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Abstract. A recent approach to tackle the ever increasing complexity of mil-
itary simulation system is model-driven engineering (MDE). However, it is used
mostly to produce simulation software tools, and seldom can perform formal
analysis on models, resulting in a low degree of simulation model engineering.
Consequently, this raises many issues such as inefficient development as well as
poor qualities of product, and falls short of non-functional requirements like
extensibility, maintainability, and reuse. In general, many of the success of
MDE are dependent on the descriptive power of modeling languages and how
conceptual models are transformed toward final implementations. Hence, this
paper presents contributions in two main aspects of MDE: customizing domain
specific language by metamodeling and engineering model continuity by for-
malizing model transformations. A military simulation application called group
fire control channel system is used as a motivating example to illustrate the
whole process, transforming conceptual models into other formalisms that have
precise definitions of semantics until they reach final executable simulation
models.
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1 Introduction

Traditional military simulation models are usually represented by UML which has not
precise and unambiguous semantics defined using a mixture of OCL (Object Constraint
Language) and informal text, or the semantics of simulation models are left to model
interpreters or simulators which are defined by general-purpose programming lan-
guages, which is clearly unacceptable for formal analysis [1]. Meanwhile, although the
syntax of current domain specific modeling languages (DSML) are formally described
with a lot of general metamodeling tools like UML Profile [2], EMF [3], and GME [4]
etc., the semantics are left toward other less than desirable means [5]. All of these
accompanying with the lack of formal model transformations contribute to difficult
formal analysis at a model level. Hence, it is a real challenge to describe simulation
models formally, and to improve the model continuity that exist between different
models in different development stages at different levels of abstraction [6], so as to
reuse existing model assets and simulation services to a great degree.

Inconsistent terminology in the model-driven engineering (MDE) context [7]
means it is necessary to define basic meanings of important frequently used terms to

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
H. Song et al. (Eds.): SIMUtools 2019, LNICST 295, pp. 25–42, 2019.
https://doi.org/10.1007/978-3-030-32216-8_3

http://orcid.org/0000-0003-3758-8568
http://orcid.org/0000-0002-9375-0307
http://orcid.org/0000-0003-3711-5998
http://orcid.org/0000-0001-8359-6492
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_3&amp;domain=pdf
https://doi.org/10.1007/978-3-030-32216-8_3


provide a common understanding. Many of these terms are used alternatively in
specific contexts, but providing their definitions and/or subtle distinctions is helpful to
understand the methodologies, techniques, and tools used in model-driven develop-
ment. For different modeling goals, there exist three typical issues, i.e. model com-
posability, model heterogeneity, and model continuity.

Firstly, model composability [8] concentrates on the syntactical matching and
semantic relations between different simulation models. Unlike the other two issues, it
is usually discussed in a MDE context and emphasizes the integration of multiple
simulation models to form an effective and meaningful simulation application.

Secondly, model heterogeneity comes from the joint use of several DSMLs dedi-
cated to particular domains or applications. In many cases, it refers to the syntactical
incompatibility between different used DSMLs during the language customization
process and has four sources in general [9, 10]. First, the different technical or appli-
cation domains involved in a simulation system under design require different model
specifications, modeling formalisms, or simulation protocols [11]. Second, the different
levels of abstraction need suitable modeling techniques. Third, a simulation system is
always studied from different points of view, and lastly different stages of a devel-
opment cycle may use different languages for different activities.

Thirdly, Model continuity refers to the generation of an approximate morphism
relation between different phases of a development process [12]. In general, model
continuity is obtained if the initial and intermediate models are effectively consumed in
the later steps of a development process and the modeling relation is preserved.

In a sense, model continuity is similar to the consistency between the source and
target models, involving the syntactical correctness of target model, the completeness
of source model consumed in model transformation, and the semantic relations pre-
served in target model [13]. We use Mcom to represent model composability, Mh to
model heterogeneity, and Mcon to model continuity, such that Mh [Mcon � Mcom and
Mh \Mcon 6¼ £, as shown in Fig. 1. It means, on the one hand, if simulation models in
a simulation application development satisfy the model composability, then it also
satisfy the model heterogeneity and model continuity. On the other hand, model
heterogeneity and model continuity may not be disjoint in some cases, which means
model heterogeneity is somehow equal to the syntactical discontinuity between dif-
ferent development stages.

Fig. 1. Three typical issues identified in the MDE context.
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This paper proposes a set of formal theories of model transformations for engi-
neering model continuity, transforming models represented by various modeling lan-
guages into other formalisms that have precise definitions of semantics until they reach
final executable simulation models [14]. A motivating example named group fire
control channel system (GFCCS) [15] is used through this paper, commencing with its
customization of DSML and transforming its conceptual models represented in this
DSML to final executable simulation models. After that, a military simulation system
in support of engineering modeling and composable simulating is capable of inte-
grating those executable simulation models and reusing them for multiple simulation
applications.

2 Model Transformations

2.1 The Basic Mode of Model Transformation

Model transformation is a process that takes a source model in a specific form as inputs
and outputs another form of the target model according to a set of predefined rules. This
process does not build new models from scratch, but reuse existing information when
conducting a model transformation. A formal model transformation requires that the
models involved in the transformation are represented clearly by well-defined modeling
languages that have accurate syntax and unambiguous semantics. Furthermore, it
requires that the transformation rules are written by a well-defined transformation
language to ensure the transformation is conducted under a well-defined transformation
template [16]. To ensure model continuity, the target model should preserve as much as
possible the initial model information and modeling relations that are embedded in the
source model [17].

Figure 2 shows the basic mode of model transformation. In this mode, each node at
a certain layer conforms to or is an instance of the node at a higher layer. The middle
column is the transformation mechanism that inputs the left source nodes and outputs

Fig. 2. The basic mode of model transformation.
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the right target nodes. For example, the transformation engine is an instance of the
transformation template which is further an instance of the transformation language,
which means the transformation template is written by the transformation language and
prescribes the internal mechanism of the transformation engine. This engine inputs the
source model which is an instance of the source metamodel and outputs the target
model which is an instance of the target metamodel, and both metamodels are
respectively taken as the inputs and outputs of the transformation template.

According to the concrete form of target model, model transformation has two
typical categories: model to model (M2M) and model to text (M2T). In practice, M2T
transformation is also called code generation when the text is in the form of source
code. In general, a model-driven development process contains a sequence of M2M
transformations and a final code generation. In addition, model transformation is
endogenous when the source metamodel is similar to the target metamodel, and
exogenous when they are different [18].

2.2 MDA Based Model Transformations

MDA (model-driven architecture) introduces three model development roles, and two
transform mechanism types [19]. Using these MDAmodels, i.e. conceptual independent
(CIM), platform independent (PIM), and platform specificmodels (PSM), developers can
be classified into comparable roles, i.e. conceptual and simulation modelers, and simu-
lation programmers, respectively, where later stages only can commence when devel-
opers for the former stages reach a consensus on an artifact. For example, once the
problem owner and the conceptual modeler agree on a conceptual model, the simulation
modeler can transform it into a formal model. In addition, M2M and M2T model trans-
formation mechanisms are used as a bridge to reduce the gap between these roles. We
adopt the formal MDA process as depicted in Definition 1 [12].

Definition 1. A MDA process is defined as

mda ¼ n;MML;ML;MO; SL; pl;MTP; STP;MT ; SM; TOf g

– n ¼ 3ðCIM;PIM;PSMÞ,
– MML ¼ ll0; ll1; ll2f g is an ordered set of metamodeling languages,
– ML ¼ l0ðmmCIMÞ; l1ðmmPIMÞ; l2ðmmPSMÞf g such that

confromToðmmCIM ; ll0Þ;
confromToðmmPIM ; ll1Þ;
confromToðmmPSM ; ll2Þ;
This means metamodels must conform to their corresponding metamodeling

languages.

– MO ¼ CIM;PIM;PSMf g such that CIM is the initial model, PSM is the final
model, and
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instanceOf ðCIMÞ ¼ mmCIM ;

instanceOf ðPIMÞ ¼ mmPIM ;

instanceOf ðPSMÞ ¼ mmPSM ;

This means models must conform to their corresponding metamodels.

– SL is a set of model transformation languages,
– pl is a programming language with simulation capabilities,
– MTP ¼ pCIM ; pPIM ; pPSMf g such that

pCIM ¼ l0ðmmCIMÞ; l1ðmmPIMÞ; r0f g;
pPIM ¼ l1ðmmPIMÞ; l2ðmmPSMÞ; r1f g;
pPSM ¼ l2ðmmPSMÞ; pl; r2f g;
This represents model transformation patterns that a source language to a target

language through some rules.

– STP is a set of other supplementary formal model transformation patterns,
� MT ¼ f

transformToðCIM; pCIMÞ ¼ PIM;

transformToðPIM; pPIMÞ ¼ PSM;

transformToðCIM; pPSMÞ ¼ SM

g;
This means model transformations that a source model to a target model using some

patterns.

– SM is the final executable simulation model,
– TO is a set of tools to ease the activities.

Above definition is suitable for general model development base on the MDA
principles. Given this definition, we can conclude a process for the GFCCS develop-
ment as Definition 2, which will be illustrated by later sections. In the GFCCS process,
we take the GFCCS DSML as the conceptual modeling language to describe CIM, P-
DEVS [20] as the modeling formalism to define PIM, and JAVA as the programming
language to build PSM. Hence, the GFCCS process involves the following types of
metamodels and model transformations.

1. The CIM metamodel is GFCCS metamodel
2. The PIM metamodel is P-DEVS metamodel
3. The PSM metamodel is JAVA metamodel
4. The CIM-PIM transformation is GFCCS to P-DEVS transformation
5. The PIM-PSM transformation is P-DEVS to JAVA transformation
6. The PSM-SM transformation is JAVA to java code transformation.

Formalizing Model Transformations Within MDE 29



Definition 2. A GFCCS simulation modeling process is defined as

gfccs ¼ n;MML;ML;MO; SL; pl;MTP; STP;MT ; SM; TOf ginstance

– n ¼ 3ðCIM;PIM;PSMÞ,
– MML ¼ Ecore;Ecore;Ecoref g is an ordered set of metamodeling languages,
– ML ¼ l0ðmmGFCCSÞ; l1ðmmDEVSÞ; l2ðmmJAVAÞf g such that

confromToðmmGFCCS;EcoreÞ;
confromToðmmDEVS;EcoreÞ;
confromToðmmJAVA;EcoreÞ;

– MO ¼ CIM;PIM;PSMf g, and
instanceOf ðCIMÞ ¼ mmGFCCS;

instanceOf ðPIMÞ ¼ mmDEVS;

instanceOf ðPSMÞ ¼ mmJAVA;

– SL ¼ fATL;Acceleog is a set of model transformation languages,
– pl ¼ JAVA is the final programming language
– MTP ¼ pCIM ; pPIM ; pPSMf g such that

pCIM ¼ l0ðmmGFCCSÞ; l1ðmmDEVSÞ; gfccs2devs:atlf g;
pPIM ¼ l1ðmmDEVSÞ; l2ðmmJAVAÞ; devs2java:atlf g;
pPSM ¼ l2ðmmJAVAÞ; JAVA; java2code:mtlf g;

– STP ¼ £ dictates there exists no other supplementary formal model transformation
patterns,

� MT ¼ f
transformToðCIM; pCIMÞ ¼ PIM;

transformToðPIM; pPIMÞ ¼ PSM;

transformToðCIM; pPSMÞ ¼ SM

g;
– SM is the final executable simulation model,
– TO ¼ fATL;Acceleo;EMF;GMF;Eclipse IDEg.

2.3 Criteria for Evaluating Model Continuity

Model transformation is an automated process of modifying and creating one or several
target models from one or several source models. The aim of model transformation is to
save effort and reduce information loss as much as possible by automating model
building and modification where possible. The key to designing a successful model
transformation is a set of formal transformation rules to improve model continuity.
Although there is no general guidance to define a good model transformation, we can
evaluate model continuity according to the following criteria.
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1. Correctness. A model transformation is syntactically correct if the target model
conforms to the target metamodel specification [21], and semantically correct if the
target model contains information as much as possible from the source model [22].

2. Completeness. A model transformation is complete if the target model has a cor-
responding element for each element in the source model.

3. Uniqueness. A model transformation is unique if there are no two identical elements
in the generated target model.

4. Determinism. A model transformation is determinate if it produces a uniquely
defined target model output for each specific source model input.

3 Customizing a DSML Based on Metamodeling

3.1 Metamodeling Based on EMF

Metamodeling is an important mean to design DSMLs [23, 24], especially for EMF
usually has close relationships with a set of OMG standards, like UML, MOF, XMI,
and MDA, etc. Firstly, UML is widely used to capture various concerns of a certain
system by an object-oriented method, emphasizing multi-view to describe the structure,
behavior, function, and deployment, etc. While, EMF as a way of defining metamodels
is only concerned with one aspect of a system, i.e. class structure. Secondly,
EMF/Ecore focuses on the tool sets not the metadata warehouse management, thus
avoiding some of the complex issues such as data structure, package relationships, and
associations compared to MOF. Thirdly, XMI is a widely accepted serializing standard
which is not only used as the format for serializing EMF models, but also suitable for
serializing the metamodel, i.e. Ecore itself. This method is very different with the UML
profiling mechanism because it defines metamodels from scratch without considering
the UML rules [25]. Hence, it has the potential for the most direct and succinct
expression of domain concepts. Furthermore, it has a collection of supporting tools
(e.g. GEF and GMF) thanks to the Eclipse open source architecture. Recently, some
researches also have identified the need of domain specific metamodeling to avoid the
general metamodeling facilities like UML and EMF [26].

Figure 3 shows the metamodel of GFCCS. This metamodel consists of a basic
diagram node named GroupFireControlSystem and two mutually related nodes named
Node and Connection respectively. The Node derives a set of domain concepts such as
Group, GroupNode, Weapon, Target, and Channel, which are connected by specific
relationships. For example, two groups can share common information by the relation
tagged as COPShare that represents common operation picture (COP) [27]. A group
can have one or multiple members and zero or multiple weapons which can also be
equipped by a group member. A group member may be disjoint with or affiliated by
itself, and can control zero or multiple fire control channels. Each channel may be
mutually exclusive with itself. It embraces two dynamic entity lists, i.e. weaponList and
targetList. These two lists are used to manage weapons and targets that are alive or may
be already ruined. Only one target can be assigned to one weapon for building a
running fire control channel.
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In fact, except the abstract syntax as described above, there are other aspects need
to be detailed for a well-defined metamodel [28]. Table 1 defines the static semantics of
GFCCS metamodel, written by OCL [29], explaining how those elements of the
abstract syntax model can be organized as a valid GFCCS metamodel.

Fig. 3. The GFCCS metamodel.

Table 1. GFCCS domain specific constraints using OCL (part).

OCL static semantics Descriptions
context Group
inv: hasNotDisjointGroupNodes
self.node->forAll(n1,n2|n1.disjointWith-
>select(dis|dis.name=n2.name)->isEmpty() and 
n2.disjointWith->select(dis|dis.name=n1.name-
>isEmpty())

A group can never own 
two disjoint members.

context GroupNode
inv: hasNotDisjointChannels
self.fireControl->forAll(c1,c2|c1.mutualExclusive-
>select(dis.name=c2.name)->isEmpty() and 
c2.mutualExclusive->select(dis|dis.name=c1.name)-
>isEmpty())

A group node can never 
own two mutual exclu-
sive fire control chan-
nels.

context GroupNode
inv: notDisjointWithItself
self.disjointWith->select(dis|dis.name=self.name)-
>isEmpty()

No group node can be 
disjoint with itself.

context GroupNode No group node can be 
inv: notDisjointWithItsDownLevelNode
self.affliated->forAll(n|self.disjointWith-
>select(dis|dis.name=n.name)->isEmpty())

disjoint with its senior 
node.
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3.2 Graphical Definitions of GFCCS Using GMF

Figure 4 shows a guidance of the definition, mapping, and generation of a graphical
editor for GFCCS using GMF. According to the GMF dashboard, one can define the
domain model, domain gen model, tooling model, graphical model, mapping model,
and gmf gen model step by step, then generate the diagram editor.

Fig. 4. Graphical definitions of GFCCS using GMF.
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1. Tooling model. In usual, the tooling model definition provides six ways to define a
tool palette of a graphical editor, including creation tool, standard tool, generic tool,
tool group, palette separator, and image. In GFCCS, we created a tool for each
element of the domain model except the abstract element Node, and bundled a
representative image for each element.

2. Graphical model. It defines the concrete display of modeling elements that will be
used in the graphical editing environment. In general, GMF provides default display
based on the domain model, but one usually needs to define the figure gallery, figure
descriptor, and polyline decoration in practice. In GFCCS, we set the Group and
GroupNode as compartments to be able to contain other elements, for example,
Group can contain GroupNode and Weapon, and GroupNode can contain Weapon.
Additionally, we set the Channel as a scalable polygon, adding template points (0,
0), (40, 0), (40, 30), (30, 30), (30, 40), (40, 30), (30, 40), (0, 40).

3. Mapping model. When the domain model, tooling model, and graphical model are
ready, it is necessary to map them into a whole. Usually, we need to select the
corresponding tooling nodes and diagram nodes for each node mapping, and pro-
vide the correct compartment figure for each compartment node. In the properties of
Channel node, for example, we select the Node Channel (Channel Figure) for the
diagram node, and the Creation Tool Channel for the tooling node.

4. GMF gen model. If the mapping model is defined correctly, it can generate correct
gmf gen model without much modifications. In many cases, it is possible to modify
some parameters, such as the fixed background, the list layout, and the suffix of a
diagram project.

3.3 The GFCCS DSME

Figure 5 shows a simple example of building an engagement scenario using the
GFCCS DSML. On the tool palette, this domain specific modeling environment
(DSME) contains a set of buttons decorated with professional denotations, including
the basic language elements such as GroupFireControlSystem, Group, GroupNode,
Channel, Weapon, and Target as well as various relationships. Using this environment,
it is possible for domain experts to use these language elements intuitionally and
friendly. For example, one can draw an arrow from Channel List 1 to Enemy Fighter 1
BLUE only by ChannelTargetList, disabling the use of other relationship buttons.

In the editor, we create a scenario of many to many combat between two opposite
sides RED and BLUE. The RED side consists of two defense groups, i.e. Defense
System RED and Remote Surveillance System RED, which refers to the local defense
system (e.g. air defense base) and the remote surveillance system (e.g. satellite). The
local system is composed of a warship platform, a ground-to-air missile base, and a
helicopter platform, which are armed with two surface-to-air missiles, a ground-to-air
missile, and a homing torpedo, respectively. The BLUE side consists of three coming
threats which are denoted by Enemy Fighter 1 BLUE, Enemy Fighter 2 BLUE, and
Enemy Submarine BLUE. In addition, there exist two lists of fire control channel which
are denoted by Channel List 1 and Channel List 2, respectively. The former list is
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managed by the warship platform and has a weapon-target pair, i.e.
Surface2AirMissile1-Enemy Fighter 1 BLUE. The latter list is managed by the heli-
copter platform and has two weapon-target pairs.

4 Model Transformations: GFCCS Implementations

4.1 The Process of GFCCS Implementation

Assume we need to build the process of GFCCS implementation as illustrated in the
conceptual sample of Fig. 6. Our aim is therefore to define a set of transformation rules
facilitating the transformation from CIM to PIM to PSM, then to final source code. The
transformation has two kinds across three levels.

In the first kind, all CIM_GFCCS model elements are expected to be transformed
into specific PIM_P-DEVS model elements, and all connections are transformed into
internal couplings from an output port in the source component to an input port in the
target component. Ports are also generated. But in most cases, this does not apply
because the connections in the source model do not always connect the elements of the
same layer [30]. Therefore, it is necessary to refine such connections which cross more
than one layer, and define the external input couplings (EICs) and external output
couplings (EOCs) for the compartmental components. For example, while the group
named Defense System RED and the group nodes named Warship Platform and
Helicopter are transformed into coupled components, the weapon named Sur-
face2AirMissile1 is transformed into an atomic component.

In the second kind, a transformation from PIM_P-DEVS to PSM_JAVA is defined
according to a set of predefined transformation rules. In this transformation, all P-
DEVS components are transformed into JAVA classes. Coupled components are
transformed into files that include the package imports, class, constructor, port, con-
tained component, and couplings. Atomic components are transformed into files that
include package imports, class, port, and constructor.

Fig. 5. The GFCCS DSME. (Color figure online)
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4.2 Detailed GFCCS to P-DEVS to JAVA Transformations

The matching rules of GFCCS to P-DEVS transformation is defined by using the
GFCCS metamodel and P-DEVS metamodel, as detailed in Table 2. The basic diagram
node GourpFireControlSystem matches with the DEVSModel element. The compart-
mental nodes like Group and GroupNode match with coupled components named
DEVSCoupledComp. The connections that connect the modeling elements of the same
layer are transformed into internal transitions named DEVSOutToIn_ICConnection,
while those cross different layers are transformed into external transitions and output
functions with a set of ports.

Fig. 6. A sample of GFCCS to P-DEVS to JAVA transformations based on MDA.

Table 2. The matching rules of GFCCS to P-DEVS transformation (part).

GFCCS metamodel P-DEVS metamodel

GroupFireControlSystem DEVSModel
Group DEVSCoupledComp
Weapon DEVSAtomicComp
Target DEVSAtomicComp
COPShare DEVSOutToIn_ICConnection
fireControl DEVSOutToOut_ICConnection

+Source.out: DEVSOutputPort
+Target.in: DEVSOutputPort
+SourceParents.EOCPorts: DEVSOutputPort

mutualExclusive DEVSOutToIn_ICConnection
taretList DEVSOutToIn_ICConnection
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The matching rules of P-DEVS to JAVA transformation is defined by using the P-
DEVS metamodel and JAVA metamodel, as detailed in Table 3. The basic element
DEVSModel matches with a JAVA package named JAVAPackage which includes
javaClasses, javaConstructors, and javaExpressions. Both the coupled component
DEVSCoupledComp and the atomic component DEVSAtomicComp match with
JAVA classes which include JAVAVariables, javaConstructors, and javaExpressions.
DEVSInputPort, DEVSOutputPort, and StateVariable are all transformed into
JAVAVariables. The connections like DEVSOutToIn_ICConnection, DEVSInToIn_
EICConnection, DEVSOutToOut_EOCConnection as well as Expression are trans-
formed into JAVAExpressions. The remaining functions like DeltaIntFunction,
DeltaExtFunction, LambdaFunction, TimeAdvanceFunction, DeltaConFunction are all
transformed into JAVAMethods.

Such transformation rules are written in ATL, as proposed in Definition 2. ATL,
the Atlas Transformation Language, is a model transformation language specified as
both a metamodel and a textual concrete syntax. In the MDE field, ATL provides
developers with a means to specify the way to produce a number of target models from
a set of source models. An ATL transformation program is composed of rules that
define how source model elements are matched and navigated to create and initialize
the elements of the target models. Besides, ATL Integrated Development Environment
(IDE) provides a number of standard development tools (syntax highlighting, debug-
ger, etc.) that aim to ease the design of ATL transformations. The ATL development
environment also offers a number of additional facilities dedicated to models and
metamodels handling. These features include a simple textual notation dedicated to the
specification of metamodels, but also a number of standard bridges between common
textual syntaxes and their corresponding model representations.

Table 3. The matching rules of P-DEVS to JAVA transformation (part).

P-DEVS metamodel JAVA metamodel

DEVSModel JAVAPackage
+javaClasses: JAVAClass
+javaConstructors: JAVAConstructor
+javaExpressions: JAVAExpression

DEVSInputPort JAVAVariable
DEVSOutputPort JAVAVariable
StateVariable JAVAVariable
DEVSOutToIn_ICConnection JAVAExpression
DEVSInToIn_EICConnection JAVAExpression
DEVSOutToOut_EOCConnection JAVAExpression
Expression JAVAExpression
DeltaIntFunction JAVAMethod
DeltaExtFunction JAVAMethod
LambdaFunction JAVAMethod
DeltaConFunction JAVAMethod
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Figure 7 shows the transformations of GFCCS to P-DEVS to JAVA instances
based on ATL. On the left contains two projects named GFCCS2P-DEVS and P-
DEVS2JAVA, each of which includes three packages, i.e. Metamodels, Models, and
TransoformationEngine. On the upper right includes three instances for the GFCCS, P-
DEVS, and JAVA metamodel respectively, while the lower right is two ATL files for
the GFCCS to P-DEVS and to JAVA transformations.

4.3 Source Code Generation

Figure 8 shows a screenshot of the M2T transformation model as well as its source
model and the generated code framework for the node Defense_System_RED. The
transformation model design should incorporate all the source model required infor-
mation to satisfy completeness. The target code framework is automatically generated,
but the concrete logic details must be manually implemented. In practice, not every
concrete detail should be considered when designing M2T transformation models,
because they may heavily burden the design phase.

Following the M2T transformation principles, the general source model is some
instance models that must conform to a certain metamodel, and the target model can be
text, e.g. java, C++, python, etc. Transformation model design is vital to implement the
M2T transformation. This paper performed M2T transformation using Acceleo, a
template based code generator incorporating a code generation editor with syntax
highlighting, completion, real time error detection, and refactoring. The source model
was a collection of JAVA instance models, represented by an instance file named
JAVAcase.xmi, and the target model was described in Java programming text.

Fig. 7. GFCCS to P-DEVS to JAVA transformations based on ATL.
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4.4 Model Continuity in GFCCS

The process of GFCCS implementation showed that model continuity between dif-
ferent development stages is obtained when applying the formal transformation defi-
nition successfully. As stated earlier, it is possible to provide model continuity in a
development process when transforming the initial and intermediate models, and
preserving the modeling relations during the transformations. To evaluate model
continuity, we already presented the criteria for model transformations in Sect. 2.3.
According to these criteria, we describe how the model continuity is obtained for the
process of GFCCS implementation when the formal transformation rules are applied. In
fact, except these criteria as listed, there are some other non-functional requirements
such as termination and readability satisfied. Also note that maintainability, scalability,
reusability, evolvability, efficiency, etc. are partially supported since these requirements
need more experiments for a better evaluation.

The process of GFCCS implementation has two kinds of model transformation,
with different expressions and output types. As the source input or target output of
model transformations, the formal definition gives three model types: independent of
computing details, independent of the computing platform, and specific to a particular
computing platform, and two model transformation categories.

In the M2M category, the transformation focuses on the design of a set of formal
rules to ensure model continuity when transforming CIM to PIM and to PSM. The
transformation usually incorporates three steps.

1. All source concepts, relationships, and domain specific rules are transformed into
particular target elements, connections, and domain specific constraints,
respectively.

2. Compare all target elements, connections, and constraints to delete identical
expressions.

Fig. 8. JAVA xmi to code transformation based on Acceleo.
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3. Check the target model conforms to the target metamodel.

Completeness can be ensured in step (1) since all source elements are transformed,
and a corresponding target element can be found for each source element. Step (2) is
helpful and necessary to reduce target element redundancy, thus uniqueness is guar-
anteed. Syntactical correctness can be satisfied in step (3) since the target model will be
expressed in a given formalism, and its semantic correctness will be evaluated in later
stages of model transformation. Determinism is guaranteed implicitly in the model
transformation editors, such as ATL IDE, which eases development and execution of
ATL transformations [31].

In the M2T category, the transformation converts a source model into a text file, i.e.
PSM to source code. If the text is in source code form, then the transformation is also
called code generation, and the transformer is also called a code generator. The process
of a M2T transformation is similar to that of a M2M transformation. The only dif-
ference is that step (ii) in the M2M transformation can be skipped in a M2T trans-
formation, since uniqueness has already been checked. Therefore, the three criteria
listed above are achieved according steps (i) and (iii). Similarly, determinism is sat-
isfied because model transformation editors, such as Acceleo [32], implicitly guarantee
a unique output for each particular input.

5 Conclusions

Abstraction is now widely admitted as an effective means to reduce the complexity of
system specification. It is also generally agreed that ontology as an important form of
abstraction can be employed in MDE to describe the existing world, the environment,
and the domain of system. However, this consensus has not lead to a coherent research
on how to enhance the semantic composability of simulation models yet. Hence, this
study attempts to adopt an ontological metamodeling method for engineering the
semantic composability of simulation models within MDE. We believe that the
experience collected from this study can bring some new visions of simulation models
development and of the state of art that relate to the semantic composability. A benefit
of this study is that the formal definition of model transformation can be viewed as a
referenced experience to guide other practices that have the needs of formal analysis.
However, as a drawback some effort for further evaluations are required.
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