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Abstract. Non-orthogonal multiple access (NOMA) is considered a
promising technology for improving the spectral efficiency in fifth gener-
ation communication systems. In contrast to orthogonal multiple access
(OMA), NOMA allows to allocate one frequency channel to multiple
users at the same time within the same cell. Basically, this is possi-
ble through power-domain superposition coding (SC) multiplexing at
transmitter and successive interference cancellation (SIC) at receiver.
For this reason, either an optimal power allocation scheme and an opti-
mal user-aggregation policy result to have a key role on NOMA systems,
especially in power constrained scenarios like disaster communications.
In this paper, a particle swarm optimization (PSO)-based approach for
user aggregation in NOMA systems is presented. The efficiency of this
approach in finding the optimal aggregation scheme which require the
minimum transmission power, maintaining the quality of service (QoS)
constraint of each user, is evaluated through simulations, providing com-
ments and remarks about the obtained results.
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1 Introduction

During the last decade, the diffusion of powerful multimedia devices, such as
smartphones and tablets, has grown exponentially, creating the need for a new
cellular technology referred to as 5G [7,11,18].
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An important aspect, used to improve the system capacity in cellular mobile
communications, is the design of the multiple radio access technology (M-RAT).
Nowadays, such multiple access technologies can be categorized into two different
classes: (i) orthogonal multiple access (OMA) and (ii) non-orthogonal multiple
access (NOMA).

Frequency division multiple access (FDMA), time division multiple access
(TDMA), code division multiple access (CDMA), and orthogonal frequency-
division multiple access (OFDMA) are examples of OMA schemes. In contrast
to OMA, NOMA allows to allocate one frequency channel to multiple users at the
same time within the same cell, offering a number of advantages which permit
to label NOMA as a promising multiple access scheme for future radio access
networks [2,9,14–16,19,20,23].

Since the basic principle of NOMA is to serve multiple users by power-domain
superposition coding (SC) multiplexing at transmitter and successive interfer-
ence cancellation (SIC) at receiver, one of the main challenges of this multiple
access technique is represented by the power allocation scheme adopted by the
transmitter. The problem of optimal power allocation for NOMA systems, with
respect to different network performances maximization like energy efficiency
maximization and maximum throughput, has been widely investigated in liter-
ature [5,6,21,22,24–26]. However, another aspect which represents a key factor
for NOMA system performance, is the user-aggregation policy adopted for mul-
tiplexing users along different sub-channels [3].

To the best of our knowledge, at date, most of the works on NOMA face
this aspect pairing at most two users per sub-channel [4,8,17]. One of the most
extensive study can be recognized in [27], where a general scheme for aggre-
gate more than two users into a single sub-channel is provided. Generally, the
optimization process for user-pairing and sub-channel mapping in NOMA sys-
tems is represented by a mixed integer-linear problem (MILP) which, even if
small, may be hard to solve. Under this perspective, this paper proposes and
evaluates the performance of a particle swarm optimization (PSO) approach for
user-aggregation which require the minimum transmitting power.

2 Introduction to NOMA Systems

In this section, some NOMA basics are presented. It is assumed that a base sta-
tion (BS) serves N users located within its coverage area. Without loss of gen-
erality, it is also supposed that (i) both transmitter and receivers are equipped
with a single antenna, and (ii) users’ channel coefficient are ordered in a ascend-
ing manner, i.e., 0 < |h1|2 ≤ |h2|2 · · · ≤ |hN |2. In downlink the BS serves the
N users employing power-domain SC multiplexing. Then, the signal received by
user i can be expressed as:

yi = hi · x + wi; ∀ i = 1 · · · N ; (1)

where x =
∑N

i=1

√
PβiSi is the superimposed signal containing all Si messages,

hi denotes the channel coefficient, and wi represents the noise term with spec-
tral density σ2. In particular, since

∑N
i=1 βi = 1, the transmitter employ a total
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amount of transmitting power equal to P . Each user implement the SIC iter-
atively, decoding signals transmitted to users with weaker channel condition
firstly and subtracting them from superimposed received signal. Then, the sig-
nal obtained from this subtracting process is used to decode its own related
message. Taking that into account and supposing that ‖Si‖2 = 1, the achievable
rate in downlink for user i can be expressed as:

Ri,DL = log2

(

1 +
βiP |hi|2

P |hi|2
∑N

k=i+1 βk + σ2

)

, (2)

As one can note, only the noise spectral density is present in Eq. (2) when i = N ,
since the messages of users i < N have been deleted through SIC.

3 User-Aggregation Problem Formulation

Considering Eq. (2), in order to guarantee a minimum quality of service (QoS)
to user i, i.e., Ri,DL ≥ Rmin

i , the minimum amount of power Pmin
i which should

be allocated to that user is formulated as:

Pmin
i ≥ Ai ×

(
N∑

k=i+1

Pk +
σ2

|h2
i |

)

, (3)

in which Pi = Pβi and Ai =
(
2Rmin

i − 1
)
. Supposing that all the users have

the same QoS requirements, i.e., AN = AN−1 = · · · = A1 = A, Eq. (3) can be
written as:

Pmin
i ≥

⎧
⎨

⎩

A × σ2

|hN |2 = Pmin
N , i = N ;

A ×
(

∑N
k=i+1 Pk + σ2

|h2
k|

)

, i < N ;
(4)

In particular, after some mathematical manipulations, the second case can be
expressed as follow:

Pmin
i ≥ A × PN + A ×

N−1∑

k=i+1

Pk + Pmin
N

|hN |2
|hk|2 . (5)

Then, the total amount of power required in order to guarantee the QoS of all
users is:

Ptot =
N∑

i=1

Pmin
i ≥

N−1∑

i=1

A×Pmin
N +A×

N−1∑

i=1

N−1∑

k=i+1

Pk +Pmin
N ×

N−1∑

i=1

|hN |2
|hi|2 +Pmin

N .

(6)
Grouping by common factors and observing that the first term is independent
of index i, the following expression is obtained:
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Ptot ≥ Pmin
N ×

(

(N − 1) × A + 1 +
N−1∑

i=1

|hN |2
|hi|2

)

+ A ×
N−1∑

i=1

N−1∑

k=i+1

Pk. (7)

Then, this represents the minimum amount of power which is necessary to use
in order to guarantee the QoS of all users multiplexed within the same sub-
channel. This amount of energy strongly depends from user aggregation and
sub-channel mapping process. Supposing that N users should be multiplexed
along M independent sub-channels, and indicating with U ∈ {0; 1}N×M the
sparse matrix in which the element ui,j is equal to 1 if user i is allocated to
sub-carrier j and 0 otherwise, the optimization problem is formulated as:

min
U

Ptot ; (8a)

s.t. Ri,DL ≥ Rmin
i , ∀ i = 1 · · · N ; (8b)

M∑

j=1

ui,j = 1, ∀ i = 1 · · · N ; (8c)

The constraint (8b) represents the minimum QoS requirement of each user. The
constraint (8c) makes sure that each user will be multiplexed only into one sub-
channel. Since this type of problem represents a MILP problem, in order to find
an optimal solution, a PSO-based approach, which respect to other heuristic
approaches has shown a more promising behaviour [10], is proposed.

4 A Particle Swarm Optimization (PSO) Approach
for Optimal User-Pairing

PSO is one of metaheuristic optimization technique inspired by natural life
behaviour like bird flocking and fish schooling [1,12]. It consists in a set of a
predefined number, say Np, of particles with a position Xi and a velocity Vi in
a dimensional space of dimension D. Iteratively, each particle, which represents
a solution of the optimization problem, is evaluated through a fitting function,
obtaining the personal best of the particle, i.e., Pbesti. This Pbesti is compared
with the global best value, i.e., Gbest. After this comparison each particle adjusts
its own position and velocity along each dimension according with the following
equations:

Vi,d(t) = w · Vi,d(t − 1) + c1 · r1 · (Xpbseti,d − Xi,d(t − 1))
+ c2 · r2 · (Xgbesti,d − Xi,d(t − 1)) ,

(9)

and
Xi,d(t) = Xi,d(t − 1) + Vi,d(t) , (10)
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where (9) and (10) represent velocity and position along dimension d, respec-
tively, w is the inertial weight, c1 and c2 are two non-negative constants and
r1 and r2 are two different uniformly random distributed numbers in the range
[0, 1].

As in [13], in this paper the initial set of particle has been created in a ran-
dom fashion. The fitting function for each particle is the total required power
expressed by Eq. (7). Moreover, no consistent changes to the solution happened
after 500 iterations. Then, in order to ensure a consistent result, the number of
700 iterations has been set as PSO stop criterion. The most important parame-
ters for (9) have been chosen as the same in [13] and are provided in Table 1.

5 Simulation Results

As simulation scenario, it is considered a scenario in which an available band-
width B is divided equally into M independent sub-channels used to multiplex
N users. These users are distributed into a circular area of radius R accord-
ing with a poisson point process (PPP). The transmitter is supposed at the
center of this area. It is assumed that the channel statistics of all users along
the whole bandwidth are known. The channel gain of Eq. (1) has been sup-
posed as hi = d

−α/2
i × gi where gi follows a Rayleigh distribution, di represents

the distance between transmitter and receiver and α is the path-loss exponent.
The noise power along the whole bandwidth is N0 = 290 · k · B · NF , where k
and NF are Boltzmann constants and noise figure at 9 dB, respectively. Then,
the noise power in each sub-channel is N0/M . The most relevant simulation
parameters are summarized in Table 1 and all results represent the average of 10
different simulation runs. The policy efficiency (PE) has been used as index for

Table 1. Simulation parameters

Parameter Value Parameter value

Cell radius (m) 200 M (average number of nodes) 100

Bandwidth (MHz) 40 Pathloss exponent α 4

Np 50 Niterations 200

C1 1.4962 C2 1.4962

w 0.7968 N number of sub-channels [25:50]

Vmax 0.5 Vmin −0.5

QoS threshold [bps/Hz] [1:5] σ Rayleigh 1

performance evaluation. In particular, indicating with Pav,R the average power
required through random policy, and with Oav,i the power required through PSO
policy, the PE is defined as follow:

PEi =
Pav,R − Oav,i

Pav,R
(11)
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Fig. 1. Policy efficiency gain over different QoS thresholds.

In summary, this represents the reduction in power requirements by using the
configuration from PSO output instead of random policy assignment.

Figure 1 shows the variation of the PE gain, expressed in percentage, by
varying the QoS thresholds and the number of sub-channels. From these graphics
one can note how the PE ranges from a minimum of 45% to a maximum of 80%.
In addition, the PE increases by increasing the number of available sub-channels
and decreases by increasing the QoS constraint. These results are in line with
Eq. (7). Indeed, an increase of the QoS constraint results in an exponentially
increase of the minimum required power for all the users. Moreover, reducing
the number of sub-channels more users will be multiplexed in each sub-band
and then, according with Eq. (5), the minimum required power for each of them
increase as well. As a consequence, the total required power increase. These
results confirm the efficiency of the PSO in finding the optimal configuration
which require the minimum power, satisfying the QoS requirements of each user.

6 Conclusions and Future Works

Due to its advantages which can contribute to reach some requirements of
next generation 5G networks, during the last few years NOMA technology has
attracted the attention of the research community. In line with NOMA prin-
ciple, i.e., power-domain SC multiplexing at transmitter, this paper presents a
performance analysis of a PSO-based approach for user-aggregation along dif-
ferent sub-channels. In particular, through simulations, one can note how this
user-pairing scheme is able to find the optimal configuration that permits to
require the minimum transmission power, satisfying the QoS requirements of
each user. However, depending on the considered scenario, the PSO-based algo-
rithm can result in a high computational cost procedure. Thus, the design of
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explicit and scalable user aggregation procedures for NOMA systems represents
a future direction in which this work can be served as benchmark.
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