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Abstract. We present a novel approach to incorporating Software-
Defined Networking (SDN) in networked embedded systems where the
nodes have limited capabilities and the wireless links have limited band-
width. The SDN controller was implemented on a Beagle Black board.
The approach was validated through simulations and experiments on a
physical testbed.
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1 Introduction

Networking and connectivity is an essential infrastructure for our economies,
industries, societies and systems and have a central role in managing costs and
productivity [1], and our health and wellness [2]. Modern networks confront a few
challenges such as complexity and operational costs as the size of the applications
increase [3]. The introduction of low-power, resource constrained nodes that are
cost-effective for data gathering has pushed the networking issues to their limits
because of the tight bandwidth available and the unreliability of the links. Such
systems are asynchronous, decentralized and severely limited, and yet they must
provide reliable and trustworthy service in a variety of application settings.

SDN helps to address some of these drawbacks by decoupling the control
and data planes. Network intelligence and state are logically centralized and
the underlying network infrastructure is abstracted from the applications [4].
Users are able to programmatically change the capabilities of the underlying
network with minimal disruptions to the applications that rely on the network-
ing infrastructure. A new abstraction layer is added between applications and
router/switches. SDN was primarily designed for wired networks with point-to-
point (P2P) connections between their nodes [3].

Many emerging networked systems such as Wireless Sensor Networks (WSN)
[5,6], Internet of Things [7] and Advanced Manufacturing [8–10] rely on wireless
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links and have motivated the exploration of SDN services to programmatically
alter the capabilities of networked embedded systems. Several challenges must
be addressed to achieve this vision. The function of nodes in networked embed-
ded systems is more than just sensing. Although the node has limited resources
and computation power, it can still drive basic operations and control heavy
machinery. Unlike the fully capable desktop systems used in common network-
ing scenarios, the nodes have limited resources. The radio transceivers used in
such systems have limited capabilities and, typically, infrastructure such as cell
towers and WiFi are not available. The systems are expected to be deployed
in ad-hoc manners and must support incremental growth and change. While
the communications requirements in these systems usually follow a set of paths,
there would be changes from time to time that require programmatic changes in
the network capabilities.

In this paper, we present an approach for adapting key SDN concepts in
wireless networked embedded systems. Starting with a well-known SDN con-
troller called SDN-Wise [11] that was recently developed for the Raspberry PI,
the controller was adapted to address the needs of networked embedded systems.
A finite state machine was designed to execute on commercial mote platforms.
The approach was validated both in simulation settings and through physical
experiments.

The remainder of this paper is organized as follows: Sect. 2 reviews back-
ground in SDN and WSN. Section 3 describes the system’s structure and role.
Experimental results that demonstrate our system are discussed in Sect. 4, and
conclusions are presented in Sect. 5.

2 Background

The section presents some of the approaches used to design and analyze SDN.
Some of the key concepts of WSN and protocols proposed are reviewed.

Currently, networks support complex tasks using low-level network config-
uration commands. The complexity of configuring the systems and managing
networking operations increase both as the number of nodes increase and as the
communication demand increases. Such low-level commands are not suitable for
continually changing environments. Moreover, system reconfiguration is done
manually and on a per-case basis and this situation may lead to inconsistency
in the network state [12]. Many of these issues can be addressed by using a
new architecture that accounts for dynamic changes in data, computation and
storage [13].

The key idea in SDN is to separate or decouple the control plane and the
data plane. This idea was introduced in other systems and protocols. For exam-
ple, in [14], the authors introduced a system that mimics forwarding decisions,
made by regular hardware-based switches, in software and applied these rules for
new packets. Their goal was to increase the system’s functionality space without
changing the underlying hardware. Thus, they made the network improvements
cycle much faster. The 4D environment described in [15] divided the process
into four planes: decision, dissemination, discovery and data. While all the deci-
sions are made in the decisions plane using an autonomous system and decision
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elements, the data plane was responsible for only forwarding packets depending
on the decision plane’s output. That resulted in a system where controlling and
forwarding are prevented from running on the same network element and gave
an extra level of abstraction and simplicity. Several efforts to standardize the
core networking ideas have helped to mature this idea of separating the control
and data planes [16–18].

The controller is the central artifact of the control plane. This plane is logi-
cally centralized and is essential to differentiate between the operations needed
to manage networking capabilities and the operations necessary to forward data
packets between the nodes.

A single, centralized, controller is simple to design and implement. Such an
architecture reduces the chances for logical inconsistencies. However, such a node
has a high risk and is a single-point of failure. It suffers from scalability limita-
tions because when the network starts growing, the computation power of the
controller must grow at a higher rate to ensure the network’s performance [19].
In an effort to target the drawbacks of centralized controllers the authors in [20]
introduced the idea of decentralizing SDN’s control plane both physically and
logically by defining the concepts of a control hierarchy which consisted of main
and secondary controllers. This helped the network to distribute the load among
different physical controllers thus avoiding network’s bottlenecks; and reduce
the cost of needing high computation power. Many other architectures were
proposed [21–23]. Nevertheless, these techniques increase the difficulty of main-
taining a consistent network view and network decisions.

The main role of a flow-table is to represent the multi-hop connectivity struc-
ture between nodes. The flow-table has all the characteristics of a routing-table
but there are two major differences. First, flow-tables are only updated with
information coming from the controller. Second, while routing-tables are gener-
ally stateless, a flow-table can be designed to make decisions based on its state
and change specific attributes in the packet.

The configuration commands that the controller sends are used to update
flow-tables inside each SDN node. Each table contains flow entries, each with
three sections. The Matching section has the rules and attributes that must be
compared and checked for each incoming packet. The Action section specifies
what must be done for each matched packet. The Statistical Information section
gathers information about the flow-table entry [11,24]. Generally, a packet can
match more than one rule and the relevant actions will determine its flow through
the system. Unlike simulated wireless links, the physical wireless links present
many challenges that affect the performance of the network. Although finding
the shortest path is preferable in most cases, the throughput of the network is
affected by traffic congestion in specific nodes, limited capabilities in the node,
and the effects of hidden/exposed terminals. Thus, we may increase the network’s
throughput by choosing other paths in the network [25].

Many estimation techniques were proposed to target specific features such as
rapid calculation, memory efficiency and performance by using information from
the physical layer, link layer or the network layer. The physical layer can indi-
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cate the channel quality and the errors in the packets, but it will not take into
consideration lost packets. The link layer can measure the delivery of the sent
packets through acknowledgments. The network layer can indicate the impor-
tance of each link and how to share node’s estimations with other nodes [26].
The authors in [25] introduced an estimator that depends on the link layer’s
information. They would calculate the number of transmissions required for a
packet to successfully be sent plus the number acknowledgments received and
then calculate the delivery ratio for each link. The HyperLQI [27] uses the success
rate maintained by link layer acknowledgments in addition to the channel Link
Quality Indicator (LQI), from the physical layer to give an estimation of each
link. A link quality estimator that uses information from all the three networking
layers is presented in [26].

3 System Structure

This section presents the versatile design of the physical Wireless-SDN node that
can support the deployment of multiple network topologies, such as tree, ring
and mesh. The CSMA/CA protocol B-MAC [28] was used in all the nodes. The
IRIS from MEMSIC motes used as the platform for experiments consist of an
ATmel Atmega1281, a low-power 8-bit microcontroller, with 128KB in-system
programmable flash memory and 8KB of RAM. Each node includes an ATmel
AT86RF230 wireless transceiver, which is a 2.4 GHz ZigBee IEEE 802.15.4 com-
pliant module. The RF module has a maximum data rate of 250Kbps, an auto-
matic reception acknowledgment feature and power detection [29].

SINK Node. The SINK node, which is connected to the controller through a
serial (USB) connection, serves as the interface between the control and data
planes. All the packets from every node to the controller, and vice versa, must
go through the SINK. The SINK reorganizes those packets here so that the
controller can handle. In addition, this node is responsible for initiating the
topology formation. When the SINK powers-up, it send a PROXY packet to
the controller to introduce its self as a valid and ready SINK node. After that,
the SINK will start the topology discovery protocol by propagating BEACON
packets periodically.

Beaconing and Topology Discovery. Every node must maintain a valid
route to the SINK and, thus, the controller. The BEACON packets and the
topology discovery protocol are designed to help in this task. Except for the
SINK, every node will be powered up to idle state, where it listen to the channel
waiting for a BEACON packet to be broadcast by any other neighbor.

Routes to the SINK. The BEACON packets contain the sender’s distance from
the SINK and its battery level. On the first receiving of this packet, a node
will change its state to ACTIVE, register the sender as next hop to the SINK
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and start all the timers within it. When an ACTIVE node receives a BEACON
packet, it will compare its distance to the SINK with the sender’s distance and
measures the quality of that link using the estimation. If both appear to be bet-
ter, the node will update its route to the SINK based on the new one, otherwise
it will just update its neighbor-table with this sender.

Neighbor-Table. Each node maintains a set of single hop’s neighbors that can
be directly reached, and keeps track of each neighbor in terms of TTLs and link
quality. This process is memory intensive and must be managed carefully. A
large number of neighbors will result in a strongly connected graph with short
mean distance to each destination, but it will affect the performance of the
nodes, increase search time, and cause a larger number of REPORT packets to
be generated. On the other hand, a smaller neighborhood will result in longer
paths and a higher chance of the node being unreachable.

Reports to Controller. The REPORT packets periodically inform the controller
about the neighborhood of each node in the system.These packets contain a list
of all the node’s neighbors, available battery levels, distance from SINK and
quality of each link.

Controller. The controller logic used in our experiments is studied in [11]. This
controller uses the weighted version of Dijkstra algorithm to find the best route
between two points using both the number of hops and link quality. It maintains
a map of the network depending on both the REPORT packets received and an
internal expiration timer. The system takes into account that not every link is
a bidirectional one unless it was reported by both nodes that are at either end
of the link. When a controller receives a REQUEST packet from the SINK, it
will extract the source and destination information. Based on the latest map
it executes the Dijkstra algorithm to find the shortest path between the nodes.
The controller will configure all the nodes in the path by generating a single
OpenPath packet that contains all their address to the final destination.

Time to Live and Flow-Table Entries. Because of the limited memory
space and the goal of reducing searching time, each node will keep track of a
certain number of the most active neighbors. The validation time associated
with each entry in the Flow-table and neighbor-table is updated in every TTL’s
period. If the initial value is very large, the node will exhaust its resources on
non-useful entries and will keep track of non-existent neighbors. On the other
hand, if this value is too small, the network will suffer from a huge overhead
of sent REQUEST packets and the node will not have a stable neighbor list.
When the TTL timer triggers, the node will go through the Flow-table and the
neighbor-table and remove all entries with TTL values less than the TTL period.
A neighbor’s TTL is reset when the node hears a packet generated from that
specific neighbor, and a flow-table entry’s TTL is reset only if that entry is used.
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Wireless Link Estimator. In our topologies, we used a link quality estima-
tor that collects information from physical and link layers, depending on both
broadcast and unicast transmissions to give the overall evaluation. Each esti-
mate is updated after a predefined number of packets. The node will evaluate
the broadcast packets by detecting their energy on reception and comparing it
to a threshold value. Unicast messages were measured by counting the number
of sent and acknowledged packets on every link to calculating the success and
failure rates. To avoid fast changing environment, we assigned weights to the new
estimate New and the previous estimate Estimationold using the exponential
moving average window as:

Estimationfinal = αNew + (1 − α)Estimationold.

here α denotes the estimation factor. This average estimates are calculated sep-
arately for broadcast and unicast transmissions as follows:

– Broadcast
1. After receiving a specified number of broadcasts from a source, the node

calculates an immediate estimate.
2. This value is combined with the previous broadcast-estimate values.
3. At the end of broadcast estimation we obtain Estimationfinal.

– Unicast
1. After sending the specified number of unicast messages over a specific

link, the node will keep track of the number of acknowledged and unac-
knowledged packets.

2. The success rate is then calculated.
3. The success rate will be used as the new estimate to find Estimationfinal.

The estimator keeps track of a number of links that are not part of the
neighbor-table. These are important because they will serve as a base to compare
neighbor’s links. At the end of each TTL cycle, the node will check all the
available links in the table to figure out the best value and all the links of the
neighbor will be compared to that value. In this way, the node only keeps the
most reliable links in the neighbor-table.

4 Results

This section presents the simulation and experiment results obtained from the
network with a collection of motes. The observed behavior of the network pro-
vides understanding on which the system should be designed in order to minimize
the interaction between the control and data planes.

Simulation Approach. Two network topologies were designed to understand the
baseline behavior of the Wireless-SDN network, one is a 16 node mesh and the
other is a 14 node tree network, both with a single SINK labeled 1.0.1. We
use the mesh topology to examine the effect of the time-to-live parameter and
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Fig. 1. Average number of REQUEST packets generated by an edge node in a mesh
topology (a) and those generated by different nodes (intermediate and leaf nodes) in a
tree topology (b).

Table 1. Major differences between simulated systems and physical systems.

Simulation environment Physical system

Links Static Dynamic

Link quality Fixed Changing

Transmission P2P Inherently broadcast

Memory Virtually unlimited Limited

Processing time Negligible Significant

the tree topology to examine the control overhead of a node with respect to its
position. Figure 1a shows the average number of REQUEST packets generated
from the edge node in a mesh topology for every 10 min. With lower value of
TTL, each flow entry has a shorter time until it is removed from the flow table,
therefore the node then need to send REQUEST packet to the SDN controller
more frequently in order to update the expired flow entry. Figure 1b shows the
difference between the number of REQUEST packets generated from different
nodes in the tree topology for every 10 min. Node 1.0.2 and 1.0.3, which are the
immediate child nodes of the root, have to generate less REQUEST packets than
the leave node 1.0.8, 1.0.10, and 1.0.14. The main reason is that the intermediate
nodes can update their flow-tables without generating additional REQUEST
packets based on the OpenPath generated by the controller.

Experiments With IRIS Motes. The physical implementation of a Wireless-SDN
using commercially available mote platforms presents a few additional challenges
in addition to what can be realized in simulation environments, which are sum-
marized in Table 1. Figure 2a clearly shows that the network goes through dif-
ferent phases. The highlighted section in this figure corresponds to the forma-
tion phase where the REQUEST packets are rapidly generated. A steady level
of reporting will allow the SDN controller to beresponsive to new REQUEST
packets. After the flow-tables are configured, the number of REQUEST and
REPORT packets remains stable during the lifetime of the network. A compar-
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Fig. 2. The overhead in an SDN network comprises of REQUEST packets and
REPORT packets.
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Fig. 3. A comparison between active and passive learning in topology discovery on the
left (a) and three phases of a large network on the right (b).

ison between the number of REQUEST packets generated and the OpenPath
packets received is presented Fig. 3a. Notice that the nodes that receive more
OpenPath packets tend to generate fewer REQUEST packets. This result indi-
cates the importance of node’s position in the topology, i.e., the number of paths
on which the node lies. It give the designers a suggestion of critical point of failure
and load balancing algorithms. The system was tested in a larger network with
18-nodes and high packet generation rates, and its behavior is shown in Fig. 3b.
The first section in this figure presents the number of REQUEST packets during
the formation phase. In the second section, the network suffered from the loss
of four nodes that led to the increase in Control overhead, and in the final one
the network recovered as the depleted nodes re-connected to the topology.

5 Conclusion

This paper presented the design and implementation of a Wireless-Software
Defined Network that is suitable for a variety of networked embedded systems.
The design was validated in a simulation setting and through experiments using
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commercial motes. The system model can be adapted to different hardware plat-
forms because the design relies on common features that are available in a variety
of platforms. This paper presented the general behavior and key parameters to
analyze the network performance in typical operational scenarios. Insights into
these features allow us to have more control on the flow of packets through a
network both at the system level and at the level of individual nodes. The results
are encouraging and serve as a foundation for several related investigations in
the future.
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