor, TL is Load torque, J
and B are the load moment of inertia and the viscous friction coefficient respectively. It
can be seen from the mathematical model of a two phase hybrid stepping motor that the
two phase hybrid stepping motor is still a highly nonlinear and coupled system under a
series of simplified conditions.

The simulation model of two phase hybrid stepping motor servo control system is
built by Simulink in Matlab. The simulation is shown in Fig. 3.
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The parameters of the motor are as follows: L ¼ 0:5H, Nr ¼ 50, R ¼ 8X,
J ¼ 2 g:cm2, B ¼ 0Nm s=rad, N ¼ 100, TL ¼ 0, ke ¼ 17:5Nm=A. The N is the
reduction ratio of the harmonic reducer. The A3C-PID controller parameters are set as
follows: m ¼ 4, aa ¼ 0:001, ts ¼ 0:001 s, ac ¼ 0:01, e ¼ 0:001, c ¼ 0:9, n ¼ 30,
K ¼ 3000. The simulation results are shown in Figs. 4, 5 and Table 1.

Dynamic performance of the A3C, BP, and AC adaptive PID controller are shown
on Fig. 4. In the time of early simulation (20 cycles), the BP-PID controller has a faster
response speed and a shorter rise time (12 ms), but it has a higher overshoot of
2.1705%. On the contrary, both the AC-PID and the A3C-PID controller have smaller
overshoot as 0.1571% and 0.1021%. But the adjustment time of AC-PID is long
(48 ms), and the rise time is 21 ms. In contrast, A3C-PID controller has better stability
and rapidity.

Fig. 3. The simulation of servo system

Table 1. The comparison of controller performance

Controller Overshoot
(%)

Rise
time (ms)

Steady
state error

Adjustment
time (ms)

A3C-PID 0.1571 18 0 33
AC-PID 0.1021 21 0 48
BP-PID 2.1705 12 0 32
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Figure 5 shows the process of adaptive transformation of A3C-PID controller
parameters. As be seen from Fig. 5, the A3C-PID controller is able to adjust the PID
parameters based on errors in different periods. At the beginning of the simulation, the
tracking error of system is large. In order to ensure a fast response speed of the system,
KP is continuously increasing while Kd is reducing. Then the system is in order to
prevent from having a high overshoot, which limits the increasing of Ki. With the error
decreasing, KP begins to decrease. Meanwhile, the value of Ki is gradually increased to

Fig. 5. The result of controller parameter turning

Fig. 4. Position tracking
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eliminate the cumulative error. However, a small amount of overshoot is caused. Kd

tends to be stable at this stage because it has a large influence on the system. When the
final tracking error comes to 0, KP, Ki and Kd reach a steady state. Simulation results
show that the A3C-PID controller has an excellent adaptive capability.

5 Conclusions

In this paper, a new PID controller is proposed with asynchronous advantage actor-
critic algorithm. The controller uses the BP neural network to approach the policy
function and the value function. BP neural network have the strong ability in nonlinear
mapping which can enhance the adaptive ability of the controller. The learning speed of
A3C PID controller is accelerated with the parallel training in CPU multithreading. The
method of asynchronous multi-thread training reduces the correlation of the training
data and makes the controller more stable. In the simulation of nonlinear signal and
inverted pendulum, the control accuracy of A3C-PID controller is higher than others
PID controllers.

Current work includes that we use the controller to control the position of two
phase hybrid stepping motor and analyze the performance of controller such as:
overshoot, rise time, steady state error and adjustment time. According to these work, it
confirmed the effectiveness and application significance of the algorithm. Finally, our
aim is to make the controller apply to the multi-axis motion control and the actual
industrial production.
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