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Abstract. In 2012, Tim Güneysu, et al. proposed the GLP signature
scheme, a practical and efficient post-quantum signature scheme. It is
built on the modification of Vadim Lyubashevsky’s idea of construct-
ing previous signature schemes. It has a significantly smaller signature
and key size than prior signature scheme. The design of the GLP is a
foundation to construct newer signature schemes such as Bai-Galbraith,
Dilithium. However, Tim Güneysu has only given the description of the
GLP signature scheme that has not yet given a detailed security proof
for this scheme. Therefore, in this paper, we will present a full security
proof for the GLP signature scheme. Specifically, we show that the GLP
signature scheme is EU-CMA secure in the random oracle model.

Keywords: Latticed-based signature · R-SIS problem ·
The GLP signature scheme · Post-quantum cryptography

1 Introduction

The security of currently popular signature schemes is based on hard problems
in number theory, such as integer factorization or discrete logarithm problem.
More than 20 years ago, Peter Shor proposed an efficient algorithm to solve
these hard arithmetic problems on a quantum computer [Sho99]. Therefore, as
soon as quantum computers achieve sufficient computational power, widely-used
signature schemes will be insecure. This urges researchers to search for new cryp-
tography primitives resistant to quantum computing-based attacks. Due to the
recent innovative development of quantum computers, post-quantum cryptogra-
phy becomes more and more crucial. Among the candidates for post-quantum
cryptography, lattice-based cryptography is the most potential candidates.
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The last few years have witnessed surprising development of lattice-based
cryptography, especially constructions of new signatures schemes. At present,
lattice-based signatures have become more practical and competitive with clas-
sical signatures related to efficiency and security level. Among the methods of
constructing signatures, Fiat-Shamir technique is attracting the attention of the
cryptography community for its effectiveness and practicality. The first Fiat-
Shamir lattice-based signature was introduced by Lyubashevsky [Lyu08] in 2008.
This scheme based on the hardness of the shortest vector problem. Later, sev-
eral improved schemes was proposed in [Lyu12,DDLL13,BG14,DLL+17]. One
of them, the Dilithium signature scheme, has been submitted to NIST to stan-
dardize as a post-quantum signature.

The GLP signature scheme [GLP12]1 is constructed by adapting the idea
from [Lyu12] and [Lyu08]. Concretely, GLP follows the idea that ephemeral
values in signing algorithm are chosen randomly from a uniform distribution
over a set the same as in [Lyu08], instead of from a Gaussian distribution in
[Lyu12]. Moreover, the way how to select a valid signature of GLP is the same
as the proposed way in [Lyu08] (in [Lyu08] the signatures is simply checked to be
in some interval or not, while [Lyu12] uses rejection sampling to output a valid
signature). However, due to the usage of optimized parameters to reduce the
signature size and key size, the security proof of GLP was founded on the proof in
[Lyu12]. Key size and signature size of GLP is significantly smaller than those of
other signature schemes in [Lyu12,Lyu08]. Besides, the construction idea of GLP
is a foundation to construct later improved scheme such as [BG14,DLL+17].

Our contribution: In [GLP12], the authors described the GLP signature
scheme but did not prove its security in details (concretely, [GLP12] provided
a guideline to prove based on [Lyu12]). Therefore, our main contribution is to
present a full security proof for the GLP signature scheme based on previous
technique in [Lyu08,Lyu12]. We show that the GLP signature scheme is EU-
CMA secure in the random oracle model under assuming the hardness of the
worst-case lattice problems.

Organization of the paper: In Sect. 2, we recall the definitions of SIS problem
and its hardness on ideal lattices. The description of GLP is recalled in Sect. 3. In
Sect. 4, we present a security proof of the GLP signature scheme in the random
oracle model. Finally, the conclusion of this paper is described in Sect. 5.

2 Preliminaries

Throughout the paper, we will assume that n = 2α where α is a positive integer,
p ≡ 1 mod 2n and Rpn

= Zp [x]/〈xn + 1〉. Each element of Rpn

can be presented
as a polynomial of which the degree is at most n − 1 and the coefficients are
in

[−p − 1
2 , p − 1

2

]
. We let Rpn

k be a subset of the ring Rpn

in which the elements
of Rpn

k can be presented as polynomials with degree at most n − 1 and the

1 A later scheme version is given in [GLP15]. But, it still does not contain a full
security proof.
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coefficients in [−k, k], where |k| < p − 1
2 . For any set S, let s ←$ S mean that

s is chosen uniformly at random from S. We denote U(0, 1) to be the uniform
distribution on (0, 1). Let s = s0 + s1x + . . . + sn−1x

n−1 be a polynomial, we
denote ‖s‖∞ = maxn−1

i=0 |si|.
Definition 1 (R-SISp,n,γ,β problem, [Lyu12]). Given the polynomials
a1,a2, . . . ,aγ are chosen uniformly random from Rpn

, find the polynomials
s1, s2, . . . , sγ �= 0 in Rpn

β such that a1s1 + a2s2 + . . . + aγsγ = 0.

Definition 2 (R-SISp,n,γ,k distribution, [Lyu12]). The R-SISp,n,γ,k distri-
bution is sampled by choosing a1,a2, . . . ,aγ uniformly random from Rpn

,
the polynomials s1, s2, . . . , sγ uniformly random from Rpn

k and outputting
(a1,a2, . . . ,aγ , t = a1s1 + a2s2 + . . . + aγsγ).

Definition 3 (R-SISp,n,γ,k decision problem, [Lyu12]). Given (a1,a2, . . . ,
aγ , t), distinguish whether (a1,a2, . . . ,aγ , t) are generated from the R-SISp,n,γ,k

distribution or chosen uniformly random from (Rpn × . . . . × Rpn

︸ ︷︷ ︸
γ

, Rpn

).

The R-SISp,n,γ,β problem is consider as a hard problem. Solving the problem
R-SISp,n,γ,β have the hardness as solving worst-case lattice problems in ideal
lattices [LM06].

Definition 4 (DCKp,n problem, [GLP12]). Distinguish between the uniform
distribution over Rpn × Rpn

and the distribution (a,as1 + s2), where si are uni-
formly random in Rpn

1 and a is uniformly random in Rpn

.

As in [GLP12], the DCKp,n problem is also considered as a hard prob-
lem. The following lemma indicates a reduction from the DCKp,n problem
to the R-SISp,n,2,3α+1 decision problem. In other words, if one can solve the
R-SISp,n,2,3α+1 decision problem, then one can solve the DCKp,n problem.

Lemma 1 [Lyu12]. Let α be a non-negative integer such that GCD(2α+1, p) =
1, then there exists a polynomial-time reduction from the DCKp,n problem to the
R-SISp,n,2,3α+1 decision problem.

Proof. See [Lyu12], Lemma 3.6, p. 7. �	
The following lemma shows that, with suitable parameters, if one can solve

the R-SISp,n,2,β problem then one can solve the DCKp,n problem.

Lemma 2. 2 If 8βn ≤ p then there is a polynomial-time randomized reduction
from the DCKp,n problem to the R-SISp,n,2,β problem.

2 This lemma is stated based on Lemma 3.7 in [Lyu12]. Namely, we give a reduction
for the hard problems on the ideal lattices instead of the lattice in R

n as in Lemma
3.7.
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Proof. Given an instance (a, t) of the DCKp,n problem. Using the R-SISp,n,2,β

oracle on (a, 1) to find s′
1, s

′
2 ∈ Rpn

β such that a s′
1 +s′

2 = 0. If t = as1 + s2 then

s′
1 t = s′

1 (as1 + s2) = a s′
1 s1 + s′

1 s2 = − s′
2 s1 + s′

1 s2.

Since ‖s1‖∞, ‖s2‖∞ ≤ 1, ‖s′
1‖∞, ‖s′

2‖∞ ≤ β, and [[Lyu08], Lemma 2.8], we have

‖s′
2 s1‖∞ ≤ n‖s′

2‖∞‖s1‖∞ ≤ nβ

‖s′
1 s2‖∞ ≤ n‖s′

1‖∞‖s2‖∞ ≤ nβ

Hence ‖s′
1 t‖∞ = ‖− s′

2 s1 + s′
1 s2‖∞ ≤ 2nβ ≤ p

4 . On the other hand, if t is
uniformly random Rpn

then ‖s′
1 t‖∞ will also be uniformly random in Zp. Hence,

in order to solve the DCKp,n problem, distinguisher simply looks at the value
‖s′

1 t‖∞. If ‖s′
1 t‖∞ ≤ p

4 then he says that (a, t) is an instance of the DCKp,n

problem. Otherwise, he says that (a, t) is chosen uniformly from Rpn × Rpn

.
In the case (a, t) is an instance of the DCKp,n problem, the distinguisher will
be correct. However, in the case of the uniform distribution (a, t) is uniformly
on Rpn × Rpn

, he will make an error with probability 1
2 (because t is chosen

uniformly from Rpn

, the probability that ‖s′
1 t‖∞ ≤ p

4 is 1
2 ). �	

A signature scheme includes three algorithms: Keygen, Sign and Verify.
Keygen takes as input a security parameter and outputs a public key pk and
secret key sk. Sign takes as input a message μ and a secret key sk, outputs a
signature Σ. Verify takes as input a message μ, signature Σ and public key pk,
output valid (1) or invalid (0). We require that, with the non-negligible proba-
bility, Verify (μ,Σ, pk) = 1.

The standard security notion for signatures is existential unforgeability under
chosen message attacks (EU-CMA). Consider the following game of challenger C
and forger F . Firstly, the challenger generates a key pair (sk, pk) and sends pk
to F . The forger takes as input public key pk. Besides, the forger can make the
polynomial queries for signatures on messages μ1, . . . , μQ of its choice. For the
i-th query, the challenger answers (μi, Σi). The output of the forger is (μ∗, Σ∗).
It wins the game if Verify (μ∗, Σ∗, pk) = 1, and μ∗ �= μi for any i = 1, . . . , Q.
The signature scheme is called EU-CMA secure if there is no polynomial-time
F whose success probability in the above game is non-negligible.

3 The GLP Signature Scheme

The signature scheme has three main algorithms: key generation, signing and
verifying. In particular, the signing and verifying algorithm can access to the
random oracle H is defined in [GLP12] as follows: H : {0, 1}∗ → {v : v ∈
Rpn

1 ,
n−1∑

i=0

|vi| = 32}, where v = v0 + v1x + . . . + vn−1x
n−1 ∈ Rpn

1 .
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Key Generation Algorithm

Input: Parameters (n, p).
Output: Secret key (s1, s2) and public key (a, t).

1. Choose secret key s1, s2 ←$ Rpn

1 .
2. Choose a ←$ Rpn

.
3. Compute t ← as1 + s2.
4. Return secret key (s1, s2) and public key (a, t).

Signing Algorithm

Input: Parameters (n, p, k), message μ, secret key (s1, s2) and a.
Output: A signature for message μ.

1. Choose y1,y2 ←$ Rpn

k .
2. Compute c ← H(ay1 +y2, μ).
3. Compute z1 ← s1c + y1, z2 ← s2c + y2.
4. If z1, z2 ∈ Rpn

k−32 then
5. Output (z1, z2, c)
6. Else return to Step 1.

Verifying Algorithm

Input: The parameters (n, p, k), public key (a, t), message μ and signature
(z1, z2, c).
Output: The signature is valid or invalid.

1. If z1, z2 ∈ Rpn

k−32 and c = H(az1 + z2 − tc, μ) then
2. The signature is valid.
3. Else
4. The signature is invalid.

The secret keys are random polynomials s1, s2 ←$ Rpn

1 . The public key is
(a, t), where a ←$ Rpn

and t = as1 + s2 ∈ Rpn

.
To sign message μ, firstly, the signer chooses random polynomials y1,y2 ∈

Rpn

k . Then the signer compute c = H(ay1 +y2, μ) and z1 = s1c + y1, z2 =
s2c+y2. Before outputting the signature for the message μ, the signer will check
if z1, z2 has belong to Rpn

k−32 or not. If z1, z2 ∈ Rpn

k−32 then signer will output
(z1, z2, c) as the signature for μ. Otherwise, the signer regenerate y1,y2 and
recalculate the signature. The signer will perform the signing algorithm until it
can give z1, z2 ∈ Rpn

k−32. With the parameters chosen as in Table 1, Lemma 3 will
show that the average signer needs to make approximately 7 times to generate
a valid signature.

To verify the signature (z1, z2, c), the verifier simply checks that z1, z2 ∈
Rpn

k−32 and that c = H(az1 + z2 − tc, μ). If z1, z2 are generated from the signing
algorithm then we have z1, z2 ∈ Rpn

k−32 and

H (az1 + z2 − tc, μ) = H (a (s1c + y1) + (s2c + y2) − (as1 + s2) c, μ)
= H (ay1 +y2, μ) = c
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Table 1. The GLP signature scheme parameters

I II

1. n 512 1024

2. p 8383489 16760833

3. k 214 215

4. The average number of executions to generate a valid signature 7 7

5. Signature size (bit) ≈ 2n log (2(k − 32) + 1) + n 15869 33789

6. Secret key size (bit) ≈ 2n log(3) 1623 3246

7. Public key size ≈ n log p 11775 24574

The Table 1 [GLP12] shows the parameters n, p, k, the average number of
executions to generate a valid signature, signature size and keys size used in the
GLP signature scheme.

The parameter k controls the trade-off between the security and the run time
of the scheme. The smaller k gets, the more secure the scheme becomes and the
shorter the signatures get but the time to sign will increase. The authors of the
implementation of [GLP12] suggest k = 214, n = 512 and p = 8383489 for ≈80
bits of security and k = 215, n = 1024 and p = 16760833 for >256 bits of security.

The size of the signature is the number of bits used to represent (z1, z2, c).
Since z1, z2 ∈ Rpn

k−32, z1, z2 can be represented by 2n log (2(k − 32) + 1). And c
can be represented by n bits. Therefore, the signature size can be represented
by 2n log (2(k − 32) + 1) + n bits.

Since s1, s2 ∈ Rpn

1 , the size of secret key can be represented by 2n log(3).
The public key consists of two polynomials (a, t), where a is shared by all users
(therefore, can be viewed as part of the signature scheme) and t is the individual
component of each user. Therefore, the public key size with each user is just a
component t ∈ Rpn

and can be represented by n log p.

Lemma 3. 3 For any w ∈ Rpn

such that ‖w‖∞ ≤ 32,

Pr
[
w + y ∈ Rpn

k−32 : y ←$ Rpn

k

]
=

(
1 − 64

2k + 1

)n

.

Proof. Let some w ∈ Rpn

such that ‖w‖∞ ≤ 32 and consider w as a vector
of dimension n with coefficients wj (for 1 ≤ j ≤ n) having absolute value at
most 32. Then the sum w+y will belong to Rpn

k−32 if for every coefficient wi the
corresponding coefficient of y (denoted yj) is in the range

[− (k − 32) − wj , k − 32 − wj ] (1)

Since every coefficient yj is generated randomly in the range [−k, k] and |wj | ≤
32, the range (1) is contained in the range of possible coefficient yj of y. The

3 This lemma is stated based on Lemma 6.1 in [Lyu08].
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probability that yj is in the range (1) is 2(k − 32)+ 1
2k +1 = 1 − 64

2k +1 . Therefore,

Pr
[
w + y ∈ Rpn

k−32 : y ←$ Rpn

k

]
=

(
1 − 64

2k + 1

)n

.

�	
Since ‖s1‖∞ ≤ 1, ‖s2‖∞ ≤ 1 and ‖c‖1 ≤ 32, we have ‖s1c‖∞ ≤ 32 and

‖s2c‖∞ ≤ 32. Hence, we have

Pr
[
s1c + y1 ∈ Rpn

k−32 : y1 ←$ Rpn

k

]
=

(
1 − 64

2k + 1

)n

and

Pr
[
s2c + y2 ∈ Rpn

k−32 : y2 ←$ Rpn

k

]
=

(
1 − 64

2k + 1

)n

Moreover, z1 = s1c + y1 and z2 = s2c + y2, the probability that z1, z2 belong
to Rpn

k−32 is

Pr
[
z1 ∈ Rpn

k−32 ∧ z1 ∈ Rpn

k−32 : y1,y2 ←$ Rpn

k

]
=

(
1 − 64

2k + 1

)2n

.

We can see that if k is too small then the probability that z1, z2 ∈ Rpn

k−32 is
very low. The below table show the relationship between n, k and the average
number of executions to generate a valid signature (Table 2).

Table 2. The relationship between n, k and the average number of executions to
generate a valid signature

n k The average number of executions
to generate a valid signature

512 214 7

512 215 3

512 216 2

1024 214 55

1024 215 7

1024 216 3

1024 217 2

4 Security Proof of the GLP Signature Scheme

In this section, we show that the GLP signature scheme is EU-CMA secure in
the random oracle model, assuming the hardness of the DCKp,n problem and the
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R-SISq,n,2,β problem. In [GLP12], it’s a bit confusing when saying that the secu-
rity of the GLP signature scheme is based only on the hardness of the DCKp,n

problem. Because [GLP12] assumes that there is a polynomial-time reduction
from the DCKp,n problem to the R-SISq,n,2,β problem as Lemma 2. However,
we can easily see that if the parameters n, p, k chosen as in [GLP12] (Table 1)
then the condition 8βn ≤ p in Lemma 2 is not satisfied. In other words, there
is no polynomial-time reduction from the DCKp,n problem to the R-SISq,n,2,β

problem with the parameters chosen as in [GLP12] by using Lemma 2.
Firstly, we see that if a adversary can derive the secret key (s1, s2) from the

public key (a, t) then he can be used to solve DCKp,n problem. Therefore, the
security of the GLP signature scheme must be based on DCKp,n problem.

The following theorem shows the security of the GLP signature scheme also
need to be based on R-SISq,n,2,β problem. Assume, for contradiction, that there
exists a polynomial-time forger F breaking the EU-CMA security of the sig-
nature scheme with non-negligible advantage. Then, we can use F to solve the
R-SISq,n,2,β problem.

Theorem 1. 4 If there is a polynomial-time adversary who can produce a valid
signature with success probability δ after making s queries to the signing ora-
cle and h queries to the random oracle H, then there exists a polynomial-
time algorithm to solve R-SISp,n,2,β problem, where β = (2(k − 32) + 64k′),

k′ = 3
⌈

2
100
n

−1√
p−1

3

⌉
+ 1, with probability at least ≈ δ2

2(h+ s) .

Proof. This theorem is proven through Lemmas 5 and 6 using the hybrid argu-
ments. To be more precise, Lemma 5 shows that the actual signing algorithm and
the actual key generation algorithm can be replaced by the key generation algo-
rithm Hybrid 3 and the signing algorithm Hybrid 3 (those are obtained from the
actual key generation algorithm and the actual signing algorithm. The advan-
tage of the adversary in distinguishing the actual algorithms and the Hybrid 3
algorithms is negligible). Therefore, if the adversary is able to produce a valid
signature with probability δ for the actual key generation algorithm and actual
signing algorithm, then he can also produce a valid signature with probability δ
for the key generation algorithm Hybrid 3 and signing algorithm Hybrid 3.

In Lemma 6, we show that if an adversary is able to produce a valid signa-
ture with probability δ for the key generation algorithm Hybrid 3 and signing
algorithm Hybrid 3, then we can use that signature to solve the R-SISp,n,2,β

problem, where β = (2(k − 32) + 64k′), k′ = 3
⌈

2
100
n

−1√
p−1

3

⌉
+ 1, with success

probability at least
(

1
2

− 2−200

)
(
δ − 2−200

)
(

δ − 2−200

h + s
− 2−200

)
≈ δ2

2(h + s)
.

�	
4 This theorem is stated based on Theorem 5.1 in [Lyu12]. Namely, we provide an

additional algorithms Hybrid 3 to prove the security of the GLP signature scheme.
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The Hybrid algorithms are described as follows.

Key Generation Algorithm Hybrid 1 and Hybrid 2

Input: Parameters (n, p).
Output: Secret key (s1, s2) and public key (a, t).

1. Choose secret key s1, s2 ←$ Rpn

1 .
2. Choose a ←$ Rpn

.
3. Compute t ← as1 + s2.
4. Return secret key (s1, s2) and public key (a, t).

Signing Algorithm Hybrid 1

Input: Parameters (n, p, k), message μ, secret key (s1, s2) and a.
Output: A signature for μ.

1. Choose y1,y2 ←$ Rpn

k .

2. Choose c ←$ {v ∈ Rpn

1 :
n∑

i=1

|vi| = 32}
3. Compute z1 ← s1c + y1, z2 ← s2c + y2.
4. If z1, z2 ∈ Rpn

k−32 then
5. Output a signature (z1, z2, c)
6. Program5 c = H (a z1 + z2 − tc, μ)
7. Else return to Step 1.

Signing Algorithm Hybrid 2 and Hybrid 3

Input: Parameters (n, p, k), message μ, secret key (s1, s2) and a
Output: A signature for μ.

1. Choose c ←$ {v ∈ Rpn

1 :
n∑

i=1

|vi| = 32}
2. Choose z1 ←$ Rpn

k−32, z2 ←$ Rpn

k−32.
3. Choose u ←$ U (0, 1)

4. Set M ←
(
1 − 64

2k +1

)2n

5. If u ≤ M then
6. Output a signature (z1, z2, c)
7. Program c = H (a z1 + z2 − tc, μ)
8. Else return to Step 1.

5 When it is queried, the oracle H is programmed to return a random c ∈ {v ∈ Rpn

1 :
n∑

i=1

|vi| = 32} without checking whether that value has been used before.
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Key Generation Algorithm Hybrid 3

Input: Parameters (n, p, k′), where k′ = 3α + 1, α =
⌈

2
100
n

−1√
p−1

3

⌉
.

Output: Secret key (s1, s2) and public key (a, t).

1. Choose secret key s1, s2 ←$ Rpn

k′ .
2. Choose a ←$ Rpn

.
3. Compute t ← as1 + s2.
4. Return secret ket (s1, s2) and public key (a, t).

The following lemma shows that, if (s1, s2) is randomly chosen from Rpn

k′ ×Rpn

k′

in which k′ is reasonably chosen, then with high probability, there exists (s′
1, s

′
2) ∈

Rpn

k′ × Rpn

k′ different from (s1, s2) satisfying as1 + s2 = as′
1 + s′

2.

Lemma 4. 6 For any a ∈ Rpn

and (s1, s2) randomly chosen from Rpn

k′ × Rpn

k′ ,
in which k′ ≥ 2

100
n −1√p. Then, with probability at least 1 − 2−200, there exists

(s′
1, s

′
2) different from (s1, s2) satisfying as1 + s2 = as′

1 + s′
2.

Proof. For any a ∈ Rpn

, consider the map fa defined as follows:

fa : Rpn

k′ × Rpn

k′ → Rpn

(s1, s2) �→ as1 + s2

We see that the cardinality of Rpn

is
∣
∣Rpn∣

∣ = pn and the cardinality of Rpn

k′ ×Rpn

k′

is (2k′ + 1)2n. Therefore, the probability of choosing (s1, s2) ∈ Rpn

k′ × Rpn

k′ such
that there are no collisions is at least

pn

(2k′ + 1)2n ≤ pn

(
2

100
n

√
p + 1

)2n <
pn

2200pn
=

1
2200

In other words, with probability at least 1 − 2−200, there exists (s′
1, s

′
2) different

from (s1, s2) such that as1 + s2 = as′
1 + s′

2. �	
Lemma 5. Let D be a distinguisher who can querry to the random oracle H.
Moreover, D can query the actual key generation algorithm, the actual sign-
ing algorithm, the key generation algorithm Hybrid 3 and the signing algorithm
Hybrid 3. If D, after making h queries to the random oracle H and s queries to
the signing algorithm (either actual or Hybrid 3), then the advantage of D in dis-
tinguishing the actual key generation algorithm and the actual signing algorithm
with the key generation algorithm Hybrid 3 and the signing algorithm Hybrid 3
is less than s (s − 1 + 2h) 2−(n+1).

Proof. We will use the hybrid arguments to prove the Lemma. Specifically, we
will use three Hybrid key generation and signing algorithms (the verification

6 This lemma is stated based on Lemma 5.2 in [Lyu12].
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algorithms are the same to the actual one, so we do not mention them here).
The key generation algorithm Hybrid 1 and Hybrid 2 are similar to the actual
key generation algorithm while the key generation Hybrid 3 is different from
the actual one in that (s1, s2) is uniformly chosen from Rpn

k′ × Rpn

k′ instead of
Rpn

1 × Rpn

1 . The signing algorithm Hybrid 1 is different from the actual one in

that c is randomly chosen from {v ∈ Rpn

1 :
n−1∑

i=0

|vi| = 32} instead of being com-

puted by c = H (a z1 + z2 − tc, μ). The signing algorithm Hybrid 2 is different
from the Hybrid 1 in that in the Hybrid 2, z1, z2 are uniformly chosen from
Rpn

k−32 instead of being computed as z1 = s1c + y1, z2 = s2c + y2. The signing
algorithm Hybrid 3 is similar to the Hybrid 2 one. We will show that with a suit-
able choice of parameters, the advantage of the distinguisher D in distinguishing
the Hybrid algorithms is negligible.

First of all, we show that the distinguisher D has advantage less than
s(s − 1 + 2h)2−(n+1) in distinguishing the actual signing algorithm with the
Hybrid 1 one. The only difference between those two algorithms is that in
the Hybrid 1 algorithm, the output of the random oracle H is randomly cho-

sen from {v ∈ Rpn

1 :
n−1∑

i=0

|vi| = 32} and then is programmed as the answer of

H (a z1 + z2 − tc, μ) = H (ay1 +y2, μ) without checking whether the hash value
(ay1 +y2, μ) has been queried to H or not. Therefore, in the signing algorithm
Hybrid 1, there may be the case that with the same input, two queries to H may
produce two different outputs, while with the actual algorithm one gets the same
output. And this is the only point that the distinguisher can distinguish between
the actual signing algorithm with the Hybrid 1 algorithm. In other words, the
advantage of the distinguisher in distinguishing these two algorithms is the prob-
ability that the signing algorithm Hybrid 1 produces two outputs with the same
query to H.

Since D makes h queries to H and s queries to the signing algorithm, there
are at most s + h values (ay1 +y2, μ) established. Now, we show that for every
call to the signing algorithm Hybrid 1, the probability of generating y1,y2 such
that a1 y1 +y2 is equal to the previous queried value is less than 2−n. Given t
arbitrarily in Rpn

, we have

Pr
[
ay1 +y2 = t;yi ←$ Rpn

k

]
=Pr

[
y2 = (t − ay1) ;yi ←$ Rpn

k

]

≤ max
t′∈Rpn

Pr
[
y2 = t′;y2 ←$ Rpn

k

]

≤
(

2k + 1
p

)n

By hypothesis k � p, then

Pr
[
ay1 +y2 = t;y1 ←$ Rpn

k ,y2 ←$ Rpn

k

]
< 2−n.

We see that the previous queried value can be generated in the random oracle
H or in signing algorithm Hybrid 1. Hence, the probability of getting a collision
after making s queries is at
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((
s
2

)
+ sh

)
2−n = s(s − 1 + 2h)2−(n+1)

Now, we need to show that outputs of the signing algorithms Hybrid 1 and
Hybrid 2 are indistinguishable. Indeed, the element c in both algorithms are
computed in a similar way. The main difference is the way z1, z2 are computed.
In the Hybrid 1 algorithm, z1 = s1c + y1, z2 = s2c + y2 and z1, z2 are output
only if z1, z2 ∈ Rpn

k−32. By Lemma 3, the probability that the Hybrid 1 algorithm

produces a valid signature is
(
1 − 64

2k +1

)2n

, whereas the Hybrid 2 chooses z1, z2

uniformly from Rpn

k−32 and the probability of producing a valid signature is

Pr

[

u ≤
(

1 − 64
2k + 1

)2n

: u ←$ U(0, 1)

]

=
(

1 − 64
2k + 1

)2n

.

Therefore, D cannot distinguish whether (z1, z2, c) is outputted by the Hybrid
1 algorithm or the Hybrid 2 algorithm.

Next, we show that D cannot distinguish the public keys generated by the
key generation algorithm Hybrid 3 and the Hybrid 2 algorithm. Indeed, by the
hardness of DCKp,n, the distinguisher D cannot distinguish between the outputs
of the Hybrid 2 algorithm and the uniform distribution on Rpn ×Rpn

. By Lemma
1, there is a reduction from solving DCKp,n to solving the R-SISp,n,2,(3α+1)

decision problem. Hence D cannot distinguish between the outputs the Hybrid
3 algorithm with the uniform distribution on Rpn × Rpn

(if it does then it is
possible to solve the R-SISp,n,2,(3α+1) decision problem, from which one can solve
the DCKp,n problem). Therefore, D cannot distinguish between the outputs by
the Hybrid 3 algorithm and the Hybrid 2 algorithm.

As a conclusion, we see that the actual key generation algorithm and the
actual signing algorithm can be replaced by the corresponding Hybrid 3 algo-
rithms. The advantage of the distinguisher in distinguishing between the actual
algorithms and the Hybrid 3 algorithms is less than s(s − 1 + 2h)2−(n+1). �	
Lemma 6. Assume that there exists a polynomial-time forger F who can pro-
duce a valid signature with success probability δ after making at most s queries
to the signing algorithm Hybrid 3 and at most h queries to the random oracle H.
Then there exists a polynomial-time algorithm to efficiently solve the R-SISp,n,2,β

problem, in which β = (2(k − 32) + 64k′), k′ = 3
⌈

2
100
n

−1√
p−1

3

⌉
+ 1 with success

probability at least
(

1
2

− 2−200

)
(
δ − 2−200

)
(

δ − 2−200

h + s
− 2−200

)
.

Proof. Denote by DH := {v ∈ Rpn

1 :
n−1∑

i=0

|vi| = 32} the range of the random

oracle H. Given a ∈ Rpn

, choose s1, s2 ←$ Rpn

k′ to be the secret key and compute
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t = a1s1 + s2. The public key is (a, t). Set t = h + s to be the upper bound of
the total number of times that H is queried or programmed by F . One query to
H can be made by the forger or H can be programmed by the signing algorithm
Hybrid 3 when the forger requests a signature of some message. Next we choose
a random coins φ for the forger, a random coins ψ for the signer (using Hybrid
3) and choose r1, . . . , rt ←$ DH to be the answers of the random oracle.

Now, we consider a sub-algorithm A with input (a, t, φ, ψ, r1, . . . , rt). The
algorithm A will run F by supplying to F the public key (a, t) and the random
coins φ as input. Whenever F requests a signature of a message, A runs the
signing algorithm Hybrid 3 and uses the random coins ψ to generate a signature.
During the signing process, the random oracle H is programmed and answers
the first value in (r1, . . . , rt) which has not been used before. Here A will save a
table consisting of all queries to H, and when a same query is requested again,
the random oracle will output the same answer. The forger can also make queries
to the random oracle. In this case, the answer is done in the same way. Whenever
F stops and produces a forgery (with probability δ), the algorithm A will take
the output of F as its output.

With probability δ, the forger F will produce a message μ and a sig-
nature (z1, z2, c) satisfying z1, z2 ∈ Rpn

k−32 and c = H ((a z1 + z2 − tc) , μ).
Note that if the random oracle was not queried or programmed with input
w = (a z1 + z2 − tc) then the probability that F produces c with c = H (w, μ)
is 1/|DH |. Hence, with probability 1 − 1/|DH |, c has to be one of the values ri

with 1 ≤ i ≤ t. Thus the probability that F succeeds in a forgery and c is one of
the values ri (with 1 ≤ i ≤ t) is at least δ − 1/|DH | . Indeed, let A be the event
that F succeeds in a forgery and B be the event that c is one of the values ri.
Then we have

Pr [A ∩ B] = Pr [A] + Pr [B] − Pr [A ∪ B]

≥ δ + 1 − 1
|DH | − 1 = δ − 1

|DH | .

Assume that j is the index such that c = rj , with 1 ≤ j ≤ t. Then there are two
possibilities as follows:

– Either rj is an answer of a query of F to the random oracle,
– or rj is programmed in the signing process.

In the second case, assume that, when signs a message μ′, the signer programs
the random oracle as H ((az′

1 + z′
2 − tc) , μ′) = c. If the forger produces a valid

signature (z1, z2, c) for μ then μ �= μ′ or (z1, z2) �= (z′
1, z

′
2) (or both are different).

Because if μ = μ′ and (z1, z2) = (z′
1, z

′
2), the adversary just outputs a message

with a signature that he already saw. If μ �= μ′ then we have a collision for H,
since

H ((az′
1 + z′

2 − tc) , μ′) = c = H ((a z1 + z2 − tc) , μ) .

If μ = μ′ then (z1, z2) �= (z′
1, z

′
2) and

H ((az′
1 + z′

2 − tc) , μ) = c = H ((a z1 + z2 − tc) , μ) .
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Thus if az′
1 + z′

2 − tc �= a1 z1 + z2 − tc then we find a collision for H. On the
other hand, if az′

1 + z′
2 − tc = a1 z1 + z2 − tc then

a (z1 −z′
1) + (z2 − z′

2) = 0.

Since ‖z1‖∞, ‖z′
2‖∞ ≤ k − 32, one has ‖z1 − z′

1‖∞, ‖z2 − z′
2‖∞ ≤ 2(k − 32).

Therefore we can solve the R-SISp,n,2,β problem where β = 2(k − 32) with
success probability at least δ − 1/|DH |.

Now we come back to the first case, i.e., rj is an answer when F makes a query
to the random oracle. In this case, first we save the signature (z1, z2, rj) of the
forger F for μ. Then, we generate new random elements r′

j , . . . , r′
t ←$ DH . Next

we run again the algorithm A with input (a, t, φ, ψ, r1, . . . , rj−1, r′
j , . . . , r′

t). By
the General Forking Lemma [[BN06], Lemma 1], the probability that r′

j �= rj

and the forger uses r′
j as an answer for a query to the random oracle is at least
(

δ − 1
|DH |

) (
δ − 1/|DH |

t
− 1

|DH |
)

,

and so with the above probability, F produces a signature z′
1, z

′
2, r

′
j for μ and

a z1 +a z2 −tc = az′
1 + az′

2 − tc′ (2)

where c = rj and c′ = r′
j . Plug t = a1s1 + s2 into (2), we obtain

a (z1 −cs1 − z′
1 + c′s1) + (z2 −cs2 − z′

2 + c′s2) = 0. (3)

Since ‖z1‖∞, ‖z′
1‖∞, ‖z2‖∞, ‖z′

2‖∞ ≤ k − 32 and ‖s1c‖∞, ‖s1c′‖∞, ‖s2c‖∞,
‖s2c′‖∞ ≤ 32k′, one gets

‖z1 −cs1 − z′
1 + c′s1‖∞, ‖z2 −cs2 − z′

2 + c′s2‖∞ ≤ (2(k − 32) + 64k′) .

Set z1 − cs1 − z′
1 + c′s1 = u1 and z2 −cs2 − z′

2 + c′s2 = u2. If u1,u2 �= 0 then
we can solve the R-SISp,n,2,β problem with β = (2(k − 32) + 64k′). Therefore, it
suffices to show that u1,u2 �= 0 with probability at least 1

2 −2−200. By Lemma 4,
with probability at least 1 − 2−200, there exists (s′

1, s
′
2) �= (s1, s2) ∈ Rpn

k′ such
that as′

1 + s′
2 = as1 + s2. If 0 = u1 = z1 − cs1 − z′

1 + c′s1 then z1 − cs′
1 −

z′
1 + c′s′

1 �= 0. Indeed, assume that

z1 − cs1 − z′
1 + c′s1 = 0 and z1 − cs′

1 − z′
1 + c′s′

1 = 0

Then z1 − cs1 − z′
1 + c′s1 = z1 − cs′

1 − z′
1 + c′s′

1. Hence

(c − c′) (s1 − s′
1) = 0. (4)

Because ‖c‖1, ‖c′‖1 ≤ 32 and ‖s1‖∞, ‖s′
1‖∞ ≤ k′, we have ‖(c − c′) (s1 − s′

1)‖∞
≤ 256k′. By the choice of parameters, 256k′ < p. Thus if (c − c′) (s1 − s′

1) = 0
over Rpn

= Zp [x]/〈xn + 1〉 then (c − c′) (s1 − s′
1) = 0 over Z [x]/〈xn + 1〉.

Since n is a power of 2, xn + 1 is irreducible in Z [x]. Hence Z [x]/〈xn + 1〉 is
an integral domain. Then, (c − c′) (s1 − s′

1) = 0 which implies c − c′ = 0 or
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s1 − s′
1 = 0. So c �= c′ and hence s1 = s′

1 (which contradicts to s1 �= s′
1 above).

Similarly, if 0 = u2 = z2 − cs2 − z′
2 + c′s2 then z2 − cs′

2 − z′
2 + c′s′

2 �= 0. On the
other hand, at the beginning, we do not know whether z1 − cs1 − z′

1 + c′s1 = 0
and z2 − cs2 − z′

2 + c′s2 = 0 or z1 − cs1 − z′
1 + c′s1 �= 0 and z2 − cs2 −

z′
2 + c′s2 �= 0. Therefore, the probability that z1 − cs1 − z′

1 + c′s1 �= 0 and
z2 − cs2 − z′

2 + c′s2 �= 0 is exactly the probability that the secret key is (s′
1, s

′
2).

Denote by E the event that there exists a related key (s′
1, s

′
2) and by F the event

that the secret key is (s′
1, s

′
2). Then the probability that z1 − cs1 − z′

1 + c′s1 �= 0
and z2 − cs2 − z′

2 + c′s2 �= 0 is

Pr [E ∩ F ] = Pr [E] + Pr [F ] − Pr [E ∪ F ]

≥ 1 − 2−200 +
1
2

− 1 =
1
2

− 2−200.

Therefore, the probability that z1 − cs1 − z′
1 + c′s1 �= 0 and z2 − cs2 − z′

2 +
c′s2 �= 0 is at least 1

2 − 2−200. Moreover, since A does not use the secret keys
as input and does not use those secret keys for signing, the forger cannot know
which secret key used in signing is (s1, s2) or (s′

1, s
′
2).

Hence in case rj is an answer for a query of F to the random oracle, we can
solve the R-SISp,n,2,β problem where β = (2(k − 32) + 64k′) with probability at
least (

1
2

− 2−200

)(
δ − 1

|DH |
)(

δ − 1/|DH |
h + s

− 1
|DH |

)
.

Since β = 2(k−32) in the first case is less than β = (2(k − 32) + 64k′) in the later
case and the success probability of solving the R-SISp,n,2,β problem in the first
case is greater than the success probability of solving the R-SISp,n,2,β problem
in the second case, the success probability will be the small one. Therefore, if
there exists a polynomial-time forger F with success probability δ after making s
queries to the signing algorithm Hybrid 3 and h queries to the random oracle H,
then there exists a polynomial-time algorithm to solve the R-SISp,n,2,β problem,
where β = (2(k − 32) + 64k′), with success probability at least

(
1
2

− 2−200

)
(
δ − 2−200

)
(

δ − 2−200

h + s
− 2−200

)
.

Since |DH | = 232
(

n
32

)
. For n = 512, we have |DH | ≈ 2200 and for n = 1024, we

have |DH | ≈ 2233. �	

5 Conclusion

In this paper, we present a full security proof for the GLP signature scheme.
Concretely, we show that the GLP signature scheme is EU-CMA secure in the
random oracle model, assuming the hardness of the DCKp,n problem and the
R-SISq,n,2,β problem. Based on the statements and arguments in [Lyu12,Lyu08],
we gave the Lemmas 2, 4, Lemmas 5, 6 and Theorem 1. The optimal version of
the GLP digital signature scheme can be proved in the same way as this paper.
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[GLP15] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Lattice-based signatures:
optimization and implementation on reconfigurable hardware. IEEE Trans.
Comput. 64(7), 1954–1967 (2015)

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact Knapsacks are col-
lision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 13

[Lyu08] Lyubashevsky, V.: Towards Practical Lattice-Based Cryptography. Univer-
sity of California, San Diego (2008)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

[Sho99] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2
http://www.cs.ucsd.edu/users/mihir
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-29011-4_43

	A Security Proof of the GLP Signature Scheme
	1 Introduction
	2 Preliminaries
	3 The GLP Signature Scheme
	4 Security Proof of the GLP Signature Scheme
	5 Conclusion
	References




