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Abstract. The Space-air-ground integrated network (SAGIN) has been a
valuable architecture for communication support due to its characteristics of
wide coverage and low transmission delay. Both low earth orbit (LEO) satellites
and UAVs can serve as relay nodes to provide reliable communication services
for ground devices. However, the design of relay node selection scheme in
SAGIN is not easy, considering different accessing layers and resource usage of
network segments. Moreover, network topology, available resources and rela-
tive motion need to be analyzed comprehensively. To address these problems, a
traffic prediction method based on autoregressive moving average (ARMA)
model is utilized firstly to forecast the resource usage of SAGIN segments. After
the analysis of link performance, the Adaboost algorithm is used to classify
network nodes for optimal relay node selection. Simulation results show that the
proposed intelligent relay node selection scheme is feasible and effective.
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1 Introduction

Utilizing ultramodern communication technologies and interconnecting space, air,
ground network segments, the space-air-ground integrated network (SAGIN) has
attracted many attentions from academia to industry [1]. LEO constellation has the
advantages of low delay, high capacity, full coverage and manageability. DJI, the
world leader in UAVs and aerial photography technology, has exhibited its new
SkyCells communication solutions to optimize the current ground network. The UAV
and LEO satellite networks can extend network coverage in highly congested city
areas. The UAV and LEO satellite node will serve as the relay node to help transmit
data among the ground devices. However, in the LEO satellite layer and air vehicle
layer, the segments move at a high speed and the network topology is constantly
changing [2]. As a result, the network performance, such as network traffic, link delay,
bandwidth, and connection time, will change sequentially with the movement of
segments, which causes difficulties in the selection of relay nodes [3]. Meanwhile, the
ground device is always covered by multiple UAVs and LEO satellites. How to choose
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the appropriate accessing node according to the communication requirements to ensure
the load balance of the integrated network also needs to be considered [4].

In recent years, more and more researchers have been starting their projects on
traffic prediction, network control and path planning in SAGIN. Authors in [5] tried to
combine wavelet transform and autoregressive integrated moving average (ARIMA)
algorithm to predict self-similar traffic in satellite-ground networks. The self-similarity
of satellite network traffic is proved. In general, the SAGIN can be modeled with a
directed connected graph for network analysis and control. Authors in [6] mainly
considered the link planning from small satellite networks (SSNs) to ground devices.
An extended time-evolving graph was exploited to characterize the network resources.
The network profit was formulated as a mixed-integer linear programming model.
Authors in [7] developed a new dynamic CPD algorithm while considering the time-
varying property of contacts in broadband data relay satellite networks. The flow
optimization problem in the time-spread graph was treated as a random optimization
problem. The relay selection algorithm could improve the throughput, but the com-
putational complexity of the proposed scheme was high, which could occupy more
network resources. Most methods above did not consider the computational complexity
of the scheme. A lightweight relay node scheme needs to be designed, considering the
dynamic topology of SAGIN. Traffic modeling [8], traffic estimation [9], network
selection [10], energy efficiency [11] and network behaviors [12] are studied in pre-
vious work.

In this paper, the network traffic is considered as an important reference because it
can reflect the current load of network segments. Therefore, a network traffic prediction
scheme based on ARMA model is utilized to evaluate the node performance. Fur-
thermore, the network performance metrics such as link delay, bandwidth and con-
nection time are all take into consideration for segment evaluation. In order to realize
fast relay node selection, an Adaboost based link planning (ALP) algorithm is pro-
posed. All relay nodes are divided into 4 levels according to their data transmission
capacity (DTC). As a result, devices with different communication requirements can be
assigned to the optimal relay nodes, and the load balance of the SAGIN network is also
improved.

The rest of this paper is organized as follows. Section 2 constructs the mathematical
model of ARMA for traffic prediction of SAGIN and then proposes the ALP algorithm.
The simulation results and analysis are shown in Sect. 3. We then conclude our work in
Sect. 4.

2 Mathematical Model

In this section, we mainly talk about network performance evaluation of space-air-
ground integrated network (SAGIN). Firstly, a traffic prediction method based on
autoregressive moving average (ARMA) model is utilized to forecast the resource
usage of SAGIN segments. After the analysis of link performance, the Adaboost-
algorithm is used to classify network nodes according to their data transmission
capacity. Then, an Adaboost-based link planning (ALP) algorithm is proposed for relay
node selection.
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The ARMAðp; qÞ model is a commonly used time series model to realize the optimal
traffic prediction. By analyzing the structure and characteristics of time series, the
minimum variance is obtained. The ARMAðp; qÞ model is composed of the ARðpÞ and
MAðqÞ models. The ARðpÞ model utilizes a linear combination of present disturbance
data and past observation data for traffic prediction, which can be formulated as
follows:

Xt ¼ a1Xt�1 þ a2Xt�2 þ � � � þ apXt�p þ nt ð1Þ

Xt is the time series and aiði ¼ 1; 2; � � � ; pÞ are the undetermined coefficients of the
ARðpÞ model. p is the order of ARðpÞ, and the prediction error is denoted by nt. The
MAðqÞ model makes use of a linear combination of present and past disturbance data to
help traffic prediction. The model can be described as:

ut ¼ et � b1et�1 � b2et�2 � � � � � bqet�q ð2Þ

where ut is the observed value, eiði ¼ t � q; t � qþ 1; � � � ; tÞ are the prediction errors of
the Xi, and q is the order of MAðqÞ. biði ¼ 1; 2; � � � ; qÞ are the undetermined coeffi-
cients. As a result, ARMAðp; qÞ is a combination of ARðpÞ and MAðqÞ, which can be
expressed as:

Xt ¼ a1Xt�1 þ a2Xt�2 þ � � � þ apXt�p

þ et � b1et�1 � b2et�2 � � � � � bqet�q
ð3Þ

In order to utilize the ARMAðp; qÞ model for traffic prediction, it is necessary to find
the best fitting, that is, to determine the order ðp; qÞ and other coefficients. The order
ðp; qÞ can be determined by verifying the autocorrelation function (ACF) and partial
correlation function (PACF) of the time sequences Xt.The ACF and PACF of Xt can be
calculated as qk and Ukk:

qk ¼
CovðXt;Xtþ kÞ

r2X
ð4Þ

Ukk ¼
qk �

Pk�1

i¼1
Uk�1;iqk�i

1�Pk�1

i¼1
Uk�1;iqi

k ¼ 2; 3; . . . ð5Þ

Where

U11 ¼ q1 ð6Þ

Uki ¼ Uk�1;i � UkkUk�1;k�1 ð7Þ
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When the PACF of Xt meets Uki ¼ 0 ðk[ pÞ, the value of p is k � 1. Similarly, if
the ACF of Xt meets qk ¼ 0 ðk[ qÞ, the value of q is k � 1.

The moment estimation method is used to calculate the coefficients, which has the
advantages of simple calculation and high estimation accuracy. Firstly the ARMAðp; qÞ
model can be expressed as:

Xt ¼
Xp
i¼1

aiXt�i þ et þ
Xq
i¼1

biet�i ð8Þ

where fetg is normally distributed as Nð0; r2Þ. a and b meet:

aðzÞ ¼ 1�
Xp
i¼1

aiz
i ð9Þ

bðzÞ ¼ 1þ
Xq
i¼1

biz
i ð10Þ

The aðzÞ and bðzÞ are prime of each other and meets aðzÞbðzÞ 6¼ 0; zj j � 1.
Meanwhile, aðzÞ can be calculated as:

Xqþ 1

Xqþ 2

..

.

Xpþ q

2
666664

3
777775 ¼

Xq Xq�1 � � � Xq�pþ 1

Xqþ 1 Xq � � � Xq�pþ 2

..

. ..
. ..

.

Xqþ p�1 Xqþ p�2 � � � Xq

2
6664

3
7775

a1
a2

..

.

ap

2
666664

3
777775 ð11Þ

X̂t is used to represent the ACF of the time sequences Xt, and the moment estimate
value of a can be calculated as follows:

a1
^

a2
^

..

.

ap
^

2
66666664

3
77777775
¼

X̂q X̂q�1 � � � X̂q�pþ 1

X̂qþ 1 X̂q � � � X̂q�pþ 2

..

. ..
. ..

.

X̂qþ p�1 X̂qþ p�2 � � � X̂q

2
6664

3
7775
�1 X̂qþ 1

X̂qþ 2

..

.

X̂qþ p

2
666664

3
777775 ð12Þ

The value of coefficient b is obtained similarly. As a result, the estimate value X̂t of
Xt at time t can be acquired. Actually, X̂t is utilized to predict the network traffic in the
next moment, but the value cannot be directly used for relay node selection. If the total
bandwidth is denoted by Btotal, the normalized available bandwidth of the network can
be defined as Ba:
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Ba ¼ Btotal � X̂t

Btotal
ð13Þ

The network traffic prediction can obtain the network resource usage in the next
moment. But the data transmission capacity of segments cannot be determined by one
index. In order to accurately evaluate the node performance, the link delay, bandwidth
and link connection time should also be comprehensively taken into consideration.

Link Delay: Without considering the time taken by the signal transmission and
reception, the time taken by transmitting the information from the device to the relay
node is assumed as the link delay diE tð Þ:

diE tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xE tð Þ � xi tð Þð Þ2 þ yE tð Þ � yi tð Þð Þþ zE tð Þ � zi tð Þð Þ2

q
c

ð14Þ

where xi tð Þ; yi tð Þ; zi tð Þð Þ and xE tð Þ; yE tð Þ; zE tð Þð Þ respectively represent the three-
dimensional coordinates of relay node E and device i, and they are all functions of time.
c is the speed of light. The value of diEðtÞ is denoted by DiE

Bandwidth: The data transmission rate always depends on the bandwidth provided by
the node’s transceiver and the unit is Mbps. For example, the total bandwidth BEtotal of
relay node E is 20 Mbps, and 5 Mbps has been used to forward other tasks. Mean-
while, the transceiver capacity Bitotal of device i is 18 Mbps. If the communication link
is established between E and i, the maximum available bandwidth BEi is 15 Mbps,
which is the smaller available Bvalue for both nodes:

BEi ¼ min BE; Bið Þ ð15Þ

where the value of BEi can be used to describe the bandwidth of device i.

Connection Time: The link connection time starts with the establishment of trans-
mission links and ends with the satellites disappeared, where the disappearance means
that two nodes have lost their physical visibility. It depends on the relative position of
satellites, ground targets, and the Earth. The critical time when link establishment is
defined as T0 and when two nodes lose physical visibility is Tmax. The link connection
time TEi between relay node E and device i can be expressed as:

TEi ¼ Tmax � T0 ð16Þ

For convenient comparison with the other indicators, we normalize Ba as B�
a, DiE as

D�
iE
, BiE as B�

iE , TiE as T�
iE:
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B�
a ¼ Ba � 100 ð17Þ

D�
iE ¼ DiE � Dmin

Dmax � Dmin
� 100 ð18Þ

B�
iE ¼ BiE � Bmin

Bmax � Bmin
� 100 ð19Þ

T�
iE ¼ TiE � Tmin

Tmax � Tmin
� 100 ð20Þ

where Dmax and Dmin, Bmax and Bmin, Tmax and Tmin are the maximum and minimum
values in the dataset. Finally, the dataset can be expressed as X:

X ¼ x1; x2; . . .; xnf g ð21Þ

where xi is a 4-dimensional vector that represents the four characteristics of node i.
Utilizing the four parameters, the performance of the node can be evaluated.

However, the calculation is too complex because the parameters are not independent of
each other and require further processing. Therefore, it is necessary to find efficient and
rapid evaluation methods. The Adaboost classifier is as an adaptive classifier. It trains a
series of weak classifiers and combining them into a strong classifier to quickly meet
the classification requirements of datasets in different dimensions, as shown in Fig. 1.
Dataset X is divided into NþP values. The dataset y1; y2; � � � ; yN ; � � � ; yNþP are

calculated as classification labels of nodes. Finally, the dataset T is obtained:

T ¼ fðX1; y1Þ; ðX2; y2Þ; � � � ; ðXNþP; yN þPÞg ð22Þ

where Xi 2 v�Nn, yi 2 f1; 2; 3; 4g. The first N sets of data are divided as the training
set TN , and the last P sets of data are used as the testing set TP. The training set TN is
used to train the strong classifier as:

Data
set

X1=(x11,x12,x13,x14)

Adaboost

model

DTC
level

X2=(x21,x22,x23,x24)

Xn=(xn1,xn2,xn3,xn4)

Fig. 1. The Adaboost model for relay node selection.
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Hfinal ¼ signðf ðxÞÞ ¼ sign
XT
t¼1

atHtðxÞ
 !

ð23Þ

According to the above, each node in SAGIN is classified to 1, 2, 3, 4 levels. The
higher the level, the stronger the DTC. Meanwhile, the entire network topology can be
described using the directed connected graph. For all nodes, there are:

IM ¼
E11;E12; . . .;E1j

E21;E22; . . .;E2j

. . .
Ei1;Ei2; . . .;Eij

8>><
>>:

9>>=
>>; ð24Þ

where the value of each Eij is 1, 2, 3, or 4. The value expresses the DTC of link
between node i and node j. If two nodes have no physical visibility, the value is 0. It
only needs to select the nodes with the optimal level to form the data transmission links
(DTL), as shown in Fig. 2. The important value of ALP is that it has low computational
complexity. Further, it can promote the load balance of the whole SAGIN, so as to
prevent the link congestion caused by segment overload.

3 Simulation Analysis

The simulation is carried out over a predictable three-layer SAGIN network with the
use of the Satellite Tool Kit (STK) simulator. The LEO satellite model is established
with reference to iridium constellation. 30 ground devices and 20 UAVs are deployed
at Chengdu city in STK simulator. Since traffic data of SAGIN network cannot be
obtained, this paper will use the dataset in [6] for traffic prediction, where the authors
have proved the reasonability and self-similarity of the traffic data. Each link of the

Level 4

Level 3

Level 2

Level 1

Ground network

UAV cluster

LEO 
satellite 
network

DTL

Cross-layer
connection

Fig. 2. The relay node selection according to available capacity levels.
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SAGIN scenario corresponds to an origin destination (OD) flow in the dataset. Then we
connect STK with MATLAB to obtain the other network data including link delay,
bandwidth, and connection time. The calculation and comparison of the proposed
scheme and other methods are also carried out in MATLAB. In the simulation scenario,
each device is covered by multiple UAVs and LEO satellites in each time slot.

In the simulation, we first analyze the traffic prediction results. Figure 3 shows the
prediction results of network traffic flows F1 and F2. In our simulation tests, other end-
to-end traffic pairs holds similar results. As shown in Fig. 3(a) and (b), the real network
traffic exhibits significant time-varying characteristics under different time slots.
The ARMA model can capture dynamic changes of the network traffic flow F1 and F2
effectively. Although there are errors, we have seen that the ARMA model can better
look for the traffic trends. These further indicates that the utilized ARMA model can
effectively predict the change of the network traffic over the time.

Next we discuss the classification results of the Adaboost model. 50 data sets is
selected randomly, 30 for training, 20 for testing. Figure 4(a) express the change of
classification error (CE) in model training stage. It can be seen form Fig. 4(a) that the
CE shows a downward trend as the weak classifier number increases, from 20% in 1
weak classifier to 0% in 18 weak classifier. The classification results of different
capacity levels is expressed in Fig. 4(b). It can be seen that each set of data was
classified to the correct level. This reflects that the training model is effective.

Figure 5 expresses the training results of Adaboost model with different training
samples and different dataset proportions. Figure 5(a) and (b) respectively use 25
training data and 100 training data. It can be seen that Fig. 5(a) utilize 18 weak
classifiers to reduce the CE to 7%, while Fig. 5(a) makes use of 20 weak classifiers to
reduce the CE to 5%. It can be found that more training samples need more weak
classifiers to complete feature recognition so as to achieve better classification accu-
racy. Particularly, the CE may fluctuate when the training samples are small. Therefore,
the training sample with 50 data sets is enough to meet the requirements of Adaboost
model training. Different proportions of training and test data may also affect the
accuracy of the Adaboost model. Figure 5(c)–(d) represent the model training results

0 200 400 600 800 1000 1200
0

20

40

time(s)

)spb
M(etar

1F)a(

Predictive value
Real value

0 200 400 600 800 1000 1200
0

20

40

time(s)

)spb
M(etar

2F)b(

Predictive value
Real value

Fig. 3. Prediction results of network traffic flow F1 and F2.
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under different proportions in 50 data sets. It can be found that the classification result
is better when the proportion of training set is higher. But this may also produce
unreliable models because of less test data. However, if the training set is reduced, the
stability of the model will be challenged. Therefore, after comprehensive consideration,
we select the Adaboost model with the best accuracy, including 30 training data and 20
test data. The remaining nodes in SAGIN are classified by this model.

Next, we will evaluate the proposed ALP scheme in terms of link congestion,
compared with current mainstream link construction schemes including the shortest
path Dijkstra algorithm (SPDA) and the traveling salesman algorithm (TSA). We

Fig. 4. The classification result of ALP algorithm.

Fig. 5. The impact of sample size and proportion on classification error.
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define the sum of overloads of all nodes in one link as the link congestion, and examine
three schemes. Figure 6 displays the link congestion of three schemes with the increase
of number of tasks. It can be seen that the SPDA method has the fastest increase in link
congestion value, followed by TSA method, and ALP method has the slowest growth.
This is because the node with the largest available capacity is considered first in
ALP. The other two schemes put the shortest path in the first place and rarely consider
the link congestion. As a result, it is easy to cause link congestion and serious packet
loss, affecting the quality of data transmission. So the communications link of ALP
scheme is relatively unimpeded.

4 Conclusion

This paper studies the relay node selection problem in the Space-air-ground integrated
network (SAGIN). In contrast to the previous studies, we jointly consider traffic pre-
diction and segment classification in SAGIN. We utilize the autoregressive moving
average (ARMA) model for traffic prediction, and the results of prediction are imported
the Adaboost model with other link performances to realize the classification of
involved nodes. The simulation results show that the proposed relay node selection
scheme is promising.
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Fig. 6. The comparison of link congestion.
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