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Abstract. Currently power telecommunication access networks have many
new requirements to meet the low-power WAN with smart electric power
allocations. In such a case, network traffic in the low-power WAN has exhibited
new features and there are some challenges for network managements. This
paper uses the linear regression model to propose a new method to model and
predict network traffic. Firstly, network traffic is modeled as a linear regression
model according to the regression model theory. Then the linear regression
modeling method is used to capture network traffic features. By calculating the
parameters of the model, it can be decided correctly. Then, we can predict
network traffic accurately. Simulation results show that our approach is effective
and promising.
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1 Introduction

With current network technology development increasingly quickening and new
applications quickly appearing in low-power WAN with smart electric power alloca-
tions, more and more new features have embodied in network traffic. This leads to a
larger challenging for network engineering in low-power WAN [1–3]. To effectively
guaranteeing electric power network performance, we need to accurately model net-
work traffic characteristics. Low-power WAN traffic holds many properties, such as
burst, self-similarity, spatio-temporal correlations and so on, which has a direct impact
on network performance and management [4–7]. The low-power WAN traffic holds
network-level behaviors. Hence, from a global view, network-level traffic modeling has
received more and more attention from researchers, operators, and developer over the
whole world [8–14]. This has become a hot research topic.

The traffic behaviors in low-power WAN for smart electric power allocations hold
network-level nature, which is often used to describe kinds of network behaviors, such
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as path loads, network throughput, network utilization, and so on. The statistical
methods [1, 3], gravity model [4], generic evolvement [5–7], mix method [2], and
compressive sensing [12] are utilized to capture the properties of the network-level
traffic in low-power WAN. Although these methods attain better prediction and esti-
mation performance for network-level traffic, they produced larger errors and often
additional link load information. Hence, it is necessary to research new traffic pre-
diction approach for low-power WAN with smart electric power allocations. The time-
frequency analysis was used to describe multi-scale features of network traffic [1, 9].
Neural network models were utilized to model network-level traffic [10–15]. Moreover,
network traffic prediction methods are extensively applications [16–20]. These methods
still hold a larger prediction error.

In this paper, we propose a novel method to characterize and analyze network
traffic accurately. Our method is based on the linear regression modeling theory.
Generally, we have difficulties in modeling and describing network traffic because of
their highly time-varying nature, which is difficult to be described via the analytical
formulation. In this paper, we exploit the linear regression model to characterize net-
work traffic. The linear regression theory is used to build the model parameters via the
sample data about network traffic. To the end, firstly we denote a linear regression
model over time. Secondly, by calculate the model parameters, we correctly create the
prediction model for network traffic based on the linear regression model. Thirdly, we
propose a new prediction algorithm to estimate and forecast network traffic accurately.
Simulation results show that our approach is effective and promising.

The rest of this paper is organized as follows. Our method is derived in Sect. 2.
Section 3 presents the simulation results and analysis. We then conclude our work in
Sect. 4.

2 Problem Statement

The model of the time-varying network traffic for the power telecommunication access
network is very hard to build. The traffic in the network is fluctuation along with the
business volume and time, and the features of flow is very hard to express it directly, so
it is a huge challenge to model the traffic in the power telecommunication access
network. Here, we donate the traffic in network-level as y ¼ fyð1Þ; yð2Þ; . . .; yðtÞg,
where yðtÞ is the traffic value of flow y at the time slot t. We assume that the traffic value
yðtÞ in the network satisfies the independent identically distributed random process.

According to the linear regression analysis theory, linear regression model can be
written as follow

y ¼ b0 þ b1x1 þ . . .þ bmxm þ . . .þ bnxn þ e
EðeÞ ¼ 0; 0\DðeÞ ¼ r2\þ1

�
ð1Þ

where b0 represents the constant variable, e represents the random error. bm (where
m ¼ 1; 2; . . .; n) represents the partial regression coefficient, xm (where m ¼ 1; 2; . . .; n)
represents the values of many experiments. EðeÞ is the mean value of the random error,
and DðeÞ is the variance of the random error. The random errors is a normal distribution
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whose mean and variance are zero and r2, respectively. So, the distribution of the
random error can be expressed as

pðeÞ ¼ 1ffiffiffiffiffiffi
2p

p expð� e2

2r2
Þ ð2Þ

In the network, we know that there are many users connect into the network at the
same time, many flows are transmitted in the network from one node to another at the
same time. The end-to-end traffic y is regarded as a statistical variable which can be
expressed as the Eq. (1). According to the analysis in [10–12], we know that the traffic
in the access network has the correlation over time. In order to retrieve the feature of
traffic in the power telecommunication access networks, we express the network traffic
with the linear regression theory, so the traffic in the network can be expressed as

y ¼ b0 þ
Xn
i¼1

bixðiÞþ e; e�Nð0; r2Þ ð3Þ

where bi (where i ¼ 1; 2; . . .; n) denotes partial regression coefficient. e represents the
residual error when process network traffic. xðiÞ is the related features of flow traffic.

As we assumed earlier, yðtÞ (where t ¼ 1; 2; . . .) is the traffic instance at time slot t.
From Eq. (3), we know that the statistic traffic at slot t is correlation with characterizes
of flows. Equation (3) shows the statistics of traffic yðtÞ and the characterizes of flows
xðiÞ (where i ¼ 1; 2; . . .; n). xðiÞ denotes the network traffic which can be obtain at time
slot i. And the residual error between the estimation and the actual traffic is e, so we can
obtain the traffic yðtÞ at slot t. Due to the residual error of the estimation is normal
distribution. Based on the liner regression model, the traffic at slot t can be expressed as

yðtÞ ¼ b0 þ
Xn
i¼1

bixtðiÞþ e; e�Nð0; r2Þ ð4Þ

where b0 and bi (where i ¼ 1; 2; . . .; n) are the regression constant and partial regres-
sion coefficient, respectively. xtðiÞ is the characterizes of flow xðiÞ at time slot t. So the
mean of traffic satisfies that

EðyðtÞÞ ¼ Eðb0 þ
Xn
i¼1

bixtðiÞÞ ð5Þ

where Eð�Þ is the expression of expectation value. If there are k measurements and the
characterizes n[ k, so the linear regression can be expressed as

yð1Þ ¼ b0 þ b1x1ð1Þþ b2x1ð2Þþ . . .þ bnx1ðnÞþ e1
yð2Þ ¼ b0 þ b1x2ð1Þþ b1x2ð2Þþ . . .þ b1x2ðnÞþ e2
. . .
yðkÞ ¼ b0 þ b1xkð1Þþ b1xkð2Þþ . . .þ b1xkðnÞþ ek

8>><
>>:

ð6Þ
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Then, we express (6) as a matrix

Y ¼ XBþH ð7Þ

where Y ¼ ½yð1Þ; . . .; yðkÞ�T , B ¼ ½b0; b1; . . .; bn�T , H ¼ ½e1; . . .; ek�T and

X ¼
1 x1ð1Þ x1ð2Þ . . . x1ðnÞ
1 x2ð1Þ x2ð2Þ . . . x2ðnÞ
. . . . . . . . . xjðiÞ . . .
1 xkð1Þ xkð2Þ . . . xkðnÞ

2
664

3
775.

The elements xjðiÞ of matrix X can be obtain from history data. We assume that the
estimates of partial regression coefficients are fb̂0; b̂1; . . .; b̂ng, so the Eq. (4) can be
written as

ŷðtÞ ¼ b̂0 þ b̂1xtð1Þþ b̂2xtð2Þþ . . .þ b̂nxtðnÞ ð8Þ

where ŷðtÞ is the estimates of yðtÞ.
The residual error at time slot t is

et ¼ yðtÞ � ŷðtÞ
¼ yðtÞ � ðb̂0 þ b̂1xtð1Þþ b̂2xtð2Þþ . . .þ b̂nxtðnÞÞ

ð9Þ

Then, we use the ordinary least square (OLS) to estimate the residual errors. Here,
we firstly make some assumptions in the following.

Assumption 1: the mean value of residual errors is zero.

EðHÞ ¼ Eð½e1; . . .; ek�TÞ ¼ ½Eðe1Þ; . . .;EðekÞ�T ¼ 0 ð10Þ

Assumption 2: residual errors have the same distribution.

VarðejÞ ¼ Eðe2j Þ ¼ r2; j ¼ 1; 2; . . .; k ð11Þ

Assumption 3: There is no correlation between residual errors.

Covðli; ljÞ ¼ EðliljÞ ¼ 0; i; j ¼ 1; 2; . . .; n ð12Þ

Assumption 4: The residual error and characteristics of flow xtðiÞ have no relevance.

CovðxjðiÞ; ljÞ ¼ EðxjðiÞljÞ ¼ 0; j ¼ 1; 2; ::; t; i ¼ 1; 2; . . .; n ð13Þ

Based on the least square method, we know that the regression constant and partial
regression coefficients should minimize sum of squares of residual errors, so
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RSSðb̂0; b̂1; . . .; b̂nÞ ¼ argminð
Xt

k¼1

e2kÞ

¼ argminð
Xt

k¼1

ðyðkÞ � ŷðkÞÞ2Þ
ð14Þ

For an example, we make experiments that when n ¼ 3 here. So, the traffic at time
slot t can be rewritten as

yðtÞ ¼ b0 þ b1xð1Þþ b2xð2Þþ b3xð3Þþ e; e�Nð0; r2Þ ð15Þ

and the estimates of yðtÞ can be written as

ŷðtÞ ¼ b̂0 þ b̂1xð1Þþ b̂2xð2Þþ b̂3xð3Þþ e; e�Nð0; r2Þ ð16Þ

According to Eqs. (14)–(16) and Eq. (2), we make a optimization to find the
regression coefficients and the residual error.

f ðb0; b1; b2; b3; eÞ
s:t: ŷðkÞ ¼ b̂0 þ b̂1xð1Þþ b̂2xð2Þþ b̂3xð3Þþ e

pðeÞ ¼ 1ffiffiffiffi
2p

p expð� e2
2r2Þ

RSSðb̂0; b̂1; . . .; b̂nÞ ¼ argminðPt
k¼1

ðyðkÞ � ŷðkÞÞ2Þ
e ¼ yðkÞ � ŷðkÞ
ðb0; b1; . . .; bnÞ ¼ ðb̂0; b̂1; . . .; b̂nÞ

8>>>>>>>><
>>>>>>>>:

ð17Þ

Equation (17) is a multi-constraint and multi-object optimization issue. The first
constraint of Eq. (17) indicates estimate ŷðkÞ of flow traffic at time slot k. The second
one donates the distribution of residual errors, and the third one means the optimal
estimates of partial regression coefficient and yðkÞ is the measured traffic value at time
slot k. The fourth equation in (17) calculate residual errors between the measured value
of traffic and the prediction under the partial regression coefficient ðb̂0; b̂1; . . .; b̂nÞ. By
training the model of (4) and adjusting the residual errors with the (2), we can obtain
the prediction model and the set of parameters.

We present our prediction algorithm based on linear regression model, called
Linear Regression Model Theory Traffic Modeling Algorithm (LMTMA). Based on the
analysis and derivation above, the steps of algorithm LMTMA are as following.

Step 1: Given t initial measured value of the end-to-end network traffic in the network-
level y ¼ fyð1Þ; yð2Þ; . . .:; yðtÞg in the front t time slots.
Step 2: Based on the linear regression model theory and the statistical analysis
methods, we initialize network traffic yðtÞ and parameters of r2, respectively.
Step 3: Build the traffic prediction model (4) and distribution of the residual errors (2)
to find the estimate of the partial regression coefficient b0; b1; b2; b3.
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Step 4: In objective function (17), minimize the residual errors e and update the partial
regression coefficient b0; b1; b2; b3.
Step 5: obtain the optimal parameters b0; b1; b2; b3; e from objective function (17).
Step 6: The traffic prediction model is constructed over, then exist the process of
modeling.

3 Simulation Results and Analysis

Now, we conduct many tests to demonstrate our algorithm LMTMA. In order to justify
the accuracy of our algorithm, we need to use real network data. Here, the real data
needed in the simulation experiment is collected by the network nodes deployed at
different place; we use the real data from the real Abilene backbone network in the
United States to validate LMTMA. PCA [3], WABR [7], and HMPA [2] algorithms for
the network traffic modeling have been reported as the better performance. Here we
compare LMTMA with them. In the following, the prediction results of the network
traffic are analyzed for LMTMA algorithm. The average relative errors for the network
traffic are indicated for four algorithms. Finally, we discuss the performance
improvement of LMTMA against PCA, WABR, and HMPA. In our simulation, the
data of the first 500 time slots are used to train the models of four approaches, while
other data are exploited to validate the performance of all algorithms.

Figure 1 shows the prediction results of network traffic flows 78 and 118, where
network traffic flows 78 and 118 are selected randomly from the 144 end-to-end traffic
flow pairs in our simulation network. Without loss of generality, we only discuss the
network traffic flows 78 and 118 in this paper. The network traffic flows is also called
as the Origin Destination (OD) pair. Figure 1(a) indicates that LMTMA can effectively
capture the dynamic changes of the network traffic flow 78. For different time slots, the
real network traffic exhibits the significant time-varying nature. From Fig. 1(a), we
have seen that LMTMA can seek the trend of the network traffic flow. Likewise, the
network traffic flow 118 shows the irregular and dynamic changes over the time as
indicated in Fig. 1(b). From Fig. 1(b), it is very clear that although LMTMA holds the
larger prediction errors for the network traffic flow 118, it can still capture its change
trend. This further indicates that LMTMA can effectively predict the change of the
network traffic over the time.

Next, we discuss the predict errors of four algorithms. Generally, we have diffi-
culties in seizing the dynamic nature of the network traffic over the time via the model.
To further validate our algorithm, we compare the relative prediction errors over the
time for all algorithms. To avoid the randomness in the simulation process, we perform
500 runs to calculate the average relative prediction errors.

The average relative prediction errors over the time for network traffic reflect the
performance of the methods for predicting network traffic, they are donated as:

dðtÞ ¼ 1
N

XN

i¼1

jjŷiðtÞ � yiðtÞjj2
jjyiðtÞjj2

ð18Þ
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where i ¼ 1; 2; . . .;N, N is the number of runs in the simulation process, �k k2 is the
norm of L2, and ŷiðtÞ indicates the traffic prediction value of run i at time slot t.

Figure 2 shows the average relative prediction errors of four algorithm over the
time for network-level traffic flows 78 and 118. We can find that for network traffic
flows 78 and 118, WABR, HMPA, and LMTMA exhibit the lower relative errors while
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Fig. 1. Prediction results of network traffic flows 78 and 118.
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Fig. 2. Average relative errors for network traffic flows 78 and 118.

A Linear Regression-Based Prediction Method to Traffic Flow for Low-Power WAN 131



PCA hold the larger prediction bias. For Fig. 2, we can also see that that LMTMA
holds the lowest relative errors. This tells us that in contrast to PCA, WABR, and
HMPA, LMTMA holds the better prediction ability for the network traffic, while
LMTMA holds the best prediction ability. More importantly, WABR, HMPA, and
LMTMA indicate the lower fluctuation over the time in terms of relative errors than
PCA. This shows that compared with other three algorithms, LMTMA can more
effectively model the network traffic with time-varying and correlation features.
Moreover, this also tell us that LMTMA can more accurately predict network-level
traffic than previous methods.

Now, we analyze the performance improvement of LMTMA relative to other three
algorithms for the network traffic. Figure 3 exhibits the performance improvement
ration of network traffic flow 78 and 118. For network traffic flow 78, LMTMA attains
the performance improvement against PCA, WABR, and HMPA, respectively. Simi-
larly, for network traffic flow 118, LMTMA obtains the performance improvement
against PCA, WABR, and HMPA, respectively. This clearly denotes that compared
with PCA, WABR, and HMPA, our algorithm LMTMA can more accurately model the
network-level network traffic. Moreover, Fig. 3 also tell us that relative to PCA and
WABR, LMTMA can reach the larger performance improvement. Compared with
HMPA, LMTMA also reaches to the better performance improvement. As mentioned
in Fig. 2, this further illustrates that our algorithm LMTMA holds the better modeling
capability for the network-wide network traffic. Moreover, LMTMA and HMPA hold
the similar performance, while LMTMA exhibits the better performance improvement.
This also shows that LMTMA can correctly model the network traffic and hold better
modeling performance for network traffic.
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Fig. 3. Improvement ratio of network traffic flows 78 and 118.
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4 Conclusions

This paper proposes a linear regression theory-based method to model and predict
network traffic. Different from previous methods, the linear regression model is used to
construct and determine the model parameters effectively. Firstly, the network traffic is
described as an independent identically distributed exponential distribution process.
Secondly, the linear regression method is exploited to capture the network-level net-
work traffic. By calculating the parameters of the model, we build the corresponding
network traffic model. Simulation results show that our approach is promising and
effective.
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