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Abstract. In order to solve the problem of particle divergence caused
by deviation of sample distribution before and after resampling, a new
Markov Chain Monte Carlo (MCMC) resampling algorithm based on
minimizing sampling variance is proposed. First, MCMC transfer in
which Particle Swarm Optimization (PSO) is possessed as the transfer
kernel to construct Markov Chain is applied to the impoverished sample
to combat sample degeneracy as well as sample impoverishment. Second,
the algorithm takes the weighted variance as the cost function to measure
the difference between the weighted particle discrete distribution before
and after the resampling process, and optimizes the previous MCMC
resampling by the minimum sampling variance criterion. Finally Experi-
ment result shows that the algorithm can overcome particle impoverish-
ment and realize the identical distribution of particles before and after
resampling.

Keywords: PF-resampling · MCMC · PSO · Minimizing sampling
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1 Introduction

To combat the inevitable weight degeneracy caused by SIS [1,2], SIR [3,4]viewed
as a combination between SIS and resampling procedure was proposed. The basic
idea of re-sampling is to copy the large weight particles according to the size of
the weight values, and replace the small weight particles with the offspring of
the large weight particles. The essence is to redistribute the weights so that more
particles get sampling opportunities, which is based on sacrificing the diversity
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of samples. This means that, after numerous times of iterations, a large number
of particles in the sample are only concentrated on a few particular points in the
state space. This phenomenon is called “sample impoverishment” [3,4], mainly
because of the strong correlation between particles, which is not sufficient to
describe the randomness of the target posterior distribution. In order to obtain
the sufficient sample diversity, balance between the proposal distribution and the
real target posterior distribution should be paid more attention. In another word,
more particles have the chance to be resampled as they are assigned weights that
cannot be ignored. The related research on maintaining diversity of samples is
described explicitly in reference [5], which is not overstated here. It is worth
mentioning that a new MCMC resampling strategy was employed in [5], where
PSO considered as transition kernels of MCMC had been applied to each parti-
cles so that all particles, theoretically, could be adjusted to the high likelihood
areas in state-space instead of merely multiplying particles with high weights.
In the former case, the basic idea of MCMC resampling algorithm is, after a
sufficient burn-in time, constructing a Markov Chain reaching a stationary dis-
tribution, which is approximate to target posterior distribution. However, the
resampled particles can not guarantee the unbiased estimation of the real tar-
get posterior. To combat sample impoverishment, a large number of resampling
strategies including PSO-MCMC mentioned above, hybird resampling [6–8], but
not limited to, adopt resampling from alternative sampling sets rather than orig-
inal sets. Eventually, particle filters have to suffer from side effects of these biased
re-sampling strategies. This means that, SIR sample impoverishment as well as
deviation of sample distribution before and after resampling will both affect the
estimation accuracy of samples to real target posterior, which could eventually
lead to the divergence of the filter. Therefore, it is an unavoidable problem in
sample estimation to verify the deviation of samples after resampling, which is
also the research content of this paper. In this paper, a new MCMC resampling
strategy in terms of satisfying Minimum sampling variance (MSV) is proposed,
in which the former PSO-MCMC resampling algorithm has been optimized. The
MSV criterion [9] theoretically guarantee any sample subset can reach the min-
imum sampling variance on condition that the resampling process satisfies the
optimal weight condition and the specific sample number. Identical distribution
of samples after and before resampling acquired by MSV means that resampling
will not drift estimation to real target posterior resulting from reducing the loss
of information in the resampling process. As a tool for tracking the state of a
dynamic system modeled by Bayesian Network, PF also could be employed as
an estimator to predict network traffic [14,15].

2 Identical Distribution of Resampling and Relative
Evaluation Methods

Compared with parametric filters, the advantage of PF is regarded to be com-
plete approximation to target posterior distribution particularly in non-linear
and non-gaussian state models. Therefore resampled particles are expected to
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approximate the original distribution as much as possible. That is to say, dis-
tribution of resampled particles should be similar to the original distribution so
long as no other new observation considered, which is called identical distribution
attribute of resampling. However, in fact, dissimilarity of particle distribution
after and before resampling is inevitable whether in theory or in engineering prac-
tice. Accordingly, it is necessary to set up a reliable evaluation system for the
deviation or even variation of posterior distribution resulted from resampling.
In this system, the extent of deviation after resampling should be evaluated,
that is, how much resampling is competent to keep the original distribution.
Therefore, the identical distribution attribute is expected to be the basic princi-
ple of designing a resampling algorithm, and it is also required that the particles
before and after resampling are suppose to meet it. Specifically, we introduce and
compare several common metrics such as kullback-Leibler divergence [10] (K-L
divergence), kolmogorov-smirnov statistic (K-S statistic), and MSV [9] to mea-
sure differences between two probability distributions in the same state space.

2.1 Kullback-Leibler Divergence

Relative entropy, also called Kullback-Leibler divergence (K-L divergence), is
a measurement to describe the difference between two probability distributions
such as P (x) and Q(x). Then the relative entropy of P (x) and Q(x) is as follows.

D(P ||Q) =
∑

(P (x)log(P (x)/Q(x))) (1)

In Eq. 1, P (x) and Q(x) represent the probabilistic distributions before and
after resampling respectively, and D(P ||Q) provides a measure of the extent
of distribution difference caused by resampling. The larger the K-L divergence
between P (x) and Q(x) is, the lower the similarity is.

2.2 Kolmogorov-Smirnov Test

Kolmogorov-smirnov test (K-S test), also refered to kolmogorov-smirnov statis-
tic, is a non-parametric probability distribution test that is used to measure
whether a sample conforms to a certain probability distribution or to com-
pare whether the two probability distributions are identical. In our case, the
Kolmogorov-Smirnov test provides a distance between the empirical distribu-
tion functions of two samples such as P (x) and Q(x) that represent the posterior
distribution after and before resampling respectively. The empirical distribution
function Fn for the observation Xi is defined as Eq. 2.

Fx(x) =
1
n

n∑

i−1

I|−∞,x|(Xi) (2)

Where I|−∞,x|(Xi) is the indicator function, equal to 1 if Xi ≤ x and equal to 0
otherwise. The K-S statistic for a given cumulative distribution function F(x) is
described as Eq. 3.

Dn = sup
x

|F p(x) − Fq(x)| (3)
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where sup
x

is the supremum of the set of distances, Fp(x) and Fq(x) represent

empirical distribution functions of posterior distributions P (x) and Q(x) respec-
tively and Dn measures the discrepancy of these posterior distributions caused
by resampling. According to Glivenko–Cantelli theorem, if P (x) and Q(x) are
identical, then Dn converges to 0 almost surely in the limit when n goes to
infinity.

2.3 Minimum Sampling Variance

The number of particle resampling must be an integer, that is N
(m)
t . Assuming

that resampling is unbiased, the equation E(N (m)
t ) = Nw

(m)
t should be sat-

isfied. Obviously, there is a difference between the number of resampling and
its expected value. Furthermore, a higher-order moment has a better ability to
describe distribution difference than a first-order moment. Accordingly, we define
the sampling variance is equal to the square difference mean between the number
of times of the particle resampling and its definition is shown in Eq. 4.

SV =
1
M

M∑

m=1

(Nm
t −Nw

(m)
t )2 (4)

SV in Eq. 4, considered as a cost function, can provide an effective measurement
method for testing the discrepancy between weighted particle discrete distribu-
tion before and after resampling.

The smaller the value of SV in Eq. 4 is, the better the identical distribution
attribute of the resampling algorithm is. If and only if these two distributions are
exactly the same, the value of KL distance, K-S test and sampling variance are
zero. Therefore, the SV, KL and K-S test are consistent in terms of describing the
discrepancy of posterior distribution. Apart from that, SV has the advantages
in less computation time.

3 A New MCMC Resampling Strategy
Optimized by MSV

In order to minimize the sampling variance in Eq. 4, that is, to minimize the
distribution differences to the maximum extent, the weight of the resampled
particles should be set to equivalent as shown in Eq. 5.

w̃
(n)
t =

1
N

(5)

However, this condition, describing in Eq. 5, is only satisfied in the traditional
resampling method instead of the combined resampling algorithm. In this paper,
We quote the constraints of the optimal resampling algorithm as the optimal
weight conditions from related reference [9]. Under this condition, the essence of
resampling problem is equal to determine the sampling times of each particle.
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This means that, if the optimal weight condition, defined in Eq. 5, is satisfied,
Eq. 4 can provide the minimum sampling variance.

To combat the deviation of posterior distribution resulted from a cer-
tain resampling algorithm, we put forward a new resampling strategy, named
MCMC(PSO)-MSV, that the MSV is employed to optimize the previous MCMC
resampling strategy mentioned in [5].

The MCMC(PSO)-MSV mainly involves two processes. In the first stage,
PSO considered as the transition kernel of MCMC is applied to each particle
in order to move particles to the high likelihood area in state-space. Afterward,
to reduce information loss prompted by the previous MCMC resampling, MSV
should be adopted. For sample set {xi

k}i=1,··· ,N, if the condition, Neff ≤ Nth,
is satisfied, then the MCMC(PSO)-MSV resampling algorithm will be applied.
Specifically, the implementation of the algorithm is illustrated as follows.

Step1: sample set {xi
k}i=1,··· ,N adjusted by PSO.

– searching and determining Pgbest, the largest weight of particles, as well as
P i

gbest, the maximum of weights among its iteration history respectively,

Pgbest = F max({μi
k,n}i=0,···,N−M−1)

P i
gbest

= F max({μi
k,n}n=0,···,J)

Where μi
k,n is the weight of Xi

k,n.
– For each particle Xi

k,n, updating its moving rate V i
k,n and state,

V i
k,n+1 = V i

k,n + ϕ1(P i
pbest − Xi

k,n) + ϕ2(Pgbest − Xi
k,n)

∧
X

i

k,n+1 = Xi
k,n + V i

k,n+1

in which ϕ1 and ϕ2 are random numbers subordinating Gauss distribution,

and output of this process is a new set: { ∧
X

i

k,n+1}PSO
i=0,··· ,N−M−1.

Step2: Metroplis-Hastings sampling (M-H sampling).

α =
P (

∧
X

i

k,n+1 |z1:k )q(Xi
k,n;

∧
X

i

k,n+1)

P (Xi
k,n+1 |z1:k )q(

∧
X

i

k,n;Xi
k,n+1)

Where we generate a random number ρ, ρ ∼ u(0, 1).

if ρ ≤ min(1, α), then accept M-H sampling Xi
k,n+1 =

∧
X

i

k,n+1.
Else, then refuse M-H sampling Xi

k,n+1 = Xi
k,n.

Step3: Judging convergence condition.
if Pgbest ≤ ε, then stop MCMC (PSO) process and move to next stage.

Step4: Each particle is resampled MaxInteger(Nw
(m)
t ) times, and the weight

residuals, named ŵ
(m)
t , and number of particles produced in this process, named

T , are represented respectively as follows.
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ŵ
(m)
t = w

(m)
t − MaxInteger(Nw

(m)
t )/N

T =
M∑

m=1

MaxInteger(Nw
(m)
t )

Where Operator MaxInteger(·) provides the maximum integer.

Step5: For particular particles with relative larger value of ŵ
(m)
t in top

N − T area, they will be resampled one more time. Specifically, we select N − T

elements with largest weight residuals from weight set {w∧(m)
t }M

m=1, recorded as
MaxElementN−T [{ŵ

(m)
t }Mm=1], Where Operator MaxElementS [S] returns the

largest element of set S.
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Fig. 1. True state VS filter estimation.

4 Experiment

In this paper, several resampling algorithms are numerically simulated with
the classical model in [11], including an unbiased resampling, called deter-
ministic resampling [12] (Deterministic-PF), genetic algorithm after residual
resampling (RGA-PF) [13], MCMC resampling applying Metroplis-Hastings
sampling (MCMC-PF), resampling with PSO as MCMC transaction kernel [5]



244 J. Tian and D. Li

(MCMC(PSO)-PF), the new resampling strategy that MCMC(PSO)-PF opti-
mized by minimum sampling variance (MCMC(PSO)-MSV-PF). Comparison
will be carried out among these 5 resampling strategies in terms of estimation
accuracy, sampling variance as well as RMSE. System model and observation
model are presented as follows.
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Fig. 2. Sampling variances of these 5 resampling strategies.

xk = c1 · xk−1 + c2 · xk−1

1 + x2
k−1

+ c3 · cos(1.2(k − 1)) + ωk (6)

yk =
x2

k

20
+ υk (7)

in which xk and yk represent system state and observation at t time respectively;
c1 = 1, c2 = 12, c3 = 7; ωk and νk are state noise and observation noise from
distribution ωk∼N(0, σ2

ω), νk∼N(0, σ2
v) (σω = σv = 2) respectively.

In this case the number of Monte Carlo simulation, T , is 60, Ns means
number of particles, Ns = 200 and x0 represent initial state value, x0 = 0. The
state transition probability, p(xt+1 |xt ), is applied as the proposal distribution
to realize the state prediction.

In the experiment, the identical condition of sample detection is chosen as the
resampling condition, that is, if Neff ≤ Ns/3, PF enters resampling process.
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Comparison of True states of targets and estimating states is shown as Fig. 1,
while Fig. 2 demonstrates sampling variances of these 5 resampling strategies.
SV is chosen as the unbiased evaluation strategy after resampling on account
of its less expensive computing. RMSE (average mean square error) is also pre-
sented in Fig. 3 in which the number of particles has changed from 20 to 100.
These figures indicate that, if the resampling algorithm satisfies the unbiased or
asymptotically unbiased conditions, different resampling algorithms will obtain
approximate estimation accuracy, especially when N0 is greater than 90. How-
ever, the resampling algorithms with better identical distribution attributes,
such as Deterministic-PF and MCMC(PSO)-MSV-PF, have obvious advantages
in RMSE evaluation only when N0 ≤ 45. This means that whether the sample
deviates from the original distribution after resampling has a greater influence
on the estimation accuracy of the small sample set.
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Besides, resampling algorithms such as MCMC-PF, RGA-PF and
MCMC(PSO)-PF, are biased, which their sampling variances are shown in Fig. 2
respectively. Accordingly their RMSEs are obviously worse than that of decisive
resampling and MSV-PF, as shown in the Fig. 3. This also shows the validity of
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sampling variance as unbiased evaluation of resampling algorithm, this means
that whether the resampling algorithm is unbiased will affect the estimation
accuracy. However, some resampling algorithms satisfy the unbiased condition,
shown in formula 5, at the expense of sample diversity.

In Fig. 1, When the target state occurred a strong jump at t = 30, the
Deterministic-PF diverged stemming from the loss of the diversity of samples
which resulted in the filter losing ability to estimate the target posterior. While
the MCMC(PSO)-MSV-PF is able to achieve a trade-off between preserving the
diversity of samples and the identical distribution attributes. Consequently even
coming accross the strong jump of target state, the MCMC(PSO)-MSV-PF can
also estimate a posterior distribution close to the real target.

5 Conclusions

In order to solve the problem of particle divergence caused by particles deviation
after resampling, in this paper, a new MCMC resampling strategy based on
satisfying Minimum sampling variance (MSV) is proposed, in which the former
PSO-MCMC resampling algorithm has been optimized. Identical distribution of
samples after and before resampling acquired by MSV means that resampling
will not drift estimation to real target posterior thanks to reducing the loss of
information in the resampling procedure. The simulation result shows that the
MCMC(PSO)-MSV-PF is superior to its counterparts in terms of preserving the
diversity of samples and acquiring the identical distribution attributes before
and after resampling.
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