
Congestion Control for RTP Media:
A Comparison on Simulated Environment

Songyang Zhang , Weimin Lei(B) , Wei Zhang , and Yunchong Guan

School of Computer Science and Engineering, Northeastern University,
Shenyang, China

leiweimin@ise.neu.edu.cn

Abstract. The audio and video applications based on Real Time Pro-
tocol (RTP) have been exploded in recent years. To develop low latency
congestion control algorithms for real time traffic to provide better qual-
ity of experience and to avoid network congestion has gained much atten-
tion. RTP Media Congestion Avoidance Techniques (RMCAT) work-
ing group was initiated for proposal draft. Currently, there are three
algorithms under this group, Network Assisted Dynamic Adaptation
(NADA), Google Congestion Control (GCC) and Self-Clocked Rate
Adaptation for Multimedia (SCReAM). This paper integrates the three
algorithms into simulated platform and their performances are compared
and analyzed. Results show GCC has well fairness property and can
maintain quite reasonable packet sending rate in loss link but converges
a bit slowly in dynamic link, NADA stabilizes its rate quickly but suffers
from “late-comer” effect, SCReAM has the lowest queue occupation but
also lower link capacity utilization.

Keywords: Congestion control · RTP media congestion control · Real
time traffic · ns3 simulation

1 Introduction

Pioneered by Jocobson’s work [1], which later developed into TCP Reno algo-
rithm, network congestion control has been an unfading topic in computer net-
works research. The control law proposed by Jocobson is to regulate TCP send-
ing rate according to additive increase and multiplicative decrease (AIMD) rule,
which developed as TCP Reno. It takes packet loss as network congestion signal.
On every RTT, the sender could send one more packet into network to probe
more available bandwidth and multiplicatively reduces congestion window size
by half when packet loss happens to alleviate link congestion.
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From then on, most of the research works such as Bic [2], Cubic [3], were
proposed to improve TCP performance and adapted the basic AIMD control
law to different network environment.

The congestion control algorithms in TCP are mainly compliant with bulk
data transfer. The additive increase of TCP during its congestion avoid phase
cause packet sending rate showing saw-tooth feature. If such mechanism is
applied directly to real time video applications, the AIMD rate control would
cause the instability of video encoder. Further, the packet lost retransmission
and in order delivery in TCP would introduce further latency, which makes it
unfit for time stringent traffic transmission. The real time video traffic is quite
sensitive to connection latency but can suffer some packets loss to some extent.
So RTP-based media is usually streamed over UDP.

In an early stage, the implementation of congestion control on UDP for video
streaming is quite scarce, due to the consideration that an insufferable QoE
(Quality of Experience) of connection would make the users give up video call,
which can be seen as a mechanism of congestion avoidance. The network condi-
tion has changed in better direction and is used in a different manner as it was
ten years ago.

If large scale video stream flows do not implement any congestion control
mechanism, the bandwidth competition would lead Internet into congestion. The
extra packets would be buffered in the intermediate router when the link is in
congestion. Once the queue length has increased above the link queue threshold,
the router would follow active queue mechanism by dropping packets and the
link transmission delay will increase. Even though there were some works [4,5]
making an effort to exploit congestion control for UDP streaming media before,
none of these algorithms have been applied in practice.

To develop new congestion control algorithm for real time traffic has gained
renewed attention in recent years, especially since the open source of Web
Real-Time Communication (WebRTC) which enables real time communication
between browsers. As pointed by [6], all the flows across internet should imple-
ment congestion control scheme for internet congestion avoidance and promote
fair bandwidth occupation. The IETF has initiated The RTP Media Congestion
Avoidance Techniques (RMCAT) Working Group to develop congestion stan-
dards for interactive real-time media. And there are mainly three congestion
control drafts under this working group, namely, GCC [7], NADA [8], SCReAM
[9].

In this paper, we work our way to get the three RMCAT algorithms running
in ns-31 and make a full comparison in terms of fairness, aggressiveness, band-
width utilization and link queue occupancy. The simulation code of NADA2 on
ns3 was already released by its author. So the work is mainly focused on the
implementation of GCC, SCReAM. The simulation code of this work can be
downloaded at3.

1 https://www.nsnam.org/.
2 https://github.com/cisco/ns3-rmcat.
3 https://github.com/SoonyangZhang/rmcat-ns3.

https://www.nsnam.org/
https://github.com/cisco/ns3-rmcat
https://github.com/SoonyangZhang/rmcat-ns3
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The main contribution of this work is the algorithms code transplantation on
simulated platform and the final results can be taken for reference for interested
readers.

The rest of this paper is organized as follows. Section 2 describes the principle
of these algorithms involved in simulation in detail. Section 3 is the simulation
results and analysis. The conclusion is in Sect. 4.

2 Algorithm Description

This part briefly describes the algorithms involved in our experiments. The GCC
algorithm exploits one-way delay gradient as control signal. The old version of
GCC has two components: a delay based congestion controller, running at the
receiver side, computes a rate Ar based on Kalman filter according to frame
delay signal which is fed back through RTCP Receiver Estimated Maximum
Bitrate (REMB) report; a loss based controller running at sender side, com-
putes a target bitrate As which shall not exceed Ar. Kalman filter is adopted
at the receiver side to compute the link queue delay gradient. In newer release
version of WebRTC, the congestion control logics have all been moved to the
sender side. A trend line filter has been introduced for congestion inference. We
refer here the old version WebRTC congestion control based on Kalman filter
as REMB-GCC and the newer version based on trend-line filter is referred as
TFB-GCC (transport feedback GCC). The algorithm designers have published
several papers on REMB-GCC, please refer to [10] for more information. We
analyze the TFB-GCC in detail considering there is no public available paper
on its working principle. In GCC, the receiver will feedback packets arrival time
to the sender through the RTCP extensions for transport-wide congestion con-
trol [11]. The feedback message will be sent at an adaption interval according
to bandwidth. When the feedback message arrives, the sender extracts out the
arriving time of a sent packet, and divides them into groups by length of five
milliseconds.

The packets group is similar to the frame notation in [10] for the purpose
of channel overuse detection. The time stamp is the time sending out the first
packet and complete time is the time of last packet arriving to the destination of
the same group. The j-th group one-way delay gradient is computed as follows:

delta msj = (Gj .complete time − Gj−1.complete time)
− (Gj .timestamp − Gj−1.timestamp).

(1)

Then compute the accumulated delay:

acc delayi =
i∑

j=1

delta msj . (2)

And then smooth the delay signal with a coefficient alpha by default 0.9.

smoothed delayi = smoothing coef ∗ smoothed delayi−1

+ (1 − smoothing coef) ∗ acc delayi

(3)
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A linear regression was carried out in trend-line filter with input values of
(x, y).

(x, y) ⇒ (Gi.complete time − G1.complete time,

smoothed delayi).
(4)

trendline slope =
∑

(xi − xavg)(yi − yavg)∑
(xi − xavg)2

(5)

The trend line slope is a reflection of link queue status. When the link queue
length increases, the inter-arriving space among packets tends to increase also.
The overuse detector compares the value of trend line slope with a dynamic
threshold to decide if the channel is in the state of underuse or overuse. The
dynamic threshold is explained by the designer [12] to tune the sensitivity of the
algorithm. A small threshold will make the detector quick detect the channel
state changes but with the drawback of overreacting in case of noise. A large
threshold would make the algorithm robust to noise but sluggish to channel
state change. And a constant threshold would make the GCC flows starvation
in competing with loss based TCP flows as reported by [13]. After the overuse
detector computes out the channel state, the AIMD controller adjusts the bitrate
according to the equation:

A(ti) =

⎧
⎨

⎩

A(ti−1) + A Increase
βR(ti−1) Decrease,

A(ti) Hold.
(6)

where β = 0.85, and R(ti−1) is the average receiving rate estimated at the
sender side based on feedback message. The value of A is depended on the rate
control region. After the rate is decreased, the controller would set the rate
control region in state of near-max. After the channel is detected underuse and
the control region is in near-max state, the AIMD controller would additively
increase rate, otherwise, the rate is multiplicatively increased.

There is a detailed description and comparison between GCC and NADA on
the WebRTC codebase platform in [14]. Their experiment was conducted on real
network testbed.

The NADA has experienced several updates since its original release [8].
Basically, the NADA algorithm control its packet sending rate according to an
aggregated congestion signal as shown in Eq. (7). ploss and pmark are the penalty
prices when a sent packet is dropped or marked by the intermediate router to
indicate the link in congestion status. The mark signal has the same purpose
as the explicit congestion notification in TCP to enable end to end congestion
notification without dropping packets.

xn(ti) = d̃(ti) + ploss ∗ Dloss + pmark ∗ Dmark (7)

Here, the term d̃(ti) is computed as Eq. (8) and QTH is 50 ms. dq is computed
as the following. The receiver would send feedback message every 100 ms. The
feedback message contains the timestamp Rts that a sent packet arrives the
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destination. The sender would record the history packets sent within 500 ms and
could compute the one way delay value d(i) = Rts − Sts. Then one way delay
variance is computed owdv(i) = d(i) − dmin, which is an indication of the link
congestion status. dmin is the minimal one way delay during the session. And
the minimal owdv during the last 500 ms is assigned to dq.

d̃(ti) =

{
dq dq < QTH

QTHe−λ
dq−QTH

QTH otherwise
(8)

The rate control law of NADA is a piece function shown as Eq. (9). According
to the link status, it would follow different control function. When the session is
just established, rmode = 0, the sender is in accelerated ramp up state, and the
sending rate is the product of the computed packet receive rate and a gain 1+γ,
where γ = min(0.5, QTH

rtt+δ ). The rate gain is exploited for available bandwidth
probe purpose. The accelerated ramp up state is quite similar to TCP slow start
phase. Once a packet loss event is detected during this observation period or the
one way delay variance exceeds 10 ms, the sender would enter into the gradual
rate update state.

Rn(tk) =

{
(1 + γ)Rn(tk−1) rmode = 0
Rn(tk−1)(1 − K1xo(tk) − K2xd(tk)) rmode = 1

(9)

And K1, K2 are two constants, and xo, xd are the offset value from a reference
xref and difference value, where xref is 10 ms.

xo(tk) = xn(tk) − xref
Rmax

Rn(tk)
(10)

xd(tk) = xn(tk) − xn(tk−1) (11)

The rate control function of NADA in the gradual rate update state is similar
to a PID (proportional–integral–derivative) controller. If the aggregate conges-
tion signal has a decrease tendency (xd < 0), the sender would increase its
packet injecting rate according to the control function. When the current rate
decreases to a small value, the component xo would control the sender to inject
burst packets into network to make a quickly convergence to the available rate.
When the sending rate approaches the link available rate, the action of rate
increase would link queue length increase and the extra sent packet would at
a high risk in lost, which would make the control term xo, xd positive value,
and NADA sender would actively decrease its rate to avoid congestion and self-
inflicted queue delay. Such feature of NADA makes highly network bandwidth
utilization, which is verified by simulation results.

SCReAM basically controls the upper limit packets in flight by sliding con-
gestion window. The receiver will feedback the timestamp of received packet
with the highest sequence number and an acknowledgement vector to indicate
the reception or loss of previous packets. Its congestion control method based
on queue delay signal was inspired by LEDBAT, which has claimed for the low
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network queue delay purpose by inferring congestion earlier. When the one-way
queue delay under the target queue delay, the algorithm will increase the con-
gestion window, otherwise decrease the window.

3 Simulation Comparison

The version of simulation platform is ns-3.26. A point to point link as suggested
by [15] was created with link bandwidth 2 Mbps, one way delay 100 ms and buffer
length (300 ms * 2 Mbps).

3.1 Protocol Responsiveness

Considering the popularity of mobile devices, the RTP-based media over mobile
phone is quite common. The cellular access network link can present drastic
change in channel bandwidth in a short time span due to noise interference
and fading. The rate control algorithm for conversational video over wireless
links should react quickly to network change and operates in a wide range of
bandwidth. When the link bandwidth decreases, the video generator keeping the
rate before would make the link queue build up and the end latency increase.
When the link bandwidth increases, the sender could not make fully use of
network resource if the rate do not change. The increased latency, the packet
dropping event and the low video encoding rate is harmful to QoE for users.

In experiment, the link bandwidth is changed every 20 s from 500 kbps to
2 Mbps. The link is exclusively occupied by a single GCC, NADA, SCReAM.
During the simulation process, the rate adjustment of the congestion control
algorithm is logged and the one way delay of received packet was recorded. The
one way delay is an indication of link queue occupation. When the link is in
congestion status and the sent packet would be queued in router buffer, which
results in high one way delay. The results in Fig. 1 have clearly shown the reaction
difference of these protocols when link capacity changes. The AIMD controller
in GCC for rate adjustment is the reason of its rate saw-tooth feature. When
the link capacity decreases, GCC makes a quick rate adjustment to prevent link

Fig. 1. The responsiveness of three
algorithms

Fig. 2. Packet one way delay
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from congestion. NADA can quickly respond to network change. SCReAM is
sensitive to capacity decrease, but reacts sluggishly to capacity increase.

The average link bandwidth utilization is shown in Table 1. The link utiliza-
tion is computed according Eq. (12), in which the term x is the average simulated
encoder video packets generating rate determined by congestion algorithm and
BW is the link capacity during the test period. NADA has the highest channel
utilization and SCReAM makes the lowest channel utilization which may cause
by its rate ramp-up parameter.

bw u =
x

BW
(12)

Table 1. Average link utilization

Protocol

Utilization Time(s)
0-20 20-40 40-60 60-80 80-100

GCC 56.79% 88.10% 89.28% 86.19% 71.58%
NADA 80.41% 95.54% 95.80% 98.69% 92.65%

SCReAM 43.41% 61.08% 87.54% 62.79% 76.76%

From the one-way delay variation curve in Fig. 2, SCReAM reaches its
claimed goal by having the lowest queue delay occupation close to one-way link
transmission delay. NADA and GCC make link queue build up to some extent.
All three protocols show instantaneous delay spike when faced sharp bandwidth
decrease.

3.2 Intra Protocol Fairness

Protocol fairness is an important indication to reflect whether an end user con-
verges to a fair bandwidth rate when sharing link with other flows. In this exper-
iment, three flows exploiting the same congestion control protocol were initiated
at different time point over a bottleneck link. The second flow was started after
40 s and the third flow was started at 80 s. The link capacity keeps to be a
constant value 2 Mbps during the simulation.

In Fig. 3, the rates of all three GCC flows after 150 s are very close, indicating
the GCC protocol has fine fairness property. It’s worth noticing the NADA
protocol suffers from “late-comer effect” in Fig. 4, the late coming flow data
sending rate is higher than the flows initiated before. This result is different
from the conclusion in [10]. The “late-comer effect” may be caused by that not
all flows have equal aggregate congestion price in gradual rate update phase. The
SCReAM protocol in Fig. 5 shows no sign that the flows converge to a fairness
rate. Due to the effect of link queue building up, the rate adjustment of SCReAM
shows oscillation.
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Fig. 3. Sending rate of GCC flows Fig. 4. Sending rate of NADA flows

Fig. 5. Sending rate of SCReAM flows Fig. 6. RMCAT flow sharing links with
TCP

3.3 Inter Protocol Competition

In real network, a routing path can be shared by many flows, which may exploit
different congestion control protocol. When sharing links with background traffic,
the ability to make a reasonable bandwidth occupation of a protocol is quite
important. For testing purpose, an experiment was designed for a RMCAT flow
sharing link with a TCP Reno flow. The TCP flow was started at 20 s and
stopped at 100 s. Even though the REMB-GCC was deprecated in new version
of WebRTC, we test its performance here. The result is shown in Fig. 6.

When the TCP connection flows into the link, REMB-GCC flow keeps yield-
ing its bandwidth until reaching the smallest point. TFB-GCC and NADA in
Fig. 6 can maintain a reasonable sending rate. SCReAM also decreases its rate to
the minimal default rate due to link delay increase caused by the loss based rate
control TCP flow. When the link buffer on the merge of full, packet loss event
would happen and the TCP flows would half its congestion window to relieve the
link from further congestion, the queue delay decrease signal would make NADA
and TFB-GCC increase its rate. This explains why the rate curves of NADA and
TFB-GCC have increase tendency even in the presence of TCP flow. When TCP
flow exits off the network at the time point 100, NADA can make faster increase
to reach a rate near the link capacity than TFB-GCC. It should be pointed out
NADA flow shows small oscillation even when the tcp flow withdraws from the
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link, which is caused by its piecewise rate control function. This is caused by its
rate control function in gradual rate update phase for congestion avoidance.

3.4 Packet Loss Resistance

In wireless links, packet loss may cause by wireless link interference, channel
contention and errors. A protocol takes random packet loss as congestion sig-
nal and reacts it by rate decreasing will have degenerated performance and low
channel utilization. In this experiment, the link is configured with different ran-
dom packet loss rate, and the link is monopolized by a single flow during the
simulation.

In experiment, GCC flow is not quite affected by random packet loss. As the
packet loss rate increases, NADA and SCReAM decrease bitrate quite obvious.
In the case of 5% packet loss, GCC can hold 82.05% channel utilization on
average, and both NADA and SCReAM have quite low link utilization shown in
Table 2.

Table 2. Capacity utilization in lossy link

Protocol

Utilization loss rate
0.0% 1% 5%

GCC 86.32% 85.81% 82.05%
NADA 94.28% 92.65% 14.40%

SCReAM 57.62% 15.30% 13.04%

4 Conclusion

The main work of this paper makes a full comparison and analysis of these con-
gestion control algorithms for RTP media in respect of protocol responsiveness,
intra protocol fairness, inter protocol competence and performance in loss link.

The results from simulation are summarized here. GCC works well in intra
protocol fairness but has saw tooth feature in dynamic links. NADA can quickly
stabilize its rate in dynamic links and has the most efficient network capacity
utilization when the link is not affected by random loss, but suffers from “late
comer effect”. SCReAM retains the link queue delay in a low level but has low
channel utilization. GCC has better performance in loss link, which makes it
particularly suitable for wireless network. To design a protocol with advantages
of these algorithms should be our future work.
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With the popular of video based applications, to design new congestion con-
trol algorithm for real time traffic will further draw researchers’ attention. And
the old tree of congestion control research areas always springs new sprouts such
as TCP BBR.
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