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Abstract. There is little work done on unconstrained handwritten Uyghur word
recognition by implementing deep neural networks. This paper carries out a
comparative study to see the preprocessing effect on training a neural network
based online handwriting Uyghur word recognition system. Bidirectional
recurrent neural network with connectionist temporal classification is imple-
mented for unconstrained handwriting word recognition experiments on a
dataset of 23400 Uyghur word samples. The results are directly obtained from
model output without any lexicon or language model. Experiments showed that
proper preprocessing can improve the training speed very effectively. The
comparative study conducted in this paper can be good reference for later
studies.
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1 Introduction

Online handwriting recognition is conducted on the traced pen-tip movement trajectory
information [1]. The first-hand online handwritten samples are usually coarse trajec-
tories that need proper preprocessing. Although, deep neural networks have been
showing their strength to learn from raw input [2], good preprocessing can alleviate the
need for very large number training data and improve model generalization [3].
Shortening the handwritten trajectory is helpful to speed up network training at least.
This paper conducts comparative experiments to see the effect of preprocessing on
model training process on Uyghur online handwritten word samples, based on recurrent
neural network and connectionist temporal classification-CTC [7].

Uyghur is a typical alphabetic script which of 32 basic character/letter types. Each
character type has several specific character forms which are selectively used based on
the character position within a word. There are 128 character forms in Uyghur alphabet.
Most handwriting word recognition studies so far have been being conducted using a
holistic approach or with help of certain lexicon [4]. The applied model in this paper
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maps handwritten word trajectory into string of characters in Uyghur alphabet directly
without external lexicon help.

Study on Artificial intelligent systems has been gaining more and more attention in
many fields [11, 12]. The handwriting word recognition experiments in this paper will
be a reference for later study and development of intelligent systems in this field, too.
The remainder of this paper is organized as follows. Section 2 introduces the performed
preprocessing methods in detail. Section 3 describes the applied model for online
handwriting word recognition. Preprocessing effects and experiment results are given
in Sect. 4 a brief conclusion is drawn in Sect. 5.

2 Preprocessing

Figure 1 illustrates some online handwritten Uyghur word samples where temporal
neighbor strokes are drawn using different colors and annotated at the beginning of
each stroke. We can see that randomness and invasion to writing regulation in all
handwritten samples.

Preprocessing is hoped to decrease the disturbing content in raw trajectory and
improve the input representation thus can alleviate the need for large volume of data
[3]. The preprocessing techniques applied in this paper includes redundant removing,
point insertion, sampling, and turn-point selection. Figure 2 shows the workflow of
preprocessing operations implemented in our experiments.

Fig. 1. Different handwritten word samples for a word
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Fig. 2. Preprocessing workflow on handwritten trajectory
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2.1 Remove Redundant Points

A handy threshold based redundant removing technique is implemented on each stroke
of handwritten word trajectory. The removing thresholds are set based on average
neighbor point distance in the stroke trajectory. Each neighbor point couples are visited
and treated according to removing conditions. The distance between neighbor points
are calculated using Eq. (1).

D ¼ Pi � Pi�1j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1ð Þ2 þ yi � yi�1ð Þ2

q
ð1Þ

where Pi xi; yið Þ and Pi�1 xi�1; yi�1ð Þ are point coordinates of a point and its previous
neighbor, D refers the distance between the neighbor points.

If the distance from a point to its previous neighbor is greater than 3 times of
average neighbor-point distance, this point is treated as noise and removed. 1/2 of the
average neighbor point distance is used as duplication removing threshold. If the
distance from a point to its previous neighbor is smaller than the duplication removing
threshold, this point is removed from the trajectory.

2.2 Point Insertion

Point insertion is made between the neighbor points which have larger distance than
threshold value. For avoiding generated extra points between strokes, point insertion to
sample trajectory is applied on stroke level only. The insertion threshold is set by 0.01
times of the larger criteria of width or height of sample shape, so it is varied sample to
sample.

N ¼ P1 � P2j j
thr d

ð2Þ

xi ¼ x1þ Dx
N

� i ð3Þ

yi ¼ y1þ Dy
N

� i ð4Þ

In Fig. 3, P1 x1; y1ð Þ and P2 x2; y2ð Þ are the neighbor points that need point insertion
between them. Dx and Dy are the horizontal and vertical distances calculated by their
coordinates. Euclidian distance between them is obtained using Eq. (1). N is The
number of points to be inserted and thr d is the distance threshold for point insertion,
see Eq. (2). The coordinates of each insertion point is set according to Eqs. (3) and (4)
where ðxi, yi) are the coordinate values of the ith inserted point.
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2.3 Coordinate Normalization

The recorded point coordinates are normalized to be within certain interval by simple
min-max normalization using Eqs. (5)–(8). Points in trajectory are moved to be zero
started and within (0, 1) values both horizontal and vertical coordinates.

W ¼ max Xð Þ � min Xð Þ ð5Þ

H ¼ max Yð Þ � min Yð Þ ð6Þ

xi ¼ Xi � min X
max W ;Hð Þ ð7Þ

yi ¼ Yi � min Yð Þ
max W ;Hð Þ ð8Þ

where Xi;Yi
� �

and xi; yið Þ are point coordinate values before and after normalization;
X and Y represents the sets of horizontal and vertical coordinates of a sample trajectory,
respectively. The normalizing factor (denominator) uses the maximum criteria of shape
width W and height H, thus the aspect ratio of the sample shape is kept.

2.4 Sampling

In order to make even handwritten trajectory, an equal distance based sampling is
implemented. Stroke based sampling with distance threshold is applied on each stroke
to avoid missing delayed strokes which are crucial to distinguish characters and words.
Specifically, if the distance between a point and its previous neighbor is smaller than
threshold distance, this point is discarded; otherwise, it is selected and kept as sampled
point.

2.5 Turn Point Selection

Turn-points are very much informative that they express substantial direction change of
pen-tip movement during handwriting. Using only turn-points greatly decreases the
trajectory length than using all trajectory points. Again, selecting turn points is per-
formed on stroke level in order to avoid losing character distinguishing marks.

Fig. 3. Inserting points
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Direction change h at a point in trajectory is obtained by its previous and next
neighbor points using Eq. (9), where Pt�1 and Ptþ 1 are the previous and next neighbor
points of point Pt; And the Euclidian distances between them are noted as a; b; c as
illustrated in Fig. 4. A point in trajectory is detected as critical turn point if direction
change h exceeds threshold of p=12.

h ¼ p� arccos
b2 þ c2 þ a2

2bc

� �
ð9Þ

Figure 5 compares the visual effect of the handwritten word samples before and
after preprocessing. The original trajectory has very large values and a great number of
points, as shown in Fig. 5(a). After preprocessing, the coordinate values are squeezed
to be within (0,1). And the trajectory length has got reduced significantly while still
keeping readability, as in Fig. 5(b).

3 Unconstrained Handwriting Word Recognition System

3.1 Input Representation

Two input representation are used in the comparative training experiments in this
paper. First one simply uses two dimensional [x,y] values. The second representation

Fig. 4. Pen-tip direction change

(a) Before preprocessing (b) After preprocessing 

Fig. 5. Visual effect of preprocessing on handwritten trajectory
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uses six dimensions which include point coordinates (x,y), pen-tip movement direction
Dx;Dyð Þ, two dimensional pen-tip state of up or down [6]. Pen-tip movement direction
Dx;Dyð Þ is easily got by calculating the differences of neighbor point positions by
Eqs. (10) and (11). Then pen-state is known as pen-down if a point stays in the same
stroke with his previous neighbor and marks as [1, 0], otherwise marked as [0,1] which
notes pen-up state.

Dx ¼ xt � xt�1 ð10Þ

Dy ¼ yt � yt�1 ð11Þ

where xt; ytð Þ and xt�1; yt�1ð Þ are the coordinates of current and adjacent previous
points within trajectory.

3.2 System Architecture

A recurrent neural network based unconstrained handwriting word recognition system
with LSTM cells in recurrent layers, as shown in Fig. 6(a), is applied to recognize
online handwritten word trajectories in this paper.

The bidirectional recurrent layer in the system has two sub-layers (forward and
backward) which read the input sequence in opposite directions, either right-left of left-
right [6]. Each cell in a recurrent layer controls input, output and state values to the next
state with gate mechanism. The outputs of sub-layers, noted Yforward and Ybackward , are
concatenated get overall output of the bidirectional recurrent layers as in Eqs. (12)–(14)
and Fig. 6(b).

(a) (b)

BLSTM: [forward: 256, backward: 256]

FC layer: 512 units, dropout

FC Layer: n_chars +1 units

CTC Decoder

Input trajectory

character sequence

BLSTM: [forward: 128, backward: 128]

Forward layer

Backward layer

Input layer

Output layer

Fig. 6. Architecture of unconstrained handwritten word recognition system (a) Model Archi-
tecture (b) Bidirectional LSTM layer
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Yforward ¼ ht ¼ yl1; yl2; . . .:ylN½ � ð12Þ

Ybackword ¼ h
0
t ¼ yr1; yr2; . . .:yrN½ � ð13Þ

Y ¼ concat Yforward ; Ybackward
� � ð14Þ

Where yrN and ylN represents the output of the Nth node of in right-left and left-right
sub-recurrent layers. Yforward and Ybackward are the outputs of the two inverse sub-layers
and Y is the of the bi-directional recurrent layer. The fully connection layers learn the
further generalized features from recurrent layers.

This paper uses connectionist temporal classification to make character string
outputs directly from the handwriting trajectory input to realize unconstrained hand-
writing word recognition system [7]. Since the ground truth word transcriptions are
based on specific character shapes, the last fully connection layer is equipped with
128+1 units. Then CTC calculates the most possible character sequence as output.

4 Dataset and Configuration

4.1 Dataset

A total of 23400 online handwritten Uyghur word samples have been collected from 26
writers for 900 word classes. Each writer is asked to write all word classes continuously
on handwriting tablet in order to make the collected samples more natural and chal-
lenging. Each handwritten word sample in the established dataset contains the recorded
pen-tip coordinates on handwriting tablet, associated Unicode based ground-truth word
transcription and some general information such as trajectory length, total number of
strokes etc. The samples from 22 writers are arranged to be in train set, while the ones
of remained 4 writers are used to be the test set. The train set has 19800 samples and
test set contains 3600 samples for 900 word classes, respectively.

4.2 Configurations

Training experiments are performed on TitanX GPU with 12G RAM. During training,
a small portion of train samples (10 batches) is used as validation set and not partic-
ipated in model parameter adaptation. Character error rate CER and character accurate
rate CAR [8] are used as main evaluation metrics by Eqs. (15) and (16).

CER ¼ De þ Se þ le
Nt

ð15Þ

CAR ¼ 1� De þ Se þ le
Nt

ð16Þ

where Nt is number of total characters in reference text; De; Se; Ie denote the substi-
tution, deletion and insertion errors, respectively.
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All variables of the network are initialized by variance scaling initialize [9].
Stochastic gradient descent with Adam optimizer is applied for all experiments [10].
Initial learning rate is set 0.001 and decreased by half when no improvement seen in
continues 3 epochs. No regularization except dropout is implemented with drop-rate of
0.5. Training is stopped after 10 epochs failed to make any progress on validation set.
In order to save the training time, only 10 batches of the train and validation sets are
used to navigate the model performance during training with CER metric.

5 Experiments and Discussion

5.1 Experiments

In order to see the effect of preprocessing on training process, the same training
configurations are implemented for all comparative experiments. In the first group of
experiments, two dimensional input representations respectively by raw, normalized
and preprocessed trajectory values are used as input. The second group of experiments
uses six dimensional input representations respectively based on raw, normalized and
preprocessed trajectories, again. In the context of these experiments1, the raw, coor-
dinate normalized and preprocessed trajectories are noted by Raw-[x,y], Norm-[x,y]
and Prep-[x,y], respectively. The six dimensional inputs are also noted by Raw-dim6,
Norm-dim6 and Prep-dim6 accordingly in Table 1 and Fig. 7.

5.2 Discussion on Results

Speed. The speed improvement in RNN training is very much preferred, because
RNNs are usually slow for their recurrent connections. In training, the shortened tra-
jectories such as Prep-[x,y] and Prep-dim6 representations have benefited almost 3
times speed-up over the ones with original trajectory lengths. As given in Table 1, the
shortened representations only take around 5 min per training epoch while represen-
tations with original lengths need longer than 15 min. Recognition on short input
trajectories is also faster than long sequences, too. The Prep-[x,y] and Prep-dim6
representations needed around 0.028 s to recognize a sample by average. Recognition
time for a sample from the raw or the normalized only (Norm) representations took
averagely around 0.09 s.

Performance in Training. In both group of comparative experiments, the training on
raw trajectories experienced very unpleasant journey and ended up with severe
divergence. In the following discussion, we only give figures of training process on the
normalized and preprocessed trajectories.
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Two Dimensional Representation. Since raw coordinate values of points are very large,
training on Raw-[x,y] representation was hard and suffered by incredibly big fluctua-
tion. In contrast, Normalized coordinate values experienced very good training per-
formance despite some zig-zags on error curve in Fig. 7(a). Prep-[x,y] based Training
performed a very fast improvement of model performance at the beginning 30 epochs
for, see Fig. 7(b). There is no obvious overfitting found during training but some
degree of fluctuation accompanied from the beginning to the end. However, it is very
obvious that the shorted trajectory loses much information from the original hand-
written trajectory. Therefore, Norm-[x,y] inputs which kept all information from the
original trajectory produced better performance than Prep-[x,y] representation.

Six Dimensional Representation. Raw-dim6 representation couldn’t make pleasing
performance both on train and validation sets, again. The normalized coordinate values
from Norm-dim6 produced almost steady decline of error during training as plotted in
Fig. 7(c). The training and validation curves of the six dimensional representation
indicate better model generality than of two dimensional ones. The difference of
training and validation errors is small until the training prepared to stop. Norm-dim6
representation obtained the highest recognition performance on whole train and test
sets comparing with other comparative experiments in this paper, see Table 1. Com-
paring with Norm-[x,y] representation, more information in Norm-dim6 made faster
convergence, too. Prep-dim6 showed the fastest convergence on train set among the
experiments that 40 epochs reached train error rate of 5% (CER). After 30 epochs of
training, see Fig. 7(d), training saw some degree of overfitting although model showed
almost steady performance in later epochs. This may indicate that smaller models will
be preferred for Prep-dim6 representation. Among all experiments, The Norm-dim6
representation found itself best fit for the model capacity and reached a good gener-
alization of 19.32% CER on test set which is best recognition result among the
compared training experiments in this paper and can be further improved with proper
training configurations.

Table 1. Comparison handwriting recognition systems

Input Mean
Seq_len

Model
Size(M)

No.ep T/ep
(min)

Tr_CER
(%)

Te_CER
(%)

Te_CAR
(%)

Av-recT
(s)

Raw-[x,y] 221 16.2M 73 *15.6 35.73 40.54 59.46 0.092
Norm-[x,y] 211 16.2M 105 *15.6 11.81 21.94 79.06 0.092
Prep-[x,y] 67 16.2M 66 *5.1 15.99 23.59 76.41 0.025
Raw-dim6 221 16.25M 80 *16 – – – 0.095
Norm-dim6 211 16.2M 72 *16 6.92 19.32 93.06 0.095
Prep-dim6 58 16.25M 100 *5.3 11.61 23.48 76.52 0.028

Where Tr_CER and Te_CER are the character error rates on train and test sets,
respectively, Te_CAR means character accurate rate on test set; No.ep and T/ep the
number of epochs that training stopped and average time spent per epoch. Av-recT means
average recognition time per sample
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6 Conclusion

In both groups of comparative training experiments using two and six dimensional
input representations, the pre-processed inputs are found much faster to complete an
epoch of training than using raw trajectory. Experiments showed that raw trajectories
with large range of coordinate values are hard to be trained. Excessive preprocessing
will lose trajectory information and may cause harm for model training. More infor-
mative input representation shows better training behavior than just using trajectory
coordinates. The normalized trajectory coordinates with more features produced the
best performance for training and generalization. Investigating the different deep neural
network structures is the main content of our next work.
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(a) Norm-[x, y]            (b) Prep-[x, y] 

(c) Norm-dim6               (d) Prep-dim6

Fig. 7. Training records for online handwritten word recognition (The results are based on 10
batches from train and validation sets)
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