
A Hybrid Virtualization Approach to Emulate
Heterogeneous Network Nodes

Junyu Lai1,2(&) , Jiaqi Tian1 , Dingde Jiang1 , Jiaming Sun1 ,
and Ke Zhang1

1 School of Aeronautics and Astronautics, University of Electronic Science
and Technologies of China, Xiyuan Avenue no. 2006, Chengdu, China
{laijy,tianjq,jiangdd,sunjm,zhangk}@uestc.edu.cn
2 Science and Technology on Communication Networks Laboratory,

Shijiazhuang, China

Abstract. In the last decade, various resource virtualization technologies have
been widely applied in ICT industry, particularly the cloud computing domain.
These virtualization technologies can squeeze out hardware potential and con-
sequently can save expenditure. Virtualization technologies are used in the
network emulation domain to emulate network nodes, which could be quite
heterogeneous in terms of hardware architecture. Currently, many network
emulators utilize x86 based virtual machines (VMs) to emulate target network
nodes of heterogeneous architectures, i.e. ARM, SPARC, PPC, etc., which may
introduce incompatibility to the original system and application software of the
target nodes, and will consequently jeopardize the emulation fidelity. This paper
focuses on alleviating the emulation incompatibility caused by node hetero-
geneity. Firstly, this emulation incompatibility problem is investigated and
analyzed. Then, a hybrid virtualization approach to emulate heterogeneous
nodes is elaborated and implemented in a cloud-based network emulation sys-
tem. A case study of applying the proposed approach to emulate a space-ground
integrated network (SGIN) is conducted. Functional verification and perfor-
mance evaluation experiments lead to the results, which show the hybrid
approach can effectively dispose of the incompatibility problem with an
affordable performance degradation.

Keywords: Resource virtualization � Network emulation � Heterogeneous
nodes � Incompatibility � Space-ground integrated network

1 Introduction

Modern networks are getting increasingly more complicated. Mathematic models can
not accurately evaluate network performance anymore. Consequently, various network
testing methods are regarded as more decent functional verification and performance
evaluation solutions for network architectures, protocols, and upper layer applications.
Computer simulation, live test-bed, and network emulation are the major three net-
working testing methods, among which network emulation is the focus of this work.
Network emulation is a technique for testing the real protocols and applications over a

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
H. Song et al. (Eds.): SIMUtools 2019, LNICST 295, pp. 228–237, 2019.
https://doi.org/10.1007/978-3-030-32216-8_22

http://orcid.org/0000-0002-3558-2421
http://orcid.org/0000-0001-6641-5821
http://orcid.org/0000-0003-0284-5624
http://orcid.org/0000-0002-8290-1915
http://orcid.org/0000-0001-9929-6910
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32216-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-32216-8_22

virtual network, which varies from network simulation where abstractly mathematical
models of traffic, network, channels and protocols are applied. A network emulator’s
major task is to emulate nodes and links with medium cost and high fidelity.

Regarding to network node emulation, physical machines are traditionally utilized
to represent the target network nodes, with high cost and low scalability. As various
resource virtualization technologies are booming in ICT industry, it is nature to use
VMs to emulate network nodes. In real network, heterogeneous nodes, such as x86,
ARM, PowerPC, Sparc, and MIPS architected, coexist. Many legacy emulator adopts
x86 architected VM to emulate all the nodes, which introduces incompatibility to the
original protocol and application software of the target nodes. For the sake of high
fidelity emulation, it is vital to elaborate a practical approach to accurately emulate
heterogeneous nodes in target networks. The contribution of this work contains the
following three points.

• A hybrid virtualization approach to emulate heterogeneous network nodes;
• Practically implementing the proposed hybrid virtualization approach in a cloud-

based network emulation system;
• Conduct a case study on SGIN emulation, to illustrate the effectivity of the proposed

hybrid virtualization approach.

This paper proceeds as follows. Section 2 discusses the state-of-the-art, followed
by the briefing of the involved cornerstone technologies in Sect. 3. The hybrid virtu-
alization approach to emulate heterogeneous nodes is derived and implemented in
Sect. 4. Then, a case study is presented in Sect. 5. Finally, Sect. 6 concludes the paper
and provides the outlook.

2 Related Work

Resource virtualization technologies have gradually been adopted to emulate network
nodes to dig up hardware potential, and to lower emulation cost. In industry, Boeing
Phantom Works in 2008 [1], presented CORE (Common Open Research Emulator), a
real-time network emulator that allows rapid instantiation of hybrid topologies com-
posed of both real hardware and virtual network nodes. CORE used FreeBSD jail
mechanism to form lightweight VMs. In 2015, Northrop Grumman Aerospace Systems
[2], researched on the need to provide a method for studying the interaction among
diverse hardware and software components and identifying potential network bottle
necks in air-to-ground networks. VMware ESXi is adopted to emulate 10 virtual
machines on a single physical server. In the same year, KISTI of Korea [3], presents a
critical analysis on existing wired testbeds with respect to the wireless network emu-
lation. Among the investigated testbeds, EMWIN and MobiNet utilize VM technolo-
gies to emulate real network nodes. In academia. In 2007, Maier et al. [4] from
University of Stuttgart focused on scalable network emulation problems, and present a
comparison of different virtual machine implementations (Xen, UML) and their virtual
routing approach (NET). In 2009, Mehta et al. [5], described a virtualization tech-
nology based emulation architecture that is scalable, modular, and responds to real time
changes in topology and link characteristics. In 2014, Balasubramanian et al. [6] from

A Hybrid Virtualization Approach 229

Vanderbilt University, described a rapid development and testing framework for a
distributed satellite system. QEMU (Quick Emulator) virtualization technology is used
to launch a configurable number of instances. In 2015, Antonio et al. [7] from
Universidad Galileo, presented the Dockemu tool for emulation of wired and wireless
networks. The tool glues together state of the art technologies of virtualization, Linux
Bridging and NS-3.

Most of the existing emulation schemes rely on x86 architected VMs or containers
to emulate heterogeneous nodes, which introduces incompatibility problems to the
protocol and application software running on the physical nodes.

3 Cornerstone Technologies

3.1 Virtual Machine

A VM is an emulation of a computer system, and was originally defined as an efficient,
isolated duplicate of a real computer. The physical hardware running the VM is gen-
erally referred to as the host, and the VMs emulated on that machine are generally
referred to as the guests. A host can emulate several guests, each of which may emulate
different operating systems and hardware platforms. The software or firmware that
creates VMs on the host hardware is called a hypervisor. Typically, the virtualization
technologies adopted by a VM include Full virtualization and Para-virtualization.

3.2 KVM

KVM (Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86
hardware containing virtualization extensions (Intel VT or AMD-V). It consists of a
loadable kernel module, kvm.ko, that provides the core virtualization infrastructure and
a processor specific module, kvm-intel.ko or kvm-amd.ko. KVM supports multiple
VMs simultaneously running unmodified Linux or Windows images. By itself, KVM
does not perform any emulation. Instead, it exposes the/dev/kvm interface to a user-
space host. On Linux, QEMU is one such userspace host. QEMU uses KVM when
available to virtualize guests at near-native speeds, but otherwise falls back to software-
only emulation. Currently, KVM has been ported to S/390, PowerPC, IA-64, ARM,
etc., and can support a wide variety of guest operating systems, including Linux, BSD,
Solaris, Windows, OS X, Android, etc.

3.3 QEMU

QEMU is a free and open-source emulator that performs hardware virtualization. It
emulates the machine’s processor through dynamic binary translation and provides a set
of different hardware and device models for the machine, enabling it to run a variety of
guest operating systems. It also can be used with KVM to run virtual machines at near-
native speed, by taking advantage of hardware extensions such as Intel VT. QEMU
supports the emulation of various architectures, including: x86, x86-64, MIPS64,
SPARC, ARM, SH4, PowerPC, RISC-V, etc. QEMU has two operating modes:

230 J. Lai et al.

• User mode emulation. QEMU runs single programs that were compiled for a dif-
ferent instruction set. System calls are thunked for endianness and for 32/64 bit
mismatches. Fast cross-compilation and cross-debugging are the main targets;

• Full system emulation. QEMU emulates a full computer system, including
peripherals. It can be used to provide virtual hosting of several virtual computers on
a single computer. QEMU can boot many guest operating systems, including Linux,
Solaris, Microsoft Windows, DOS, and BSD; it supports emulating several
instruction sets, including x86, MIPS, 32-bit ARMv7, ARMv8, PowerPC, SPARC,
ETRAX CRIS and MicroBlaze.

3.4 NFV

NFV (Network functions virtualization) is a network architecture concept that uses the
technologies of IT virtualization to virtualize entire classes of network node functions
into building blocks that may connect, or chain together, to create communication
services. A virtualized network function, or VNF, may consist of one or more virtual
machines running different software and processes, on top of standard high-volume
servers, switches and storage devices, or even cloud computing infrastructure. In
network emulation domain, target networks nodes can be regarded as a set of VNFs,
and can be emulated by means of NFV.

4 A Hybrid Virtualization Approach to Emulate
Heterogeneous Nodes in Target Network

4.1 General Assumptions

Network nodes of various architectures coexist in practical networks. To emulate these
heterogeneous nodes, x86 architected VMs are traditionally employed, which however
may introduce incompatibility to target nodes of architectures other than x86. For
example, using an x86 based VM to emulate a practical ARM node, the system and
application software designed for the target node cannot be directly installed on the x86
based VM due to incompatibility. Thus, it is assumed that a target network contains
two types of nodes, x86 and non-x86 architected, respectively.

4.2 Principle of the Hybrid Approach

In order to solve the incompatibility problem and to emulate the target network with a
sufficiently high fidelity, an innovative hybrid virtualization approach is derived. More
preciously, two different visualization technologies are applied simultaneously, which
are QEMU-KVM technology for x86 nodes emulation and QEMU-System for non-x86
nodes emulation. Both of them work in the full system emulation mode.

QEMU-KVM is a fork of QEMU supporting using KVM acceleration when the
target architecture is the same as the host architecture. Although the fork has already
been merged into the QEMU upstream, the term QEMU-KVM is still adopted here to
refer the technology to emulate X86 nodes. To use KVM, just pass – enable-kvm to

A Hybrid Virtualization Approach 231

QEMU. QEMU-System technology implements full platform virtualization, including
one or several processors and various peripherals. It runs without a host kernel driver
and yet gives acceptable performance. It uses dynamic translation to native code for
reasonable speed. Therefore, it can be used to emulate non-x86 nodes in the target
network. For example, one can use the executable qemu-system-sparc to simulate the
sparc architected machines. Figure 1 illustrates the principle of the hybrid virtualization
approach.

4.3 Practical Implementation

The hybrid virtualization approach is practically implemented in an innovative cloud-
based network emulation system, which introduces currently prevalent cloud com-
puting and related ICT technologies including resource virtualization, NFV, SDN,
traffic control and flow steering to the network emulation domain, so to provide users
Network Emulation as a Service (NEaaS). The emulation system can be deployed on
either public or private cloud to satisfy diverse user needs. The network emulation
principle is to utilize the VMs created and allocated by the cloud platform to imitate
network nodes. Emulating network links relies on using the virtual network links in the
cloud platform. To emulate network topology is to dynamically control and adjust the
virtual network links between VMs in a fast enough manner to satisfy the emulation
needs. The architecture of the cloud-based network emulation system is designed and
presented in Fig. 2, which is divided into four layers, namely, resource virtualization,
cloud computing, emulation core, and emulation interface layers. The key points to
deploy the proposed hybrid virtualization approach in the aforementioned cloud-based
network emulation system, is to modify the lowest two layers, namely resource vir-
tualization layer and cloud computing layer.

Fig. 1. The principle of the hybrid virtualization approach.

232 J. Lai et al.

In the resource virtualization layer, the xml file adopted by Libvirt to depict and to
create heterogeneous VMs should be established at first. Then, for some heterogeneous
architectures, OS Kernel and Initrd files should be loaded externally when creating VM
instances. In the cloud computing layer, Legacy Openstack lacks the ability to manage
heterogeneous VMs. Therefore, the first step of the implementation is to create
heterogeneous VM images which can be recognized by Openstack. Then, front end
configuration should be carried out, including updating the supported architecture list
of each compute node in the MySQL database. In the meanwhile, Openstack API i.e.,
nova-metadata is called to configure the hardware information of heterogeneous VM
images. At last, the back-end to manage the heterogeneous VMs is also implemented,
with the logical demonstrated in Fig. 3, where os_kernel and os_initrd are the
parameters passing addresses to the aforementioned xml files.

Fig. 2. Architecture of the cloud-based emulation platform.

Fig. 3. Implementation schematic diagram.

A Hybrid Virtualization Approach 233

5 Case Study: Applying the Hybrid Approach to Emulate
a Space-Ground Integrated Network

5.1 Emulation Scenarios and Assumptions

A SGIN is considered as the target network to be emulated. The topology of a typical
SGIN is presented in Fig. 4. As is shown, in the space section, three Sparc-architected
GEO satellite nodes connected with each other forms a ring as the backbone network.
Each of the GEO satellite node covers a wide area of earth surface, and connects with a
large number of heterogeneous terminal nodes on the ground. To simplify the emu-
lation scenario, this case study only concerns three ground terminal nodes (each with a
different architecture) for each GEO node, namely one ARM, one PPC, and one x86
terminal node. In practice, there might be thousand or tens of thousands terminal nodes
served by each single GEO satellite. Besides, a gateway station node providing access
to other ground networks is connected with one of the GEO satellites; it is assumed to
be x86 architecture based. The emulated SGIN network is built in the cloud-based
emulation system, with applying the proposed hybrid virtualization. Particularly, the
x86 nodes are emulated by QEMU-KVM technology, while the sparc nodes, ARM
nodes and PPC nodes utilize QEMU-System technology.

5.2 Functional Verification and Performance Evaluation

Functional verifications are carried out as fellows. Firstly, connectivity between two
arbitrarily chosen nodes is tested by using ping tool. The results show no difference
between scenarios with and without applying the proposed hybrid scheme. Secondly,
real-time video streaming function is also verified in the emulated network. Two
heterogonous nodes are randomly chosen, and on which VLC server and client are
deployed, respectively. A H.264 encoded video file is streamed from the server to the
client, and again, no big difference is observed between scenarios with and without
using the proposed approach.

Fig. 4. Schematic diagram.

234 J. Lai et al.

Comparative performance evaluations are carried on for the scenarios with and
without using the proposed approach. The VM profiles for the two different scenarios
are given in Table 1. Both computation and networking performance are considered in
this case study. On one hand, for computation performance evaluation, Unix Bench is
adopted. Table 2 presents the testing results. On the other hand, for the networking
performance evaluation, the iperf and ping tools are utilized to measure TCP and UDP
bandwidth, packet loss, transmission delay and Jitter. The results are given in Table 3.

5.3 Results Discussion

According to the above experimental results, it is no surprised that the heterogeneous
VMs emulated by the QEMU-System technology are with much lower computation
and networking performance, attributed to the fact that the software-based instruction
translation is much slower than the hardware-assistant virtualization. Considering the
fact that only part of the target nodes will be emulated by QEMU-System technology,
and the fact that QEMU-KVM starts to support virtualize more architectures, the cost
of the proposed hybrid approach is still affordable.

Table 1. The VM profiles.

CPU AMD R1700X RAM 64 GB DDR4 2400

Network Card Intel 1000 Mbps * 4 Storage SSD 480 GB
QEMU Version 2.5.0 Libvirt Version 1.3.1
OpenStack Mitaka Unixbench Version 5.1.3
OS Ubuntu 14.04 LTS Kernel 4.4.0-96-generic

Table 2. Computational performance.

Metric Arch.

Qemu-kvm Qemu-system

X86 ARM PowerPC

Ncpu 1 2 3 4 1 2 3 4 1 2 3 4
TCP BW (G/s) 47.3 49.1 51.3 52.6 1.4 1.4 1.5 1.5 1.9 1.9 2.0 2.1
UDP BW (G/s) 0.81 0.81 0.80 0.81 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1
Packet loss (%) 0.46 0.75 0.61 0.44 0 0 0 0 0 0 0 0
Time delay (ms) 0.36 0.29 0.38 0.28 0.7 0.7 0.7 0.7 0.8 0.8 0.9 0.8
Jitter 0.09 0.05 0.10 0.07 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2

A Hybrid Virtualization Approach 235

6 Conclusion

Network emulation is regarded as the most promising network testing method attrib-
uted to its low cost and high fidelity features. Most existing network emulators rely on
x86 based VMs or containers to imitate network nodes of heterogeneous architectures,
such as ARM, PowerPC, Sparc, MIPS, etc., which could bring incompatibility prob-
lems to the protocol and application software running on the real nodes. This paper
focused on solving this incompatibility problem and further improving emulation
fidelity. To that end, the paper designed an innovative hybrid virtualization approach to
emulate the heterogeneous nodes in target networks. The proposed hybrid approach
was also implemented in a practical cloud-based network emulation platform. A Case
study on emulating an SGIN illustrated that the hybrid virtualization approach effec-
tively and efficiently eliminates the incompatibility problem in practical scenarios with
an affordable performance degradation.

The planned work for the next step mainly focus on the cost of VMs. Compared to
the currently booming light-weighted container technologies, such as Docker, VM’s
cost is still too high, which promotes the authors to investigate replacement of the VMs
by containers for more efficient network emulations.

Table 3. Network performance.

Metric Arch.

Qemu-kvm Qemu-system

X86 ARM PowerPC

Ncpu 1 2 3 4 1 2 3 4 1 2 3 4

String manipulation 204.4 200.6 583.8 745.2 166.7 169.6 170.8 168.8 181.9 193.4 219.0 215.2

Floating point
processing

31.2 249.2 221.9 193.1 55.8 67.1 73.6 82.4 24.1 25.1 23.2 24.8

R/W 34.8 34.1 88.6 110.2 11.5 13.3 13.9 14.4 55.9 56.4 56.8 56.7

File replication
(small)

976.7 980.1 1567.9 1492.6 75.6 72.2 54.6 78.4 40.7 36.1 37.6 31.6

File replication
(middle)

1601.6 1585.5 2526.1 2380.7 61.1 118.4 87.0 87.8 117.0 65.0 87.3 52.8

File replication
(large)

3249.5 3229.4 5718.6 5511.6 169.6 137.6 172.2 194.5 151.2 147.5 143.0 138.3

Process
communication

1049.3 1036.3 3043.2 3886.9 98.9 97.8 96.5 101.6 33.8 36.3 35.3 25.1

Process context
switching

730.9 617.0 1889.6 2398.3 19.2 21.0 21.3 22.4 22.2 21.8 22.4 23.7

Process creation 137.3 138.3 342.1 497.1 56.8 61.9 68.5 59.7 57.8 62.4 64.3 67.8

Single script
operation

93.2 90.1 240.0 298.6 33.0 33.2 33.2 32.4 100.5 102.1 113.1 15.2

Multi script operation 86.3 74.8 220.9 271.2 28.7 28.0 26.5 24.6 90.5 91.6 90.2 93.1

System call 578.1 569.5 1585.9 3023.5 255.7 256.9 252.4 255.4 31.5 32.3 23.2 31.8

Score 300.9 343.9 769.4 876.9 59.4 64.3 63.8 64.8 57.2 60.1 59.0 63.1

236 J. Lai et al.

Acknowledgement. This work is partially supported by the Science and Technology on
Communication Networks Laboratory (Grant No. XX17641X011-03), the 54th Research Insti-
tute of China Electronics Technology Group Corporation, and the National Natural Science
Foundation of China (Grant No. 61402085 & No. 61872051).

References

1. Ahrenholz, J., Danilov, C., Henderson, T.R., Kim, J.H.: CORE: a real-time network emulator.
In: 2008 IEEE Military Communications Conference, MILCOM 2008, San Diego, CA, USA,
pp. 1–7 (2008)

2. Soles, L.R., Reichherzer, T., Snider, D.H.: Creating a cost-effective air-to-ground network
simulation environment. In: SoutheastCon 2015, Fort Lauderdale, FL, USA, pp. 1–5 (2015)

3. Ramneek, T., Choi, W., Seok, W.: Wireless network mobility emulation over wired testbeds:
a review. In: 2015 17th International Conference on Advanced Communication Technology
(ICACT), Seoul, South Korea (2015)

4. Maier, S., Grau, A., Weinschrott, H., Rothermel, K.: Scalable network emulation: a
comparison of virtual routing and virtual machines. In: 2007 12th IEEE Symposium on
Computers and Communications, Las Vegas, NV, USA, pp. 395–402 (2007)

5. Mehta, D., Jaeger, J., Faden, A., Hebert, K., Yazdani, N., Yao, H.: A scalable architecture for
emulating Dynamic Resource Allocation in wireless networks. In: 2009 IEEE Military
Communications Conference, MILCOM 2009, Boston, MA, USA, pp. 1–7 (2009)

6. Balasubramanian, D., Dubey, A., Otte, W.R., Emfinger, W., Kumar, P.S., Karsai, G.: A rapid
testing framework for a mobile cloud. In: 2014 25th IEEE International Symposium on Rapid
System Prototyping, New Delhi, India, pp. 128–134 (2014)

7. To, M.A., Cano, M.: DOCKEMU – a network emulation tool. In: 2015 IEEE 29th
International Conference on Advanced Information Networking and Applications Workshops,
Gwanju, South Korea, pp. 593–598 (2015)

A Hybrid Virtualization Approach 237

	A Hybrid Virtualization Approach to Emulate Heterogeneous Network Nodes
	Abstract
	1 Introduction
	2 Related Work
	3 Cornerstone Technologies
	3.1 Virtual Machine
	3.2 KVM
	3.3 QEMU
	3.4 NFV

	4 A Hybrid Virtualization Approach to Emulate Heterogeneous Nodes in Target Network
	4.1 General Assumptions
	4.2 Principle of the Hybrid Approach
	4.3 Practical Implementation

	5 Case Study: Applying the Hybrid Approach to Emulate a Space-Ground Integrated Network
	5.1 Emulation Scenarios and Assumptions
	5.2 Functional Verification and Performance Evaluation
	5.3 Results Discussion

	6 Conclusion
	Acknowledgement
	References

