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Abstract. Fuzzy Petri net (FPN) is a powerful tool to model and analyze the
knowledge-based systems (KBSs) or expert systems (ESs). The accuracy of the
reasoning result is a bottleneck to hinder the further development of FPN
because of lacking self-learning capability. To overcome this issue, a hybrid
GA-SFLA algorithm is proposed in this paper to improve the precision of each
parameter of a given FPN model. The proposed algorithm combines the
advantages both of GA and SFLA and includes three phases, which are gen-
erating chromosome by encoding the multi-dimensional solution which reflects
all initial frogs, gaining a better individual as well as seeking the optimal
solution by executing the local search and global search operations of SFLA.
Finally, an FPN model is used to test the feasibility of the proposed algorithm.
Simulation results reveal that all parameters of the given FPN model have the
higher precision by implementing the GA-SFLA than that of implementing GA
and SFLA, respectively.

Keywords: Parameter optimization � Fuzzy Petri net � Genetic Algorithm
(GA) � Shuffled Frog-Leaping Algorithm (SFLA)

1 Introduction

Knowledge-based systems (KBSs) or expert systems (ESs), are a form of computerized
artificial intelligence programming to capture and employ knowledge for settling
complex problems, such as fault diagnosis or inference [1–3]. However, the uncer-
tainties of objective rooted in people’s information and knowledge are widely existed
in the real world. Hence, it is required that the ESs need to reflect these uncertainties
and fuzzy information in the knowledge representation and modeling processing [4–6].
The last few decades have witnessed a series of new methods for representing
knowledge and automatic reasoning implementation, such as fuzzy production rule
(FPR) [7], fuzzy Petri net (FPN) [8], Semantic Web [9] and frame-based representation
[10], etc.

FPN is kind of high-level Petri nets (HLPNs) based on the backward extension
principle [11]. Due to the graphical description capability and the systemic mathe-
matical analysis mechanism, FPN can accurately depict the uncertainty and is com-
monly used in the modeling, analyzing, and reasoning for KBSs and ESs [7, 12, 13].
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Nowadays, fruitful reasoning algorithms using FPN were borne and employed into
different industrial areas for specific functions, such as fault diagnosis, path recognized,
traffic schedule, process monitor, and so on [14, 15].

There are various successful FPN and its industrial applications. However, another
bottleneck of FPN-how to obtain the more accurate final reasoning result of the goal
output place-is still in the initial phase because the existing FPN formalism lacks of
self-learning ability to improve the accuracy of relevant parameters value. Shen et al.
developed two kinds of machine learning PN (MLPN) models to enhance the self-
learning of the Petri net (PN) by supervised and unsupervised learning algorithms
based on artificial neural network (ANN) [16]. Similarly, Tsang et al. proposed a
learning strategy of a kind of 14-tuple FPN by using ANN. However, in the training
process, training of thresholds of the FPN was neglected because the authors assumed
all transitions of FPN can be enabled and fired [17]. Wang et al. employed an efficient
genetic particle swarm optimization (GPSO) learning algorithm to execute self-learning
function for the parameters of FPN. But the proposed GPSO learning algorithm is not
suitable for some more complex and large-scale FPN models [18]. Above three liter-
atures, it reveals that it is a feasible thinking to enhance the self-learning of FPN model
and to practice the accuracy of each kind of parameters by using soft computing
techniques.

Based on the similar thinking, a hybrid algorithm, namely GA-SFLA approach, is
presented in this manuscript at first by combining the advantages of GA and SFLA.
Then, the proposed hybrid algorithm is used to execute the training process for
improving the accuracy of each type of parameters of FPN. The simulation results
indicate that the FPN parameters which are optimized by GA-SFLA own better pre-
cision than that of which are optimized by SFLA and GA, respectively.

Remain parts are organized as follows. Section 2 gives the related concepts of FPN
and FPR. Section 3 illustrates the framework and implementation steps of the GA-
SFLA algorithm in details after analyzing GA and SFLA briefly. Section 4 shows the
experimental results of parameters’ optimization by performing GA-SFLA, GA and
SFLA algorithms one-by-one on the same FPN case. Section 5 recalls and summarizes
the entire manuscript.

2 Fuzzy Petri Net and Fuzzy Production Rule

FPN and FPR are two major formalisms which have been applied to fulfil the KBS
requirements. This section introduces the basic concepts both of FPN and FPR. Then,
the corresponding FPN model of different types of FPR is generated, respectively.

2.1 Fuzzy Petri Net

FPN generally defined as the following 8-tuple formalism.

FPN
P ¼ ðP; T; I;O;M; l;W ;CFÞ ; where
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• P ¼ fp1; p2; � � � ; png represents a finite set of places, where n represents the number
of places in the rule;

• T ¼ ft1; t2; � � � ; tmg represents a finite set of transitions, where m represents the
number of transitions in the rule;

• IðOÞ is the input (output) function, i.e., the mapping relation between places and
transitions;

• M ¼ ðm1;m2; � � � ;mnÞT indicates the identity of places;
• wi indicates the weight of places pi, i.e., the support degree for the rule establish-

ment by preconditions pi;
• CFj indicates the credibility, i.e., the true extent of the conclusion after transitions tj

fired;
• l : l ! ð0; 1�, li is the threshold of transitions tj.

2.2 Fuzzy Production Rule

FPR is a commonly used to represent the uncertainties in expert systems [19–21].
General FPRs are formalized and described as follows.

if DðkÞ then Q ðCF; l;wÞ ; where

• D is a limited set of preconditions, D ¼ fD1;D2; � � �Dng;
• Q is a limited set of conclusions, Q ¼ fQ1;Q2; � � �Qmg;
• k is the true extent of each precondition, k 2 ½0; 1�;
• CF is the credibility of the rule; CF 2 ð0; 1� is the credibility of the conclusion

obtained after the rule is executed;
• l is the threshold of the rule, l 2 ð0; 1�;
• w is the weight of each precondition, w 2 ð0; 1�.

2.3 Correspondence Between FPN and FPR

After comparing with these formalisms, the correspondence between an FPR and FPN
could be listed in Table 1

Table 1. The corresponding relationship between an FPR and FPN

FPR FPN

FPRs FPN model
FPR Transition
Precondition and Conclusion Place
Range of application of rule Extension of transition
Weight of rule (w) Input weight from place to transition (w)
True extent of each precondition (k) Value of Token (MðpiÞ)
Threshold of rule (l) Threshold of transition (l)
Credibility of the rule (CF) Credibility from transition to place (CF)
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FPRs can be divided into three main types, which are ‘simple’, ‘or’, and ‘and’ rules
according to different relationship among conditions.

Type 1: Simple Rule
if DðkÞ then Q ðw ¼ 1; l;CFÞ
Type 2: And Rule

if D1ðk1Þ and D2ðk2Þ and � � � and DnðknÞ then Q ðP
n

i¼1
wi ¼ 1; l;CFÞ

Type 3: Or Rule
if D1ðk1Þ or D2ðk2Þ or � � � or DnðknÞ then Qðwi ¼ 1; li;CFiÞ

The corresponding FPN models of three types of FPR are illustrated in Fig. 1.

3 Hybrid GA-SFLA Algorithm

GA and SFLP are two common powerful evolutionary optimization algorithms to
handle various complex engineering problems. In this section, brief introductions of
GA and SFLP algorithms are given at first. Next, a hybrid algorithm based on the
advantages both GA and SFLA is demonstrated in details.

3.1 Genetic Algorithm (GA)

GA is one of the most popular optimization algorithms based on stochastic search
mechanism. Three basic operators-selection, crossover and mutation-are used to pre-
sent a population of solutions in the implementation process of GA. In the initial phase,
an initial population is created by a set of random solutions. A new population will be
generated from the previous population by using three basic operators repeatedly till
the termination criteria is reached [22]. The main advantages of GA could be sum-
marized into three points. First, fit solutions could be found in a very less time. Next, a
wide range of solutions could be evaluated based on the random mutation operator.
Finally, it is easy to realize the coding operation for each solution [23–25].

Fig. 1. The corresponding FPN model for each type of FPR
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3.2 Shuffled Frog-Leaping Algorithm (SFLA)

SFLA is a kind of optimization algorithms which is inspired by analyzing the behavior
of frogs located in swamps to seek optimum location of food [26]. SFLA owns two
different search abilities, local search as well as global search, to ensure obtain the
optimum solution for complex problems [27]. Compared with other intelligent com-
puting techniques, SFLA can gain optimal solution by the better performance of the
global search because SFLA integrates the advantages both genetic from memetic
algorithm (MA) and social behavior from particle swarm optimization (PSO) [28, 29].

3.3 Hybrid GA-SFLP Algorithm

In this manuscript, a hybrid GA-SFLP algorithm is proposed in this article to improve
the self-learning capability of FPN by combining the advantages of GA and SFLA.

The GA-SLFP algorithm could be classified into three phases.
Function of the first phase is to generate each chromosome in the initial population

by encoding the multi-dimensional solution which reflects all initial frogs.
The second phase is to gain a better individual by implementing the main algorithm

frame of GA based on the obtained in the population under a give a fixed number.
The third phase is to the global optimal solution by implementing the local search

and global search operations of SFLA for the better individuals got from phase 2.
The entire flowchart of the proposed GA-SFLA algorithm as shown in Fig. 2.

Begin

IniƟalize the related paremeters of populaƟon 

Mappings all iniƟal frogs in to mulƟ-dimensional soluƟon

Is terminaƟon criteria saƟfied?

Implement selecƟon, 
crossover and mutaƟon 
operators to generate a 

new populaƟon

No

Yes

Map the opƟmal soluƟon to a populaƟon 
from previous phase

Evaluate the fitness value of each frog

Sort the frogs in descending order

ParƟƟon the populaƟon 

Shuffled all memeplex

Generate a new populaƟon

i1>G?

i1=i1+1

No

Encoding the obtained mulƟ-dimensional soluƟon as a 
chromosome

Generate the iniƟal populaƟon

Evaluate the fitness value of  iniƟal populaƟonthe 

Set the  Number of global iteraƟon and the 
total  number of iteraƟons as i1 and G, 

respecƟvely

Local search for each memeplex

Yes

Output the opƟmal soluƟon Pg

End

Fig. 2. Flowchart of the GA-SFLA algorithm
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4 Experiment and Analysis

In this section, an FPN model is selected to reveal the feasible of the proposed GA-
SFLA algorithm. Meanwhile, GA, SFLA and GA-SFLA algorithms are executed to
optimize the different types parameters of the same FPN model.

4.1 Experiment Design

In general, FPN model, there are only three types of parameters. Hence, GA, SFLA and
GA-SFLA algorithms are employed to optimize the three types of parameters (weight,
threshold, credibility) one-by-one based on following principles (Take the credibility
optimization as a case) in this experiment. In the initialization phase, the individual
solutions are generated based on the range CFi 2 ð0; 1�ði ¼ 1; � � � ; 5Þ randomly. The
maximum and the minimum value of the individual could be set as 1; 1; 1; 1; 1½ � and
CF1;CF2;CF3;CF4;CF5½ � (listed in Table 2).

• Calculate the fitness of each solution and implement the corresponding algorithm.
• Output the gained optimal individual solution.

FPN Model Selection Criteria
In this experiment, a simple KBS with 4 FPRs is selected to generate the corresponding
FPN model. These four FPRs include three types of FPRs, which are simple rule, ‘or’
rule, and ‘and’ rule. Meanwhile, the meaning of each place is neglected because the
goal of this experiment is to discuss the parameter optimization issue of the FPN
model. The fours FPRs are listed below.

R1 if d1 or d2 then d3 ðl1;CF1; l3;CF3Þ
R2 if d1 then d2 ðl2;CF2Þ
R3 if d3 and d4 and d5 then d6 ðw1; w2; w3; l4; CF5Þ
R4 if d3 then d7 ðw4; w5; l5; CF5Þ

The corresponding FPN model of above FPRs is generated as shown in Fig. 3.

CF5

d1

1

2 d2 3 d5

d4

w1

w2

w3

4

d6

d7 5

d8

w4

w5

1

1 1

d3

Fig. 3. The corresponding FPN model of 4-FPR KBS
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Experiment Parameters’ Setting
In this experiment, the expected values of three types of parameter, which are given by
expert, are shown in Table 2.

• For the entire GA-SFLA algorithm, the population size = 50 and the max number
of iterations G = 300

• Other parameters are assigned based on the classical GA and SFLA algorithms.

4.2 Experimental Results and Analysis

Each algorithm is implemented five times. The final experimental results of each
algorithm are listed in Tables 3, 4 and 5, respectively.

Table 2. The expected values of three types of parameters

Parameter

Weight (w) Threshold (l) Credibility (CF)
w1 w2 w3 w4 w5 l1 l2 l3 l4 l5 CF1 CF2 CF3 CF4 CF5

0.2 0.3 0.4 0.5 0.6 0.7 0.9 0.6 0.8 0.7 0.3 0.4 0.2 0.5 0.4

Table 3. Five times’ experimental results by implementing GA

Parameter 1st result 2nd result 3rd result 4th result 5th result Means

Weight w1 0.2548 0.2256 0.2323 0.2907 0.2656 0.25380
w2 0.3240 0.3219 0.3362 0.3205 0.3170 0.32392
w3 0.4511 0.4158 0.4146 0.4022 0.4386 0.42446
w4 0.5067 0.5133 0.5119 0.5033 0.5028 0.50760
w5 0.6106 0.6245 0.6100 0.6176 0.6040 0.61334

Threshold l1 0.7404 0.7238 0.7148 0.7200 0.7149 0.72278
l2 0.9216 0.9025 0.9230 0.9182 0.9115 0.91428
l3 0.6123 0.6248 0.6172 0.6088 0.6031 0.61324
l4 0.8085 0.8124 0.8344 0.8115 0.8191 0.81718
l5 0.7240 0.7206 0.7057 0.7237 0.7201 0.71882

Credibility CF1 0.3049 0.3198 0.3246 0.3214 0.3343 0.32100
CF2 0.4196 0.4104 0.4216 0.4140 0.4092 0.41496
CF3 0.2010 0.2059 0.2079 0.2262 0.2220 0.21260
CF4 0.5344 0.5037 0.5205 0.5044 0.5207 0.51674
CF5 0.4481 0.4812 0.4124 0.4443 0.4176 0.44066

422 W. Jiang et al.



Table 6 lists the expected value of the parameters and the related means of simu-
lation results by implementing GA, SFLA and GA-SFLA algorithms, respectively.

Table 4. Five times’ experimental result by implementing SFLA

Parameter 1st result 2nd result 3rd result 4th result 5th result Means

Weight w1 0.4450 0.3352 0.5907 0.3804 0.3521 0.42068
w2 0.4275 0.3451 0.4698 0.4881 0.5611 0.45832
w3 0.4899 0.5374 0.4750 0.6868 0.5384 0.54550
w4 0.6052 0.5488 0.5514 0.6200 0.6226 0.58960
w5 0.8161 0.7158 0.6641 0.6750 0.6579 0.70578

Threshold l1 0.7188 0.8276 0.7296 0.7335 0.8319 0.76828
l2 0.9044 0.9999 0.9388 0.9550 0.9488 0.94938
l3 0.7188 0.6019 0.7004 0.6886 0.6399 0.66992
l4 0.8826 0.8693 0.8225 0.8659 0.8881 0.86568
l5 0.7752 0.7270 0.7493 0.7415 0.7536 0.74932

Credibility CF1 0.4707 0.3001 0.5079 0.5033 0.3567 0.42774
CF2 0.6056 0.4885 0.4183 0.5583 0.7120 0.55654
CF3 0.3525 0.2019 0.4060 0.3753 0.3105 0.32924
CF4 0.6617 0.5920 0.5505 0.6853 0.5058 0.59906
CF5 0.5748 0.6260 0.5055 0.5408 0.5572 0.56086

Table 5. Five times’ experimental result by implementing GA-SFLA

Parameter 1st result 2nd result 3rd result 4th result 5th result Means

Weight w1 0.2297 0.2203 0.2145 0.2177 0.2221 0.22086
w2 0.3218 0.3017 0.3062 0.3245 0.3089 0.31262
w3 0.4043 0.4156 0.4192 0.4114 0.4232 0.41474
w4 0.5003 0.5062 0.5033 0.5158 0.5052 0.50616
w5 0.6056 0.6114 0.6047 0.6005 0.6035 0.60414

Threshold l1 0.7025 0.7029 0.7038 0.7134 0.7022 0.70496
l2 0.9033 0.9123 0.9083 0.9040 0.9199 0.90956
l3 0.6056 0.6135 0.6140 0.6083 0.6157 0.61142
l4 0.8030 0.8053 0.8078 0.8033 0.8033 0.80454
l5 0.7023 0.7049 0.7060 0.7020 0.7078 0.70460

Credibility CF1 0.3097 0.3021 0.3007 0.3002 0.3196 0.30646
CF2 0.4042 0.4074 0.4219 0.4007 0.4017 0.40764
CF3 0.2100 0.2290 0.2159 0.2068 0.2042 0.21318
CF4 0.5124 0.5086 0.5025 0.5071 0.5020 0.50652
CF5 0.4137 0.4089 0.4003 0.4025 0.4150 0.40826
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According to Table 6, the obtained means of each parameter of the FPN by exe-
cuting GA-SFLA algorithm are much better than that of GA and SFLA. Take a case as
CF5, the expected value given by expert is 0.4, gained value by executing GA, SFLA
and GA-SFLA is 0.44066, 0.56086 and 0.40826 based on 300 iterations. Hence,
compared with GA and SFLA, the simulation results own higher precision by imple-
menting GA-SFLA. It is further indicated that the FPN owns a stronger self-learning
capability by using the GA-SFLA algorithm.

5 Conclusion

Focusing on the self-learning issue of FPN, a hybrid GA-SFLA algorithm has been
presented in this paper to improve the precision of each parameter of the given FPN
model. The proposed algorithm includes three steps: each chromosome in the initial
population is generated by encoding the multi-dimensional solution which reflects all
initial frogs at first. Then, the classical GA is used to gain a better individual. Finally,
the local search and global search operations of SFLA are executed to obtain the
optimal solution. A case study was used to illustrate advantages of the proposed
algorithm by comparing the simulation results based on different algorithms. The
results show that the FPN owns a stronger self-learning capability by using the GA-
SFLA algorithm.

Acknowledgement. This work is supported by the National Natural Science Foundation of
China (Nos. 61741205, 61462029).

Table 6. Five times’ experimental result by implementing SFLA

Parameter Expected value Means of each parameter of
simulation results

1st result GA SFLA GA-SFLA

Weight w1 0.2 0.25380 0.42068 0.22086
w2 0.3 0.32392 0.45832 0.31262
w3 0.4 0.42446 0.54550 0.41474
w4 0.5 0.50760 0.58960 0.50616
w5 0.6 0.61334 0.70578 0.60414

Threshold l1 0.7 0.72278 0.76828 0.70496
l2 0.9 0.91428 0.94938 0.90956
l3 0.6 0.61324 0.66992 0.61142
l4 0.8 0.81718 0.86568 0.80454
l5 0.7 0.71882 0.74932 0.70460

Credibility CF1 0.3 0.32100 0.42774 0.30646
CF2 0.4 0.41496 0.55654 0.40764
CF3 0.2 0.21260 0.32924 0.21318
CF4 0.5 0.51674 0.59906 0.50652
CF5 0.4 0.44066 0.56086 0.40826
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