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Abstract. Recently, Restricted Boltzmann Machine (RBM) has demonstrated
excellent capacity of modelling vector variable. A variant of RBM, Matrix-
variate Restricted Boltzmann Machine (MVRBM), extends the ability of RBM
and is able to model matrix-variate data directly without vectorized process.
However, MVRBM is still an unsupervised generative model, and is usually
used to feature extraction or initialization of deep neural network. When
MVRBM is used to classify, additional classifiers are necessary. This paper
proposes a Matrix-variate Restricted Boltzmann Machine Classification Model
(ClassMVRBM) to classify 2D data directly. In the novel ClassMVRBM,
classification constraint is introduced to MVRBM. On one hand, the features
extracted by MVRBM are more discriminative, on the other hand, the proposed
model can be directly used to classify. Experiments on some publicly available
databases demonstrate that the classification performance of ClassMVRBM has
been largely improved, resulting in higher image classification accuracy than
conventional unsupervised RBM, its variants and Restricted Boltzmann
Machine Classification Model (ClassRBM).
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1 Introduction

Currently, more and more multiple array data are widely acquired in modern computer
vision research, such as 2D images, 3D videos and 4D light fields etc. [19]. It is well
known that vectorizing multiway data is a common used method, however, such
vectorization process inevitably leads to possible data structure break and dimension
curse. How to model the multiway data more appropriately so as to process and analyze
it effectively is the key problem. Many methods have been proposed during the past
years. Take 2D images (matrix-style) for example, such as 2D Principle Component
Analysis (2DPCA) [1, 2], and 2D Linear Discriminant Analysis (2DLDA) [3].
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Unfortunately, 2DPCA and 2DLDA are still linear methods, which both aim to find an
optimal linear projection matrix to reduce dimension or classify.

RBM is an effective model for nonlinear modeling [4], it is becoming one of the most
popular methods, which is widely used in speech/image feature extraction, feature rep-
resentation [5] and the initialization of deep neural network, typical RBMvariants include
Gaussian-Bernoulli RBM (GBRBM) [6], Improved Gaussian-Bernoulli RBM
(IGBRBM) [7] and Tensor-variate Restricted Boltzmann Machines [8] etc. Especially,
Larochelle et al. [9] proposed ClassRBM to implement the classification task, which
extended the ability of RBM. After that, Peng et al. [10] integrates infinite RBM and the
classification RBM for Radar high resolution range profile recognition. However, when
RBM and ClassRBM are used to process image signals, the 2D image matrices must be
transformed into 1D image vectors in advance, such process leads to possible high
dimensional vector and spatial structural damage of image. Qi et al. [11] proposed
MVRBM model, which has been successfully applied to represent 2D signal. Further-
more, Liu et al. [12] proposed improvedMVRBMnamedMVGRBM,which assumes the
matrix data entries follow Gaussian distributions. However, MVRBM and MVGRBM
are still unsupervised generative models. When the goal is to classify the image data, an
additional classifier must be introduced, such as nearest neighbor classifier or neural
network. Inspired by Hugo, this paper adds the label constraint to the existing MVRBM
model, i.e., we propose a Matrix-variate Restricted Boltzmann Machine Classification
Model (ClassMVRBM), which is capable of classifying the images directly.

2 Definition of ClassMVRBM Model

In this section, we propose a ClassMVRBM model for image classification. Firstly, we
introduce the definition of the fundamental MVRBM, and then the definition of the
proposed model is detailed.

2.1 Definition of MVRBM

The MVRBM [11] is a bipartite undirected probabilistic graphical model connecting
stochastic matrix-style visible units and matrix-style hidden units by tensor-style
weights. To formulate the model, we define the follow variables: X ¼ ½xij� 2 R

I�J is a
matrix variable of the visual layer, and corresponds to the input observation. H ¼
½hkl� 2 R

K�L is a matrix variable of the hidden layer, and represents the features
extracted from the input. denotes the connecting relationship of X and
H, which is a fourth-order tensor. B ¼ ½bij� 2 R

I�J and C ¼ ½ckl� 2 R
K�L are the

matrix-style biases in the visual units and the hidden ones. Therefore,
defines all the model parameters of MVRBM. The MVRBM defines an energy function
for joint configuration X;Hð Þ as shown in formula (1):

E X;H;H0ð Þ ¼ �
XI

i¼1

XJ
j¼1

XK
k¼1

XL
l¼1

xijhklwijkl �
XI

i¼1

XJ
j¼1

xijbij �
XK
k¼1

XL
l¼1

hklckl: ð1Þ
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Based on the aforementioned energy function (1), MVRBM defines the joint
probability distribution of the visual variates and hidden ones as formula (2):

p X;H;H0ð Þ ¼ 1
Z H0ð Þ exp �E X;H;H0ð Þf g; ð2Þ

where ZðH0Þ is the normalization constant. Maximum likelihood estimation is gener-
ally introduced to solve the model parameter H0, and the log likelihood of X is defined
by formula (3).

Max‘
H0

¼ 1
N

XN
n¼1

logð
X

H2H exp �EðXðnÞ;H; H0Þ
n o

Þ � log ZðH0Þ; ð3Þ

here, N represents the number of the samples and XðnÞ means the input sample.

2.2 Definition of ClassMVRBM

MVRBMhas been successfully used to represent 2D signal, however,MVRBM is still an
unsupervised generative model. This paper aims to design an improved MVRBM with
the performance of classification, to this end, the classification constraint is added to the
existingMVRBM.Specially, as depicted in Fig. 1, we connect an additional label layer to
the previous hidden layer. Therefore, in the novel model there are two branches, and the
left is the original MVRBM, while the right one is the newly added classification one.

To introduce our model, we define additional variables as follows: y ¼ ½yt� 2 R
T is a

label vector, and indicates the classification of the input data by one-hot coding.
is the connecting weight of y and H, indicating the relationship

between the label variable and the hidden features. d ¼ ½dt� 2 R
T is the bias vector of the

label layer. Refer to (1), we define the novel joint energy function formulated as below.

E X; y;H;Hð Þ ¼ �
XI

i¼1

XJ
j¼1

XK
k¼1

XL
l¼1

xijhklwijkl �
XI

i¼1

XJ
j¼1

xijbij �
XT
t¼1

XK
k¼1

XL
l¼1

ythklptkl

�
XT
t¼1

ytdt �
XK
k¼1

XL
l¼1

hklckl;

ð4Þ

Fig. 1. Graphical illustration of ClassMVRBM
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In view of is a four-order tensor, which enables the model parameters to increase
greatly. To reduce the model parameters, this paper assumes by tensor
analysis and decomposition [13], therefore, the revised energy function is in the
following:

E X; y;H;Hð Þ ¼ �
XI

i¼1

XJ
j¼1

XK
k¼1

XL
l¼1

xijhklukivlj �
XI

i¼1

XJ
j¼1

xijbij �
XT
t¼1

XK
k¼1

XL
l¼1

ythklptkl

�
XT
t¼1

ytdt �
XK
k¼1

XL
l¼1

hklckl:

ð5Þ

Defining matrix-style variables U ¼ ½uki� 2 R
K�I and V ¼ ½vlj� 2 R

L�J , therefore,
indicates all model parameters of ClassMVRBM, here, the defi-

nition of is same to that of MVRBM. Based on the formula (5), the joint
distribution of X; y;H is defined as follows:

p X; y;H;Hð Þ ¼ exp �E X; y;Hð Þð Þ
Z Hð Þ ; ð6Þ

ZðHÞ is the normalized constant and written as:

ZðHÞ ¼
X
X;y;H

expðf�EðX; y;H;HÞgÞ: ð7Þ

3 Optimization of ClassMVRBM Model

Given the training data pairs Dtrain ¼ ðXð1Þ; yð1ÞÞ; � � � ; ðXðnÞ; yðnÞÞ; � � � ðXðNÞ; yðNÞÞ� �
,

the most popular training objective for RBMs and its variants is generative, that is,
maximizing the joint probability is the training objective. Therefore, the equivalent
minimized negative log likelihood objective function can be written as:

min LgenðDtrainÞ ¼ � PN
n¼1

ðlog pðXðnÞ; yðnÞÞÞ ¼ � PN
n¼1

ðlog pðyðnÞ XðnÞ�� Þþ log pðXðnÞÞÞ

¼ � PN
n¼1

log pðyðnÞ XðnÞ�� Þ � PN
n¼1

log pðXðnÞÞ:

ð8Þ

According to (8), our proposed ClassMVRBM includes two parts, one is the
conditional probability part, and the other is the marginal distribution of the input
samples. Since our training data are labeled and for the test sample, a good prediction
of the target classification is the only interesting point, therefore, this paper only
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focuses on the supervised part in (8), that is, the condition probability is the only
objective function as follows.

min
H

LðHÞ ¼ �
XN
n¼1

logðpðyðnÞ j XðnÞ;HÞÞ: ð9Þ

For a single sample pair ðXðnÞ; yðnÞÞ, we derive:

log pðyðnÞjXðnÞÞ ¼ log
pðXðnÞ; yðnÞÞ
pðXðnÞÞ

¼ log
X
H

expð�EðXðnÞ; yðnÞ;HÞÞ � log
X
y;H

expð�EðXðnÞ; y;HÞÞ:

ð10Þ

With respect to any parameter h of H in ClassMVRBM, the gradient of
log pðyðnÞjXðnÞÞ is:

@ log pðyðnÞjXðnÞÞ
@h

¼
P
H

expð�EðXðnÞ;yðnÞ;HÞÞ@ð�EðXðnÞ ;yðnÞ ;HÞÞ
@hP

H

expð�EðXðnÞ;yðnÞ;HÞÞ �
P
y;H

expð�EðXðnÞ;y;HÞÞ@ð�EðXðnÞ ;y;HÞÞ
@hP

y;H

expð�EðXðnÞ;y;HÞÞ

¼ P
H
pðHjXðnÞ; yðnÞÞ @

@h ð�EðXðnÞ; yðnÞ;HÞÞ �P
y;H

pðy;HjXðnÞÞ @
@h ð�EðXðnÞ; y;HÞÞ:

ð11Þ

According to (11), the two terms around the minus sign needed to be solved,
respectively. Analyze the parameters to be optimized, since the
optimization process does not include the reconstruction of the input X, and the input
biases are not involved in the computation of pðyjXÞ, the gradient with respect to B is 0.
The bias vector d in the label layer is special and only the label position is updated. In
this paper, we assume the position of classification label is t, the gradient of the bias
component dt is as follows:

@ log pðyðnÞt jXðnÞÞ
@dt

¼ 1� pðyðnÞ
t jXðnÞÞ; y

ðnÞ
t 2 f1; � � � ;Mg: ð12Þ

Here, M is the number of categories. For the other parameters , the
derivative of the log likelihood function with respect to every parameter is computed
below. Firstly @E

@h is calculated, and then
P
H
pðHjXðnÞ; yðnÞÞ @

@h ð�EðXðnÞ; yðnÞ;HÞÞ and
P
y;H

pðy;HjXðnÞÞ @
@h ð�EðXðnÞ; y;HÞÞ in the objective function (11) are calculated,

respectively. To calculate the gradient @E
@h, we first take calculating @E

@U as an example.
According to (5), we have
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@EðXðnÞ; yðnÞ;H;HÞ
@uki

¼ �
X
j;l

xðnÞij vljhkl: ð13Þ

The corresponding matrix-style representation is:

@EðXðnÞ; yðnÞ;H;HÞ
@U

¼ �HVXðnÞT : ð14Þ

Similarly, the derivatives with respect to other parameters can be calculated, and we

discover that the gradients all include hkl or H, furthermore, for

any binary hidden variable unit hkl in the hidden layer H,

X
hkl2f0;1g

pðhkljXðnÞ; yðnÞÞ � hkl ¼ pðhkl ¼ 1jXðnÞ; yðnÞÞ: ð15Þ

The activation probability of one single unit in the hidden layer is defined by the
following,

pðhkl ¼ 1jX; y;HÞ ¼ rðckl þ
XI

i¼1

XJ
j¼1

xijukivlj þ
XT
t¼1

ytpkltÞ; ð16Þ

where r is the sigmoid function, rðaÞ ¼ 1=ð1þ expð�aÞÞ. It is easy to see that the
hidden unit is influenced by not only the visual layer but also the labeled one. In terms
of matrix representation, the aforementioned conditional probability can be written as:

ð17Þ

Here, r applies on the entries of the corresponding matrices. denotes all the weights
between the label component in the label vector and the units in the hidden layer.

With regard to the second term in (11),

X
y;H2f0;1g

pðy;HjXðnÞÞH ¼ pðyjXðnÞÞ ¼
P
H
expð�EðXðnÞ; y;HÞÞ

P
y�;H

expð�EðXðnÞ; y�;HÞÞ; ð18Þ

Of which, y in the numerator represents a special category, while y� in the denominator
represents all possible categories. Where,

...

... ð19Þ

In summary, we have:
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ð20Þ

The gradient values used to update the parameters of the model are as follows:

ð21Þ

DCðtÞ ¼ aDCðt�1Þ þ k
@LðHÞ
@C

DdðtÞ ¼ aDdðt�1Þ þ k
@LðHÞ
@d

Of which, k is the learning rate, a is the momentum, and n1 and n2 is the weight
regularizer. The training algorithm of ClassMVRBM is presented as follows.

... ...

......
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4 Experimental Results

To evaluate the performance of our method, we conduct two types of experiments on
four publicly available image databases. The first type of experiment aims to evaluate
the classification performance of ClassMVRBM relative to RBM, MVRBM and other
unsupervised methods, and the second type of experiment aims to compare the clas-
sification performance of ClassMVRBM with ClassRBM, respectively for 2D signal
and the general vectorized 1D signal. In addition, we also conduct the sensitivity test
for some parameters.

4.1 The Experimental Datasets

This paper conducts experiments on image databases MNIST, Ballet, ETH80 and
Coil_20. All programs are coded by MATLAB and implemented on an Intel Core i7,
3.60 GHz CPU machine with 12 GB RAM. The datasets are listed as follows:

MNIST Database [14]: MNIST is a dataset of handwritten digits images database
including 60,000 training samples and 10,000 testing samples. Each image is one digit
among 0–9, and each one is a gray image with the size of 28 � 28.

Ballet Database [15]: This dataset includes 8 kinds of complex ballet actions, totally
44 videos clips are cut from the Ballet DVD video, and each clip has 107–506 frames.
The paper randomly selects 200 frames from each kind of action for training, while the
remaining images are used for testing. Similarly, all images are down-sampled to
32 � 32 and transformed to gray scale.

ETH80 Database [16]: ETH80 dataset includes 8 categories (apples, cars, cows, cups,
dogs, horses, pears and tomatoes). Each category consists of 10 different objects, and
each object is collected from 41 different views. Therefore, there are totally 8 � 10 �
41 = 3280 images. We randomly select the images of 21 views (8 � 10 � 21 = 1680)
for training while the others from the additional 20 views (8 � 10 � 20 = 1600) for
testing. All images are down-sampled to 32 � 32 and transformed to gray scale.

Coil_20 Database [18]: There are 20 kinds of different objects in this database, and
each object includes 72 images taken under different views, and all images are down-
sampled to 32 � 32, and transformed to gray scale. We randomly select 36 images for
training while the rest 36 images for testing.

4.2 Experimental Results

Experiment 1: The Classification Performance Evaluation of ClassMVRBM and
Other Unsupervised RBMs and Variants
This section aims to compare the classification accuracy of our proposed
ClassMVRBM with other unsupervised methods such as RBM, IGBRBM, MVRBM
and MVIGRBM. Note that RBM, IGBRBM, MVRBM and MVIGRBM are unsu-
pervised and mainly used to extract features of the input, we use the nearest neighbor
classifier for classification. The comparative experiments are conducted on image
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datasets MNIST, Ballet and ETH80. Table 1 shows the classification accuracy of five
algorithms: RBM, IGBRBM, MVRBM, MVGRBM and ClassMVRBM on three
datasets. Of which, the classification accuracy of unsupervised RBM, IGBRBM,
MVRBM and MVGRBM are reported in [11] when the iteration times and all
parameters are adjusted to the best. In the same way, the classification accuracy of our
proposed ClassMVRBM is obtained when the iteration times are 100 and all the other
parameters are adjusted to the most optimal by grid search. In the Table 1, the bold
figures are the best results in the comparison.

According to Table 1, the classification accuracy of ClassMVRBM is much higher
than other four unsupervised methods on the MNIST, Ballet and ETH80 datasets. It can
be concluded when adding the classification constraint to MVRBM, on one side, the
extracted feature representations are discriminative, on the other side, when the con-
ditional probability is directly used to classify, our proposed discriminative model pays
more attention to the difference between categories, which enables the proposed
method be obviously more robust for modeling relative less and more complicated
input data such as Ballet and ETH80 datasets. Therefore, our proposed model
demonstrates the significant superiority.

Experiment 2: The Classification Accuracy Comparison of ClassMVRBM with
ClassRBM
In this experiment, we will compare the classification accuracy of ClassRBM and
ClassMVRBM on three databases: Ballet, ETH80 and Coil_20. ClassMVRBM and
ClassRBM are both classification models, the difference lies in when ClassRBM is used
to classify 2D images, the images need to be vectorized firstly. To make the comparison
fair, the number of neurons in the hidden layer of ClassRBM and ClassMVRBM is set
consistent. That is, when the hidden dimension of ClassMVRBM is 20 � 20, then the
hidden dimension of ClassRBM is 400. Table 2 demonstrates the classification accuracy
of ClassRBM and ClassMVRBM when all parameters are adjusted to the most optimal
by grid search. According to Table 2, it is easy to see that the classification performance
of ClassMVRBM is better than that of ClassRBM. It’s not difficult to conclude that to
model 2D signal, ClassMVRBM performs better than ClassRBM, which is due to that
ClassMVRBM does not vectorize the images and keeps the spatial structure better.

Table 1. Classification accuracy of ClassMVRBM and other unsupervised methods

RBM IGBRBM MVRBM MVGRBM ClassMVRBM

MNIST 0.9515 0.9398 0.9670 0.9700 0.9725
Ballet 0.3779 0.9216 0.3505 0.9357 0.9509
ETH80 0.5281 0.8750 0.3969 0.8894 0.9053

Table 2. Classification accuracy comparison of ClassMVRBM and ClassRBM

Methods ClassRBM ClassMVRBM

Ballet 0.9114 0.9509
ETH80 0.5078 0.9053
Coil_20 0.9779 0.9896
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ClassMVRBM is sensitive to the hidden size and iteration times. In the following
experiments, we discuss the classification accuracy of ClassMVRBM under different
hidden sizes and iteration times. As regards to the hidden size, the grid search method
[17] is introduced to find the optimal hidden size so as to attain the highest classifi-
cation accuracy. According to the preceding description of the datasets, the input size
of Ballet, Coil_20 and ETH80 are all 32 � 32, for the sake of dimensionality reduc-
tion, we conduct experiments successively assuming the hidden size is 15 � 15,
18 � 18, 20 � 20, 25 � 25, 28 � 28 and 32 � 32. As shown in Table 3, the larger
the hidden size, the higher the classification accuracy, however, when the hidden size
increases to 32 � 32, the classification accuracy decreases instead. Especially,
28 � 28 is the optimal hidden size and with the highest classification performance. It is
not difficult to conclude when the hidden size is small, the extracted feature dimension
is limited, and the less model parameters generally leads to the under fitting, thus the
smaller hidden size brings the lower classification accuracy. But when the hidden size
is more than 28 � 28, the classification accuracy decreases, which probably results
from the overfitting caused by the excessive model parameters.

The influence of the iteration times for classification performance is reported in
Table 4. Note that as the iteration times increased, the classification accuracy increased.
However, when the iteration times are more than 200, the accuracy decreased.
According to Table 4, the best optimal iteration times are about 100 and we can
conclude that the increased iteration times over 100 probably lead to the over fitting.
This implies that our proposed classification model converges rapidly.

5 Conclusions

In this paper, we introduce a novel classification model called Matrix-variate Restricted
Boltzmann Machine Classification Model (ClassMVRBM). Inspired by ClassRBM,
ClassMVRBM integrates classification constraints to MVRBM and presents the opti-
mized objective function of conditional probability to solve the model parameters.

Table 3. Classification accuracy comparison under different hidden layer sizes on various
datasets

Hidden size 15 � 15 18 � 18 20 � 20 25 � 25 28 � 28 32 � 32

Ballet 0.8165 0.8432 0.8875 0.9165 0.9509 0.9053
Coil_20 0.3999 0.3999 0.5139 0.9229 0.9896 0.8653
ETH80 0.7888 0.7975 0.8388 0.8546 0.9053 0.8632

Table 4. Classification accuracy comparison under different iteration times on various datasets

Iteration times 10 30 50 100 200 500

Ballet 0.3838 0.6657 0.8547 0.9365 0.9309 0.9073
Coil_20 0.6753 0.8289 0.9264 0.9719 0.9597 0.9253
ETH80 0.6516 0.7713 0.8782 0.8946 0.8830 0.8632
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Since the proposed ClassMVRBM directly models the images without the vectorized
process, which keeps the spatial structure of the images better. Furthermore, the
classification constraint and the conditional probability objective function ensure the
discriminability of the learnt features. The experiments are carried out on four
benchmark datasets, MNIST, Ballet, Coil_20 and ETH80. The corresponding results
demonstrate the superiority of ClassMVRBM. However, the hidden features extracted
based on our proposed model still lack the discriminative analysis like the within-class
and between-class scatter constraints, we shall extent our work for tackling the task in
future.
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