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Abstract. In Software Defined Networking (SDN), the fine-grained measure-
ments are crucial for network management and design. However, the mea-
surement overhead and accuracy are contradiction, how to accurately measure
the network traffic with low overhead has become a hot topic. Artificial Intel-
ligence (AI) has been used to predict the traffic in networks. Then, we propose
an AI-based Lightweight Adaptive Measurement Method (ALAMM) for traffic
measurement in SDN with low overhead and high measurement accuracy.
Firstly, we use measurements in the front to train the AI-based traffic prediction
model and utilize the model to predict traffic in SDN. Then, we obtain the
sequence of sampling points by judging the change of traffic prediction and send
the measurement primitive to switches to obtain coarse-grained measurements.
At last, we utilize the interpolation theory to fill the coarse-grained measurement
and propose an optimization function to optimize the fine-grained measurement.
Simulation results show that the ALAMM is feasible, and the measurement
overhead of ALAMM is low.

Keywords: Software Defined Networking � Adaptive network measurement �
Traffic matrix � Artificial Intelligence

1 Introduction

Accurate traffic measurement is the foundation for network planning and management.
It not only displays the current status of networks but also helps operators manage
networks to detect network failure and abnormal traffic. The network traffic measure-
ment is the basis of network monitoring and management. With the expansion of
network scale and the emergence of new network applications such as cloud com-
puting, edge computing and big data, this poses a huge challenge to the management of
the network. SDN decouples the data plane and control plane of the traditional switch,
and centralizes the control plane into a controller for unified management, improving
network scalability and management flexibility. The network traffic measurement of
SDN is different from the traditional network.

In networks, there are some direct measurement methods, such as sFlow, NetFlow,
they need the support of network devices and additional software, and consume a lot of
storages and computing resource in network devices. In contrast to the measurement
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scheme of traditional networks, SDN provides flow-based measurement methods by
collecting the statistics from switches, this scheme is more convenient, efficient, and
flexible. The pull-based scheme is an active measurement mode and the push-based
scheme is a passive measurement mode. However, when the network scale and the
number of active flows are very huge in SDN, the flow-based traffic measurement will
face an enormous challenge due to a large number of flow statistics from switches and
increase huge overhead in the network components. So we pay attention to the pull-
based mechanism with low overhead in SDN.

Artificial Intelligence (AI) has been widely used in smartphones, voice recognition
and authentication, which has been changed human’s behavior patterns and lifestyle.
AI is a junior intelligent system that requires some knowledge and reasoning to be
added to the existing applications, database, and environment to make it friendlier,
smarter and more sensitive to the environment. There is a large amount of data in the
communication system, which provides rich history data for training the AI model. The
application of AI in communication system has attracted the interest of many
researchers [1]. Javier et al. have a comprehensive survey of AI-based optical net-
working, from low-level devices to high-level management [2]. AI in the optimal
network not only improves the utilization of the wavelength but also improve man-
agement efficiency. Proietti et al. utilize machine learning-aided Quality of Transmis-
sion (QoT) estimation for lightpath configuration of intra-inter-domain traffic and
obtain high accurate Optical Signal to Noise (OSNR) prediction [3]. Hagos et al.
present a robust, scalable and generic machine learning-based method which may be of
interest for network operators that experimentally infers congestion window and the
underlying variant of loss-based TCP algorithms within flows from passive traffic
measurements collected at an intermediate node [4]. Latah et al. investigated the
application of AI to SDN paradigms, such as load balancing, network security, and
intelligent network applications [5]. We also have some researches about the traffic
matrix prediction and estimation with the deep learning in the data center network [6].
Our previous work can be found in [11–13].

Inspired by the AI-based traffic prediction and the adaptive flow traffic measure-
ment, we propose an adaptive lightweight measurement scheme by predicting the traffic
characteristics to measure the traffic effectively and accurately. ALAMM is pull-based
active flow measurement. The main contribution of this paper as follows:

(1) We propose that using the measurement data in the front in the network to train
the AI-based model.

(2) We use the trained AI-based model to predict the traffic in SDN and obtain the
sampling points. Then, we use the sequence of sampling points to obtain the
coarse-grained measurement.

(3) We use interpolation method to fill the coarse-grained measurement and construct
an optimization function which has multiple constraints to optimal the obtained
fine-grained measurement.

(4) We do some simulations to verify the performance of the proposed method.

116 L. Huo et al.



The rest of this paper is organized as follows. Section 2 describes the measurement
model ALAMM and introduces the adaptive sampling frequency and fine-grained
interpolation and optimization of measurements. Section 3 makes simulations to verify
the performance of ALAMM and the conclusion are stated in Sect. 4.

2 Problem Statement

In SDN, the control plane runs in the controller which is independent of switches. So,
the flow-based measurement in SDN is much easier and more flexible than traditional
networks, but the overhead of the measurement is a key issue that should be considered
in the measurement process. We consider a simple mesh network with a controller
fC0g and four switches fS1; S2; S3; S4g, as shown in Fig. 1. Each switch has at least
one physical link which connects with the other switches. There are two flows ff1; f2g
in the network, f1 through switches (S1; S2; S4), f1 through switches (S1; S2; S3; S4), and
there are five physical links in the network fL1; L2; L3; L4; L5g.

Each switch connects into the controller directly in logical. There are two kinds of
methods to deploy the controllers in SDN, in-band and out-of-band. In the In-band
deployment scenario, the controllers are deployed inside the network, some switches
directly connect into the controller. Control messages and data messages are exchanged
between controllers and switches over the same network. In out-of-band deployment
scenario, the controllers are external to the network and each switch is connected to the
controller through a dedicated link. Data messages and control messages exchanged
between the controllers and switches over different links. In out-of-band deployment
scenario, controllers can exchange messages directly with switches. For simplicity, we
consider an out-of-band scenario here.
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Fig. 1. The network topology and flows of SDN
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2.1 Network Traffic

In this deployment scenario, each switch is directly connected to the controller, and
exchange control messages through the control channel. The controller periodically
sends LLDP packets to discover the links in the network, so the controller has a global
view of the network topology. Flow is the traffic between each pair of the source node
and the destination node, and the flow forwarding action in switches are programmed
by the controller, so the controller knows all the routing information of the networks,
we use A to represent the routing matrix. x and y are the traffic of flow and link,
respectively. So we can represent the traffic in the network as

yj ¼
X

i

aijxi ð1Þ

where xi is the traffic of flow i and yi is the traffic on the link j. aij is the route of flow i.
If aij ¼ 1, it means that the flow i through the link j.

The traffic of flows and links in the network has a relationship that

y1 ¼ x1 þ x2
y3 ¼ x1
y4 ¼ x2
� � �

8
>><

>>:
ð2Þ

From Eq. (2), we have the relationship of traffic in switch S2 as

y1þ � y3� � y4� þ y2þ � y2� � h ð3Þ

where h is the error threshold of flow traffic. y2þ and y2� are the traffic of S2 which
transmitted from S2 to S2. y2þ and y1þ are the input traffic, y2�, y3� and y4� are the
output traffic. In each switch, the traffic meets the principle of conservation. Then we
represent (3) the traffic of switch k as

X
ykþ �

X
yk�

���
���� h ð4Þ

The traffic in the network changes over time, so we can represent the traffic of links
and flows in the network as

xi ¼ fxiðtÞg ¼ fxið1Þ; xið2Þ; xið3Þ; . . .:g
yj ¼ fyjðtÞg ¼ fyjð1Þ; yjð2Þ; yjð3Þ; . . .:g

�
ð5Þ

where xiðtÞ is the traffic of flow i at time t, yjðtÞ is the traffic of flow i at time t.
The Eq. (1) can be rewritten as

yjðtÞ ¼
X

i

aijxiðtÞ ð6Þ

118 L. Huo et al.



In the network, measuring all the traffic of links will consume much computing and
transmit resource. Su et al. proposed the CeMon method which selects the subset of
switches which coverage the most active flows [7], then we can sample the flow traffic
in some switches to reflect all the traffic in the network. However, the traffic mea-
surement in switches should last a long time, so a lot of measurement overhead will be
generated in this process. Then, how to find the optimal sampling sequence with high
measurement accuracy and low overhead become a key issue which should be studied.
There are many methods, such as unified sampling, random sampling, but both of them
has high measurement overhead and not flexible. In this paper, we proposed a light-
weight measurement scheme, we train an AI model to predict the network traffic
feature, and sample network traffic based on the prediction. Then, the sampling method
to measure the network can be written as

x̂ ¼
X

i

xðtÞdðtÞ ð7Þ

where dðtÞ is a sampling sequence.

2.2 Adaptive Sampling

Flows with the features of high density and high dynamic bring about a huge challenge
for the accurate, fast, and fine-grained traffic measurement. Through short time slot
sampling, we can obtain the instantaneous rate of flows and links. However, the tra-
ditional flow-based fine-grained network measurements in SDN require the controller
to frequently send Read-state messages to OpenFlow-based switches and also generate
a large number of report messages to the controller, which would consume much
computing resource of the controller. So, we use a coarse-grained measurement method
to reduce measurement overhead.

ANN is one of the most widely used methods of AI, it is a popular model for
solving the multi-dimension traffic prediction issues, such as network traffic, vehicle
traffic. The structure of ANN is flexible, users can change the ANN structure based on
their requirement. ANN consists of one input layer and N hidden layers and one output
layer, it is a stack of many neurons. In addition to the input layer, each neuron is a
weighted sum of the previous layer of neurons, the neurons in the hidden and output
layer are statistics variables. So the traffic prediction model of ANN can be written as

hmðtÞ ¼ FðP
N

n¼1
wm�1nhm�1nðtÞÞ;m ¼ 2; 3; . . .;M

RpðtÞ ¼ FðP
N

n¼1
wMnhMnðtÞÞ

8
>><

>>:
ð8Þ

where wmn are weighted factors between neurons in a different layer, and hmðtÞ are the
middle results. There are M hidden layers in the ANN model. Fð�Þ is the activation
function of neurons, RpðtÞ are prediction results of network traffic at time slot t.

The traffic prediction RpðtÞ has the features of the traffics, so we can use the features
to adaptively adjust the sampling points, and help us to improve the measurement
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accuracy and decrease the measurement overhead. Then, we design an adaptive
sequence of the sampling points in the following, it can be written as

dðtÞ ¼ 1;RpðtÞ � Rpðt � 1ÞD or Rpðtþ TÞ � RpðtÞ[D
0; otherwise

�
ð9Þ

where dðtÞ is a sampling point or not at time slot t, RpðtÞ is the traffic prediction at time
slot t. If the change of flow prediction values is bigger than the threshold D, we send a
sampling primitive; otherwise, we think the flow is stable, and not send the sampling
primitive; T is a fixed period which is used to ensure the maximum sampling interval
not exceed T.

2.3 Fine-Grained Matrix Filling and Optimization

The fine-grained measurement result of flow j is xi, it is obtained by filling the coarse-
grained measurement with the cubic interpolation method, and the actual flow traffic of
flow j is x̂i. Due to the cubic interpolation is the smoothest possible approximations of
actual flow traffic, so there is a gap between the measurement results and the actual
flow traffic. In order to obtain accurate measurements, we optimize the filling data to
decrease the gap between the measurement results and the actual results of flows. Then,
we propose an optimal function as follows:

min Y � AX̂
�� ��

2 þ k Xk k2
s:t:

C1 : Yi �AiX̂; A ¼ ðA1;A2; . . .;AMÞT
C2 : xj � 0; Yi � 0
C3 :

P
xiþ �P

xi�j j � h
C4 :

P
xiþ �P

xi� [ 0

8
>>>>>><

>>>>>>:

ð10Þ

where k is a Lagrange multiplier. Contrast to Eq. (10), the equation above can easily be
solved by the following heuristic algorithm proposed in this paper.

Constraint C1 represents the constraint between link load and flow traffic; Con-
straint C2 denotes that the traffic in the network is non-negative. Constraint C3 and C4
means that the output traffic of node i is no more than input traffic of node i, this is the
traffic conservation principles. Under constraint C1, we know that link load and flow
traffic mapping relationship matrix A has M rows and N columns, and M�N when
multiple flows transmission through a link. Then, the routing matrix A is an
underdetermined matrix, there are infinite solutions for the linear constraint C1. Then,
we use some heuristic method to solve it.

3 Simulation Result and Analysis

We evaluate the performance of the proposed measurement scheme by building a SDN
test platform. In the simulation scenario, we use Ryu [8] as the controller and utilize
Mininet [9] to construct the network topology. For simplicity, the network topology as
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Fig. 1 shows. Iperf is used to generate TCP packets to fill each link from origin host to
destination host, and all the links in the network are set as the duplex transmission
mode. We analyze the traffic of flow f1 and f2, and compare the ALAMM to uniform
sampling method under different intervals (Uniform60, Uniform240) and Principal
Component Analysis (PCA) method, where Uniform60 and Uniform240 are the uni-
form sampling method with the sampling interval 60 and 240 slots, respectively. It is
well known that the measured granularity is usually inversely proportional to the
measurement interval. For the uniform sampling method under different sampling
interval, when the sampling interval is small, we think it as the fine-grained mea-
surement, and the sampling interval is big as the coarse-grained.

Relative Errors (RE) and Root Mean Square Error (RMSE) are mainly used
parameters depict the performance of the methods [10]. For the ALAMM proposed, the
sampling sequence is very important traffic measurement. Figure 2 shows the average
RE of measurement under different threshold and interval of the measurement step. We
find that when the interval and measurement interval are both small, the average RE of
measurement is very small. When the sampling interval is larger than 150 slots, the
average measurement RE trends to stable, but when the interval is larger than 200 slots,
the average measurement RE becomes fluctuating. In addition, as the measurement
threshold increases, the average RE also increases. When the measurement threshold is
larger than 200, the average RE becomes fluctuating. Then, in the following, we use the
measurement threshold and interval as 50 and 200, respectively.

Figure 3 shows the RE cumulative distribution function (CDF) of flow f1 and f2,
respectively. From Fig. 3(a), we can see that the about 80% RE of the ALAMM and
Uniform sampling method are less than 0.3, while the RE is about 60% for the PCA
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Fig. 2. The average RE under different threshold and interval of the measurement step
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method. Figure 3(b) has a similar trend with Fig. 3(a). However, the average RE of
ALAMM is smaller than Uniform60 and larger than Uniform240 and PCA, the curves
show that the ALAMM is slightly inferior to Uniform60 but better than Uniform240
and PCA. Figure 3(b) shows that the ALAMM is better than Uniform60, Uniform240,
and PCA. Figure 4 curves the RMSE of different measurement methods, we note that
RMSE of the ALAMM is much steeper than the other methods, this means the average
measurement RE of ALAMM is much more stable than other methods. As well as, we
find that the RMSE of ALAMM is close to the performance of Uniform60.

We compare the measurement overhead and the measurement error in Fig. 5. The
bars are the measurement overhead, the left y-axis is their scale. The star on the blue
line is the measurement errors of the corresponding measurement method, and the right
y-axis is their scale. From Fig. 5, we note that the measurement errors of ALAMM are
a little larger than the Uniform60 and smaller than the Uniform240, however, the
measurement overhead of ALAMM is similar as the Uniform240 and far less than
Uniform60. We know that ALAMM has lower overhead than Unifrom60, however, the
average measurement errors are similar to it. For PCA, its average measurement error is
about 0.35, which are larger than the ALAMM, Uniform60, and Uniform240.
Although the measurement overhead of PCA is almost zero, its measurement perfor-
mance is poor. Through the above analysis, we know that our ALAMM is feasible and
it accurately measures the network traffic with low overhead.
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4 Conclusions

Accurate flow-based network measurement has a great impact on network traffic
management in SDN. We propose the ALAMM for traffic measurement in SDN.
In ALAMM, we use measurement results in the front to train the AI model, then use the
model to predict the traffic in the network. Then, we obtain the sequence of sampling
points based on prediction results and send sampling primitives to switches to obtain
the coarse-grained measurement. Then, we perform the interpolation method on the
coarse-grained measurement and utilize the optimization method to decrease the fine-
grained measurement errors. At last, we make some simulations to verify the mea-
surement method proposed in this paper. The simulation results show that the proposed
ALAMM can accurately measure the traffic with low overhead.
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