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Abstract. Based on the Hermitian and skew-Hermitian splitting (HSS)
iteration technique [14], a new iterative interpolation technique called
HPIA for curves and surfaces with NTP bases and its weighted ver-
sion WHPIA are proposed. We take the previous iteration and the cur-
rent iteration into account simultaneously, and establish a function based
on NTP bases as a perturbation term in the iteration process. Conver-
gence analyses and the approximate optimal weight of WHPIA are given.
Theoretical and experimental results show that HPIA and WHPIA are
effective.
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1 Introduction

Essentially, as a popular data fitting technique in recent years, geometric itera-
tion is an iterative method for solving linear equations in linear algebra. Since
the geometric iteration method was proposed, it has been widely used in the
academic research and engineering practices in the geometric design and related
fields [1–5]. By using the technique of geometric iteration, not only achieved bet-
ter results by addressing traditional problems of geometric design, such as offset
curves, degree reduction, and polynomial approximation to rational curves and
surfaces and etc., but also has been successfully applied to adaptive data fitting,
large scale data fitting, symmetric surface fitting, generation of curves interpolat-
ing given positions, tangent, and curvature vectors, generation of quality guar-
anteed quadrilateral and hexahedral meshes, generation of trivariate B-spline
solids.

The technique of geometric iteration in geometric design was originated and
developed by Lin et al. [6–13]. In 2004, Lin proved the property of profit-and-loss
for non-uniform cubic B-spline curves and surfaces [6], and for blending curves
and tensor product blending patches with normalized totally positive(NTP)
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bases in 2005 [7]. The approach of geometric iteration is called progressive itera-
tive approximation(PIA) in [7], which addresses both interpolation and approx-
imation (including EPIA [8] and LSPIA [5,9]). Lin has given the PIA iterative
formats with NTP bases in [6,7] as follows,
the case of curve:

[Ak+1
2 ,Ak+1

3 , · · · ,Ak+1
n−1]

=(I − N)[Ak
2 ,A

k
3 , · · · ,Ak

n−1], k = 0, 1, · · ·
(1)

the case of surface:

[Ak+1
11 ,Ak+1

12 , · · · ,Ak+1
1n , · · · ,Ak+1

m1 ,Ak+1
m2 , · · · ,Ak+1

mn ]

=(I − N)[Ak
11,A

k
12, · · · ,Ak

1n, · · · ,Ak
m1,A

k
m2, · · · ,Ak

mn]
, k = 0, 1, · · · ,N = N1 ⊗ N2

(2)

where the difference vector Ak
i or Ak

ij is calculated as

{
Ak

i = (Qi − Ck(ui))
Ak

ij = (Qij − Ck(ui, vj))

On the other hand, (1) and (2) can be written in matrix form as P k = (I −
N)P k−1 + Q, where P k is a column vector of control vertexes, I is identity
matrix, N is totally positive(TP) collocation matrix and Q is a column vector
of data points. In [10], Lu present a new and efficient method for weighted PIA
of data points by using NTP bases. The progress can be written in matrix form
as P k = (I − ωN)P k−1 + Q. And he proved that the weighted PIA based on
an NTP basis of the space has the fastest convergence rate when

ω =
2

1 + λn(N)
,

where λn(N) is the smallest eigenvalue of N .
Bai et al. proposed the use of the Hermitian/skew-Hermitian splitting(HSS)

iteration method [14]. Theoretical analysis has shown that this HSS-iteration
converges unconditionally to the exact solution of the system of linear equations
Ax = b. Based on the HSS-iteration technique, we present a new iteration
method and its weighted version for progressive iteration approximation of data
points by using NTP bases and prove their convergence. The iterative process of
these two methods consists of two steps, and the iterative difference vectors in
the two steps are different from each other. For convenience, we call them HPIA
and WHPIA, respectively.
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2 Iterative Format of HPIA

2.1 The Case of Curves

Given an NTP basis {N i(u)}n
i=0 and a control vertexes set {P 0

i }n
i=0 in R

2 or
R

3, we can generate the initial curve

C0(u) =
n∑

i=0

P 0
i Ni(u),

We assign control vertexes set {P 0
i }n

i=0 with a real increasing parameters set
{ui}n

i=0, i.e. u0 < u1 < · · · < un.
Then, the remaining curves of the sequence, Ck(u) for k ≥ 1, can be calcu-

lated as follows

Ck(u) =
k∑

i=0

P k
i Ni(u),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P k
i = P

k−1/2
i + Δk

1i

Δk
1i =P 0

i − [
1
2
(Ck(ui) + Ck−1/2(ui))

+
1
2
(Ck−1/2(Ni) − Ck(Ni))]

P
k−1/2
i = P k−1

i + Δk
2i

Δk
2i =P 0

i − [
1
2
(Ck−1(ui) + Ck−1/2(ui))

+
1
2
(Ck−1/2(Ni) − Ck−1(Ni))]

(3)

In (3), Ck(Ni) is defined as follows

Ck(Ni) =
n∑

j=0

P k
j Ni(uj), i = 0, · · · , n, k = 0,

1
2
, 1, · · · ,

which is a function that takes bases as variables. Since lim
k→∞

{P k−1/2
i }n

i=0 =

lim
k→∞

{P k
i }n

i=0, we have lim
k→∞

(Ck−1/2(Ni) − Ck(Ni)) = 0. Here, we consider

Ck(Ni) as a perturbation term in the iteration process.
We call (3) as HPIA format of curves, which consists of two steps and replaces

the iterative step length of each control vertex in PIA.

2.2 The Case of Surfaces

Given two NTP bases {Ni(u)}n
i=0, {Sj(v)}m

j=0 and a control vertexes set
{P 0

ij}n,m
i=0,j=0 in R

3, we can generate the initial surface

C0(u, v) =
n∑

i=0

m∑
j=0

P 0
ijNi(u)Sj(v).
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We assign control vertexes set {P 0
ij}n,m

i=0,j=0 with two real increasing parameters
set {ui}n

i=0 ,i.e., u0 < u1 < · · · < un and {vj}m
j=0 ,i.e., v0 < v1 < · · · < vm.

Like the case of curves, we can take Ck(N,S) =
∑n

i=0

∑m
j=0 P

k
ijN(ui)

S(vj), k = 0, 1, · · · as a perturbation term. Then, the remaining surfaces of the
sequence, Ck(u, v) for k ≥ 1, can be calculated as follows

Ck(u, v) =
n∑

i=0

m∑
j=0

P k
ijNi(u)Sj(v).

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P k
ij = P

k−1/2
ij + Δk

1ij

Δk
1ij =P 0

ij − [
1
2
(Ck(ui, vj) + Ck−1/2(ui, vj))

+
1
2
(Ck−1/2(Ni, Sj) − Ck(Ni, Sj))]

P
k−1/2
ij = P k−1

ij + Δk
2ij

Δk
2ij =P 0

ij − [
1
2
(Ck−1(ui, vj) + Ck−1/2(ui, vj))

+
1
2
(Ck−1/2(Ni, Sj) − Ck−1(Ni, Sj))]

(4)

We call (4) as HPIA format of surfaces, which, like the case of curves, also con-
sists of two steps and replaces the iterative step length of each control vertex in
PIA.

Remark 1. From (3) and (4), we will get lim
k→∞

Ck(ui) = P 0
i or lim

k→∞
Ck(ui, vj) =

P 0
ij , If for any ε > 0, there is a natural number T , when k, s > T ,‖P k

i −P k−1
i ‖ <

ε or ‖P k
ij − P k−1

ij ‖ < ε.

3 Convergence Analysis

Lemma 1. Given any two non-singular collocation matrices N1 =
(Nj(ui))

n,n
i,j=0, N2 = (Sj(vi))

m,m
i,j=0, which is defined on two NTP bases

{Nj(u)}n
j=0, {Sj(v)}m

j=0. And assuming that λi(N1), i = 0, 1, · · · , n, λi(N2), i =
0, 1, · · · ,m are their eigenvalues respectively. Then,

(1) 0 < λi(N1) ≤ 1, 0 < λi(N2) ≤ 1,
(2) 0 < λi(N1 ⊗ N2) ≤ 1, here ⊗ is Kronecker product.

The proof of this Lemma 1 can be found in Theorems 2.1 and 2.2 of [2].
The two iterative processes of (3) and (4) can be written in matrix form

{(
I + 1

2N−
)
P k =

(
I − 1

2N+

)
P k−1/2 + P 0(

I + 1
2N+

)
P k−1/2 =

(
I − 1

2N−
)
P k−1 + P 0 (5)
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where I is the identity matrix, N+ = N +NT , N− = N −NT , and N = N1

or N = N1 ⊗ N2, (·)T is the transpose of matrix (·). Then, we get iterative
matrix of (5) as follows

M =
(
I +

1
2
N−

)−1 (
I − 1

2
N+

)(
I +

1
2
N+

)−1 (
I − 1

2
N−

)
.

Now what we need to prove is that the iterative sequence {P k} of control vertexes
converges to the unique solution P ∗, i.e., ρ(M) < 1.

Theorem 1. The two iterative processes of (3) and (4) are convergent, if the
bases {Nj(u)}n

j=0 and {Sj(v)}m
j=0 are totally positive and their collection matri-

ces N1 and N2 are non-singular.

Proof. Based on the similarity in-variance of spectral radius, the symmetric
matrix N+, and the anti-symmetric matrix N−, we have

ρ(M) =ρ

((
I − 1

2
N+

)(
I +

1
2
N+

)−1 (
I − 1

2
N−

)(
I +

1
2
N−

)−1
)

≤
∥∥∥∥∥
(
I − 1

2
N+

) (
I +

1
2
N+

)−1 (
I − 1

2
N−

)(
I +

1
2
N−

)−1
∥∥∥∥∥
2

≤
∥∥∥∥∥
(
I − 1

2
N+

) (
I +

1
2
N+

)−1
∥∥∥∥∥
2

∥∥∥∥∥
(
I − 1

2
N−

)(
I +

1
2
N−

)−1
∥∥∥∥∥
2

.

∵NT
− = −N−

∴
((

I−N−
2

) (
I+

N−
2

)−1)T (
I−N−

2

)(
I+

N−
2

)−1

=
(
I−N−

2

)−1 (
I+

N−
2

)(
I−N−

2

) (
I+

N−
2

)−1

=
(
I−N−

2

)−1 (
I−N−

2

) (
I+

N−
2

)(
I+

N−
2

)−1

=I

∴
(
I − N−

2

)(
I + N−

2

)−1

is a unitary matrix, i.e.,
∥
∥
∥
∥

(

I − N −
2

) (

I +
N −
2

)−1
∥
∥
∥
∥
2

=

1.
Thus, ρ(M) ≤

∥∥∥(
I − 1

2N+

) (
I + 1

2N+

)−1
∥∥∥
2

= max
λi∈λ(N+/2)

∣∣∣ 1−λi

1+λi

∣∣∣. From Lemma

1, we know λi > 0, i = 0, 1, · · · , n, so ρ(M) < 1. This completes the proof. ��
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4 Iterative Format of WHPIA

Similar to weighted PIA, we can accelerate the iterative process of the HPIA in
a weighted approach. Thus, (3) and (4) can be written in two weighted forms
respectively as follows

{
P k

i = P
k−1/2
i + ω1Δk

1i,P
k−1/2
i = P k−1

i + ω1Δk
2i

P k
ij = P

k−1/2
ij + ω2Δk

1ij ,P
k−1/2
ij = P k−1

ij + ω2Δk
2ij

.

And their matrix forms can be obtained from (5)
{(

I + 1
2ωN−

)
P k =

(
I − 1

2ωN+

)
P k−1/2 + ωP 0(

I + 1
2ωN+

)
P k−1/2 =

(
I − 1

2ωN−
)
P k−1 + ωP 0.

(6)

The iterative matrix of (6) is as follows

M =
(
I +

1
2
ωN−

)−1 (
I − 1

2
ωN+

)(
I +

1
2
ωN+

)−1 (
I − 1

2
ωN−

)
.

From Theorem 1, we know ρ(M) ≤ max
λi∈λ(N+/2)

∣∣∣ 1−ωλi

1+ωλi

∣∣∣ , λi > 0, i = 0, 1, · · · ,

n, ω > 0 i.e., ρ(M) < 1 . Thus, the iterative process (6) is convergent.

Theorem 2. Given two non-singular collocation matrices, N1 = (Nj(ui))
n,n
i,j=0,

N2 = (Sj(Vi))
m,m
i,j=0 , which are defined on two NTP bases {Nj(u)}n

j=0,
{Sj(v)}m

j=0. The HPIA with weight has the approximate fastest convergence rate
when

ω∗ =
2√

λmax(N + NT )λmin(N + NT )
,

where N = N1 or N = N1 ⊗ N2.

Proof. It is proved in [14] that the optimal spectral radius is

1
ω∗ =

√√√√λmax

(
N + NT

2

)
λmin

(
N + NT

2

)
,

thus,

ω∗ =
2√

λmax(N + NT )λmin(N + NT )
.

��
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5 Simulation

In this section, two examples are used for simulation to demonstrate the effec-
tiveness of the proposed methods HPIA and WHPIA, and to make a simple
comparison with PIA [6,7] and WPIA [10]. First, we give two test examples as
follows, those are, an example of iterative curve interpolation and an example of
iterative surface interpolation.

Example 1. 12 data points are taken in plane to constitute a 1 × 12 sequence:
(165, 150) (75, 150) (75, 225) (170, 265) (150, 165) (90, 165) (90, 210) (120, 220) (135, 180) (105, 180) (105, 195) (120, 195)

Example 2. 48 data points are taken in space to constitute a 7 × 9 matrix:

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0,−8,−10) (8,−8,−10) (8, 0,−10) (8, 8,−10) (0, 8,−10) (−8, 8,−10) (−8, 0,−10) (−8,−8,−10) (0,−8,−10)
(0,−10, 0) (10,−10, 0) (10, 0, 0) (10, 10, 0) (0, 10, 0) (−10, 10, 0) (−10, 0, 0) (−10,−10, 0) (0,−10, 0)
(0,−15, 10) (15,−15, 10) (15, 0, 10) (15, 15, 10) (0, 15, 10) (−15, 15, 10) (−15, 0, 10) (−15,−15, 10) (0,−15, 10)
(0,−6, 30) (6,−6, 30) (6, 0, 30) (6, 6, 30) (0, 6, 30) (−6, 6, 30) (−6, 0, 30) (−6,−6, 30) (0,−6, 30)
(0,−6, 50) (6,−6, 50) (6, 0, 50) (6, 6, 50) (0, 6, 50) (−6, 6, 50) (−6, 0, 50) (−6,−6, 50) (0,−6, 50)

(0,−8,−55) (8,−8,−55) (8, 0,−55) (8, 8,−55) (0, 8,−55) (−8, 8,−55) (−8, 0,−55) (−8,−8,−55) (0,−8,−55)

Fig. 1. HPIA iterative interpolation of curve example

Here, we choose B-spline to verify the effectiveness of HPIA and WHPIA,
there are two reasons: on the one hand, B-spline has many excellent properties
in expressing shapes; on the other hand, B-spline bases are NTP bases. We
adopt cubic non-uniform B-spline and use centripetal parameterization method
to calculate parameters of data points. The internal knots are determined by
parameters of data points. The fitting error at each iteration level is taken as
the total Euclidean norms of the adjusting vectors.
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Fig. 2. HPIA iterative interpolation of surface example

⎧⎪⎪⎨
⎪⎪⎩

ε curvek =
n∑

i=0

‖Δk
i ‖

ε surfacek =
n∑

i=0

m∑
j=0

‖Δk
ij‖.

The experimental results of the method proposed in this paper are shown in
Figs. 1, 2, 3 and 4, where subfigure (a) represents the initial state of iteration, and
(b)–(f) respectively illustrate the results after 1, 2, 4, 8 and 16 iterations, and the
corresponding iteration error is attached to below the corresponding subfigure.
It can be seen that the error of the weighted HPIA at the same iteration level is
much smaller than that of the unweighted HPIA, which exemplifies the validity
of the weighted version WHPIA.

In addition, Figs. 5 and 6 illustrate the results of 16 iterations obtained by
interpolating the data points in example 1 and example 2 using four methods,
HPIA, WHPIA, PIA and WPIA. Due to the fact that the error of the later
iteration is smaller, so to get a better look at the iterative effects, there are
two parts of each figure, namely the first eight iterations and the next eight
iterations. It can be seen that WHPIA performs best in Figs. 5 and 6, followed
by HPIA. The examples used in this section are only intended to demonstrate
the effectiveness of the methods presented by us. For other examples, we cannot
guarantee that our approaches converge faster than PIA and WPIA because the
spectral radius will vary with the NTP bases.



382 L. Hu et al.

Fig. 3. WHPIA iterative interpolation of curve example

Fig. 4. WHPIA iterative interpolation of surface example
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Fig. 5. Error comparison of iterative curve interpolation using four methods

Fig. 6. Error comparison of iterative surface interpolation using four methods

6 Conclusion

In this paper, based on the HSS iterative method for solving linear equations,
a new PIA approach called HPIA was proposed to solve the problems of curves
and surfaces interpolation with normalized totally positive bases. And then, we
weighted it to speed up the convergence rate of the iterative process, namely
WHPIA, and gave the approximate value of the fastest convergence weight.
Experimental results show that HPIA and WHPIA are effective in progressive
iterative approximation of curves and surfaces. However, due to various NTP
bases, it is not clear which method in WPIA and WHPIA has a smaller spectral
radius, so it is impossible to prove theoretically which method has the fastest
convergence speed.
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