
A Data Fusion Algorithm and Simulation
Based on TQMM

Ke Zhang1,2(&), Zeyang Wang3, and Huiling Li4

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China,

Chengdu 611731, China
kezhang@uestc.edu.cn

2 Science and Technology on Electronic Information Control Laboratory,
Chengdu 610000, China

3 Sichuan Jiuzhou Electronic Technology Co., Ltd., Mianyang 621000, China
4 School of Communication and Information Engineering,
University of Electronic Science and Technology of China,

Chengdu 611731, China

Abstract. Asynchronous data fusion is more practical than synchronous data
fusion, the model of track-to-track fusion in this case has been established and
the concept of Track Quality with Multiple Model (TQMM) was put forward,
furthermore a data fusion algorithm is proposed, in which the TQMM is used to
assign weights, to improve tracking precision in asynchronous multi-sensor data
fusion system. The simulation results show that the algorithm has a better
tracking performance compared with original algorithms.
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1 Introduction

Generally, asynchronous track fusion is mainly divided into two categories. One is that
different kinds of sensors have different and fixed sampling periods and the other one is
the time interval of target information provided by sensors has no rule, meaning sensors
have no fixed sampling interval. Due to the limitation of the sensor itself, the first
category can also be divided into two parts according to the starting time of different
sampling periods. In both cases, sensor information can be synchronized through track
pretreatment, and then be tracked by synchronous track fusion algorithm. However, the
pretreatment process will cause errors increasing and reduce the fusion data reliability.
Therefore, researchers put forward a series of asynchronous track fusion algorithm [1–
10]. Some asynchronous fusion algorithms introduce data registration method to the
fusion algorithm for realizing the synchronization of asynchronous data before fusion,
such as the least squares method, interpolation, extrapolation and so on. Besides, some
algorithms deal with asynchronous data on the basis of receiving time, and select the
proper fusion approach for asynchronous data fusion, such as fusion algorithm under
the principle of minimum error covariance matrix trace [1, 2], asynchronous track
fusion algorithm based on information matrix [3–5], distributed weighted fusion
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estimators with random delays [6], time-varying bias estimation for asynchronous
multi-sensor multi-target tracking systems [7] and Step by Step Prediction Fusion
based on Asynchronous Multi-sensor System (SSPEA) [8, 9], etc. These algorithms
also can be used in other research domain, such as traffic analysis [11, 12], big data
analysis [13] and smart transportation [14, 15], etc. But, with these algorithms, the first
kind of asynchronous problem could be basically solved; while, the second problem
could not be solved well.

The SSPFA algorithm mainly uses the multi-sensor’s measurement information in a
fusion cycle to get the filtering estimation, in order to obtain the local state estimation
and the corresponding error covariance of each sensor at the last moment of fusion
cycle. Then after the state prediction of fusion time, the algorithm operates the order
weighting of the sensor prediction information based on the obtaining order of sensor
predictive values and the principle of minimum error covariance matrix. And finally,
the multi-sensor asynchronous fusion is achieved. According to the filtering predictive
thought of SSPFA, [9] proposes a Track - to - Track Fusion for Asynchronous Multi-
sensor based on Step by Step Prediction (TFASP) algorithm. By the local state esti-
mation of multi-sensor fusion, the algorithm predicts sampling values in the fusion
cycle. Then, after the weight fusion of same sensor’s predictive value at fusion
moment, this algorithm regards the fusion value as sensor’s equivalent observation
information at fusion moment and finally achieves the global fusion of asynchronous
multi-sensor by the step-by-step filter fusion. As the input value of the step-by-step
filter fusion, local sensor’s weight fusion decides the tracking performance of the
algorithm. However, determined by the observation precision and sensors’ prediction
error, the weight of local sensor’s weight fusion has no direct relation with the time tag
between the sampling time and fusion time. Therefore, the large error of local sensor’s
state estimation will reduce the tracking accuracy of the whole system. Besides, there is
no feedback mechanism in the entire system. These problems cause some shortcoming
in TFASP algorithm. Therefore, based on Track Quality of Kalman filtering [16, 17],
with the combination of the Track Quality with Multiple Model(TQMM) [18] and
introduction of feedback mechanism into the system [19], this paper presents an
asynchronous multi-sensor track fusion algorithm with information feedback, that is
Asynchronous Fusion based on Track Quality with Multiple Model(AFTQMM)
algorithm. AFTQMM feeds back the one-step prediction of global state estimation to
local sensors. And then after getting TQMM of all sampling points based on this
feedback, local sensors assign the weight according to TQMM of each point, which
improves the accuracy of equivalent observations of local sensors at fusion moment as
well as the performance of global state estimation.

2 Track Quality with Multiple Model and Local Tracking

2.1 Track Quality with Multiple Model

Assuming that the dynamic equation and measurement equation of multi-sensor system
are:
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Xl kþ 1ð Þ ¼ Fl kð ÞXl kð Þþwl kð Þ ð1Þ

Zl kð Þ ¼ Hl kð ÞXl kð ÞþVl kð Þ; l¼1; 2; � � � ; NUM ð2Þ

In equations, NUM is the amount of the filter models, and X j kþ 1ð Þ stands for the
state vector of model l in kþ 1 moment. Fl kð Þ represents the one-step state transition
matrix from moment k to moment kþ 1 under model l, and the system process noise
wl kð Þ is gaussian white noise sequence. Besides,

E wl kð Þ� � ¼ 0 ð3Þ

Cov wl kð Þ;wl sð Þ� � ¼ E wl kð ÞwlT sð Þ
h i

¼ Ql kð Þdks ð4Þ

In equations, Ql kð Þ is nonnegative definite matrix, and Zl kð Þ represents the sensor’s
observed values of target state under model l. Hl kð Þ is measurement matrix, and
measurement noise Vl kð Þ stands for gaussian white noise sequence. Besides,

E vl kð Þ� � ¼ 0 ð5Þ

Cov vl kð Þ; vl sð Þ� � ¼ E vl kð ÞvlT sð Þ
h i

¼ Rl kð Þdks ð6Þ

In equations, Rl kð Þ is the positive definite matrix. System process noise and mea-
surement noise are independent of each other, that is, to meet

Cov wl kð Þ; vl sð Þ� � ¼ 0 s ¼ 1; 2; � � � ; k; � � � ð7Þ

Local track quality determines the track quality of system, which means the track
quality of system after fusion will not be too high [11] if local track quality is poor.
Assuming that the one-step prediction and its covariance of the state of model
l l ¼ 1; 2; � � � ; NUMð Þ in time k are X̂l kþ 1 kjð Þ and Pl kþ 1 kjð Þ respectively, then
the state’s one-step prediction and covariance of model l l ¼ 1; 2; � � � ; NUMð Þ of
sensor i i ¼ 1; 2; � � � ; Nð Þ in kþ 1 time based on l l ¼ 1; 2; � � � ; NUMð Þ model
state in k time are

ml kþ 1ð Þ ¼ Z kþ 1ð Þ � Hl kþ 1ð ÞX̂l kþ 1 kjð Þ ð8Þ

Sl kþ 1ð Þ ¼ Hl kþ 1ð ÞPl kþ 1 kjð ÞHl kþ 1ð ÞT þRl kð Þ ð9Þ

In order to describe the track quality, a standardized distance equation [12] could be
defined
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dl kþ 1ð Þ ¼ ml kþ 1ð ÞTSl kþ 1ð Þ�1ml kþ 1ð Þ ð10Þ

Then, the track quality of model l in time kþ 1 is

Ul kþ 1ð Þ ¼ aUl kð Þþ 1� að Þdl kþ 1ð Þ ð11Þ

The value of U represents the track quality. Obviously, the smaller the U is, the
better the track quality is. Here, a is the historical power factor with the range from 0 to
1, and a ¼ 1=5 in the simulation. When kþ 1 ¼ 4, the track quality of sensor i in
model l is

Ul 4ð Þ ¼ dl 4ð Þ ð12Þ

Therefore, TQMM of sensor i in time kþ 1 is

U kþ 1ð Þ ¼
XN
j¼1

Ul kþ 1ð Þukþ 1 lð Þ ð13Þ

2.2 Local Tracking

In order to adapt the target mobility and get precise local estimate information,
Interacting Multiple Model (IMM) filtering algorithm is adopted for the local track of
sensors. Besides, three kinds of IMM filtering algorithm are applied to reduce the
computational complexity and improve the realtime performance of information pro-
cessing. Among them, the system state vector is X ¼ ½x _x €x y _y €y z _z €z�T , and the model
prior probability is U ¼ ½1 0 0�. The total output of IMM filters is the weighted
average of multi-filters’ filtering results, and the weight is the model probability. If one
model plays a dominant role, then it will enjoy higher probability (between 0.9 and 1),
and the others only obtain lower probabilities (between 0 and 0.1). Besides, the tran-
sition probability of Markov model is

Pij ¼
0:95 0:025 0:025
0:025 0:95 0:025
0:025 0:025 0:95

2
4

3
5 ð14Þ

3 Asynchronous Fusion Algorithm Based on Track Quality
with Multiple Model

3.1 Basic Flow

The main idea of this algorithm includes: the observed filter prediction at fusion
moment is gotten based on the sensors’ local estimated information; then, using the
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weight fusion of same sensor’s prediction to obtain sensors’ observed information at
fusion moment; finally, global fusion of asynchronous multi-sensor is achieved based
on step by step filtering fusion process. The process is shown in Fig. 1.

3.2 Fusion Model

According to Fig. 1, assuming that the fusion period is T, and the algorithm’s basic fusion
model is given when the amount of sensors is N in a fusion cycle, as shown in Fig. 2.
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Fig. 1. Algorithm flow chart of step by step asynchronous track fusion based on track quality

Fig. 2. Asynchronous fusion models
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3.3 Steps of Algorithm

As shown in Figs. 1 and 2, the algorithm includes four parts: multi-model prediction,
feedback element, local sensors’ weight fusion and distributed filtering fusion. The
process is shown below.

Assuming that the global state fusion estimation and the corresponding error
covariance of system are X̂f ðk � 1jk � 1Þ and Pðk � 1jk � 1Þ in fusion time tk�1. There
are N (N� 0) sensors with observed information in fusion period, and the observation
value of sensor i (i ¼ 1; 2; � � � ;N) is Mi (Mi � 0). The fusion model in Fig. 2 is built on
the basis of each sensor with more than 2 sampling points, which means Mi � 2.
However, due to the randomness of the data provided by the sensors, there are two
cases in fusion period. One is N ¼ 0, which means the fusion center cannot obtain the
continuous target information in a certain interval. Another one is N[ 0. In this case,
based on the observation number, Mi can be divided into two parts: Mi ¼ 1 and Mi � 2.
For different situations, different approaches are adopted to optimize the fusion process.

When N ¼ 0, the state estimation of current fusion moment is achieved based on
the state estimation of precious fusion moment. However, when N ¼ 0 continuously
exists, using this method to get information will reduce the fusion algorithm’s effec-
tiveness because of the accumulation of prediction error. With the improvement of their
performance, sensors will be chosen to detect tracking object in all directions, to avoid
N ¼ 0 in the fusion center. When N[ 0, if Mi ¼ 1, the prediction and the step-by-step
filtering fusion could be taken directly without weighted fusion process. While, if
Mi � 2, the algorithm can be operated following the asynchronous fusion model in
Fig. 2. Besides, if the observed information of some sensors at fusion moment exists,
the information could be applied directly to participate the step-by-step filtering fusion.

Now, there are two known issue. Firstly, the number of sensors and the observed
number in fusion period tk�1; tkð � are N and Mi (i ¼ 1; 2; � � � ;N). Besides, the target
state estimation and the corresponding covariance error of sensor i in observed time
tj;i j ¼ 1; 2; � � � ;Mið Þ are x̂iðtj;ijtj;iÞ and piðtj;ijtj;iÞ. The process of getting the state esti-
mation X̂f ðkjkÞ and the covariance error PðkjkÞ of system track in fusion center at time
tk will be introduced.

3.3.1 Multi-model Prediction
Judge the value of N. When N 6¼ 0, search all sampling points ½t1;i; t2;i; � � � ; tMi;i� of
sensor i in fusion circle, and then operate one step test based on 3 models, and predict
all sampling pinots to fusion moment tk . The process is as follow:

Dtj;i ¼ tk � tj;i; j ¼ 1; 2; � � �Mi ð15Þ

In the equation, the local state estimation and the error covariance of sensors in time
tj;i are x̂iðtj;ijtj;iÞ and piðtj;ijtj;iÞ. Based on time difference, the corresponding state
transition matrix Fl

j;i
tj;i
� � ðl ¼ 1; 2; 3Þ could be gotten by IMM filtering idea, and then

the observation predictive value could be worked out.
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Zl
i
ðtkjtj;iÞ ¼ Hl

i kð Þ � Fl
j;i
tj;i
� � � x̂

i
ðtj;ijtj;iÞ; l ¼ 1; 2; 3 ð16Þ

In the equation, Hl
i kð Þ is the observation matrix of sensor i’s model l. The multi-

model prediction could be obtained based on the observed prediction Zl
i
ðtkjtj;iÞ of

model l

Z
i
ðtkjtj;iÞ ¼

X3
l¼1

Zl
i
ðtkjtj;iÞ � uil kð Þ ð17Þ

In the equation, ui
l
kð Þ is the probability of sensor i’s model l at time tk .

3.3.2 Feedback Element
Operate one step prediction for system state estimation in time tk�1. The state vector
and the covariance of that are

X̂f k k � 1jð Þ ¼
X3
l¼1

X̂l
f ðk k � 1j Þ � ul kð Þ ð18Þ

P k k � 1jð Þ ¼
X3
l¼1

ul kð Þ � Pl k k � 1jð Þ þ X̂l
f ðk k � 1j Þ � X̂f k k � 1jð Þ

h i
� X̂l

f ðk k � 1j Þ � X̂f k k � 1jð Þ
h i0n o

ð19Þ

In equations, u
l
kð Þ is the probability of system’s model at time tk . X̂l

f ðk k � 1j Þ and
Pl k k � 1jð Þ are the one step prediction and error covariance of system track at time tk�1

based on model l. The expressions are as follows.

X̂l
f
k k � 1jð Þ ¼ Fl k � 1ð ÞX̂l

f
k � 1 k � 1jð Þ ð20Þ

Pl k k � 1jð Þ ¼ Fl k � 1ð ÞPl k � 1 k � 1jð ÞFl k � 1ð ÞT þQl k � 1ð Þ ð21Þ

Fl k � 1ð Þ, X̂l
f
k � 1 k � 1jð Þ and Pl k � 1 kj � 1ð Þ are the state transition matrix, state

estimation and error covariance of system track’s model l at time tk�1.

3.3.3 The Weight Fusion of Local Sensors
The feedback element will get one step prediction of the previous state of fusion center,
and feeds back to local sensors. Then, after getting the TQMM of local sensors’ states
prediction, the feedback could further determine the observation state’s weight and
realize the weight fusion. The deterministic process of the weight factor is shown in
Fig. 3.
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In fusion period tk�1; tkð �, the innovation and covariance of sensor i i ¼ 1; 2; � � � ;ð
NÞ’s observation from time tj;i j ¼ 1; 2; � � � ; Mið Þ to fusion time tk are

mli;j kð Þ ¼ ziðtkjtj;iÞ � Hl
i kð ÞX̂f k k � 1jð Þ ð22Þ

Sli;j kð Þ ¼ Hl kð ÞP k k � 1jð ÞHl
i kð ÞT þRl k � 1ð Þ ð23Þ

Based on Sect. 2.1, TQMM of the sensor i’s sampling point j is Ui;j kð Þ.Then the
measuring degree of TQMM of sensor i’s sampling point j could be calculated.

h j
i kð Þ ¼ expf�Ui;j kð Þg ð24Þ

The corresponding weight is

xi
j kð Þ ¼ h j

i
kð Þ=
XMi

j

h j
i kð Þ ð25Þ

Finally, by the weight fusion, the equivalent observation data of sensor i in time tk
is obtained.

ZiðkÞ ¼
XMi

j¼1

wj
i kð ÞZiðtkjtj;iÞ ð26Þ

3.3.4 Distributed Filtering Fusion
From steps above, we can get the observation information Z1ðkÞ, Z2ðkÞ, � � �ZNðkÞ of N
sensors at fusion time tk. Then, the global state fusion estimation and the corresponding
error covariance at fusion moment could be worked out with the step by step fusion
thought [16].

Fig. 3. The flow chart of the distribution of the weight factor
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X̂f ðkjkÞ ¼ X̂NðkjkÞ
PðkjkÞ ¼ PNðkjkÞ

(
ð27Þ

With the known information of X̂f ðkjk � 1Þ ¼ F k � 1ð ÞX̂f ðk � 1jk � 1Þ and
Pðkjk � 1Þ ¼ F k � 1ð ÞPðk � 1jk � 1ÞF k � 1ð ÞT þGQGT, the actual expressions of
Eq. (27) are as follows. When N ¼ 1, assuming X̂1ðkjk � 1Þ ¼ X̂f ðkjk � 1Þ and
P1ðkjk � 1Þ ¼ Pðkjk � 1Þ, then

X̂1ðkjkÞ ¼ F k � 1ð ÞX̂f ðk � 1jk � 1ÞþK1ðkÞ Z1ðkÞ � HX̂1ðkjk � 1Þ� � ð28Þ

P1ðkjkÞ ¼ I � K1ðkÞH kð Þ½ �P1ðkjk � 1Þ ð29Þ

When N � 2,

X̂NðkjkÞ ¼ F k � 1ð ÞX̂f ðk � 1jk � 1Þþ
XN
i¼1

KiðkÞ ZiðkÞ � H kð ÞX̂iðkjk � 1Þ� �� � ð30Þ

PNðkjkÞ ¼ P
N

i¼1
I � KiðkÞH kð Þ½ �

� 	
P1ðkjk � 1Þ ð31Þ

From Eq. (28) to (31), KiðkÞ is the filtering gain matrix of sensor i(i ¼ 1; 2; � � � ;N), and
its calculating formula is shown as the following

KiðkÞ ¼ Piðkjk � 1ÞHðkÞT HðkÞPiðkjk � 1ÞHðkÞT þRi kð Þ
h i�1

ð32Þ

When i ¼ 2; � � � ;N, we can get X̂iðkjk � 1Þ ¼ X̂i�1ðkjkÞ and Piðkjk � 1Þ ¼
Pi�1ðkjkÞ.

4 Simulation Analysis

4.1 Simulation Environment

For comparative analysis, Root Mean Square Error (RMSE) and Trace of Error
Covariance Matrix (TECM) are chosen as the target tracking performance index.

Assuming that six radars on the same platform observe the same target asyn-
chronously, the sampling time of track data got by fusion center may deviate from the
fixed sampling period, due to the sensor limitation and the communication time-delay
from local node to fusion center. So, we should pay attention to the offset Dt of sensor
from the actual sampling period to the fixed sampling period. Besides, there is no
sampling information at some sampling moments because of the target escaping from
the tracking area of the corresponding radar. The tracking fusion problem in this
situation is the typical second kind of asynchronous fusion problem. Each sensor
correlates the observed data to form a target track and reports the track and the data to
the fusion center. However, due to the disunity of measurement error and observation
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coordinates of each sensor, the data from each sensor needs preprocessing before
fusion, generally including data space alignment, gross error rejection and so on.

The target track time is 100 s, and the monte carlo simulation will be done for 600
times (M ¼ 600). Then the expression of RMSE and TECM are

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
n¼1

ððx� x̂nÞ2 þðy� ŷnÞ2 þðz� ẑnÞ2Þ
M

vuuut
ð33Þ

TECM =
XM
n¼1

traceðPnÞ
 !,

M ð34Þ

In the equation, x̂n, ŷn, ẑn are the location information of the n th simulation fusion
track, and Pn is the error covariant matrix of the n th simulation track.

4.2 Results and Analysis

The sampling periods of six radars are 0.2 s, 0.5 s, 0.8 s, 1.0 s, 1.2 s and 1.5 s. The
observation precisions of radars on x, y, z directions are 50.23 m, 51.15 m, 55.57 m,
50.28 m, 57.69 m, 51.59 m and their locations are (2800 m, 0 m, 0 m), (0 m, 500 m,
0 m), (0 m, 0 m, 1800 m), (50 m, 100 m, 500 m), (50 m, 100 m, 2800 m), (100 m,
500 m, 800 m). The initial position of target is (−3000 m,1000 m,−4000 m), with the
initial speed of 100 m/s. The target flies at a constant speed in 0–20 s, carry turning
maneuver at a speed of 0.157 rad/s in 20–40 s, then flies at a constant speed in 40–
60 s, and does turning maneuver at a speed of −0.157 m/s in 60–80 s. Finally, it flies at
a constant speed in 80–120 s. The total flying time of the target is 120 s, and the flight
path is shown in Fig. 4.

Fig. 4. The flight path of the maneuvering target
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Systems with the number of sensors from 3 to 6 track the maneuvering target
simultaneously (the fusion period of four systems is 1.0 s) to test the influence of the
sensor’s number on the track performance of AFTQMM (Fig. 5 and Chart 1).

The figures and the charts above proves that with the increasing of the number of
sensors, the RMSE and TECH curves of AFTQMM decline, and the system track
performance improve gradually. However, after the number is greater than 5, the
system fusion accuracy has not been significantly improved. In engineering application,
based on the relationship of track performance and systematic complexity, proper
number of sensors can achieve the higher tracking accuracy, real-time processing and
the project cost reducing as much as possible.
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Fig. 5. The relationship of RMSE and the number of sensors in AFTMM algorithm

Chart 1. The relationship of TECM average value and the number of sensors in AFTQMM
algorithm
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