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Abstract. This paper proposes the adaptive indirect learning architec-
ture (ILA) based digital predistortion (DPD) technique using a recursive
prediction error minimization (RPEM) algorithm for linearizing radio
frequency (RF) power amplifiers (PAs). The RPEM algorithm allows
the forgetting factor to vary with time, which makes the predistorter
(PD) parameter estimates more consistent and accurate in steady state,
and hence reduces mean square errors. The proposed DPD technique is
evaluated with respect to the error vector magnitude (EVM) and the
adjacent channel power ratio (ACPR). The simulated PA Wiener model
is used to validate the efficiency of the proposed algorithms. The simu-
lation results have confirmed the improvement of the proposed adaptive
RPEM ILA based DPD in terms of EVM and ACPR.
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1 Introduction

The development of future wireless communication systems, e.g., the fifth gen-
eration (5G) or beyond, continuously demands higher data rates and larger
user capacities, which faces significant challenges. It requires not only wide-
band transceiver architecture, but also higher-order modulation schemes. The
signals of these systems characterized by non-constant envelopes and high peak-
to-average power ratio (PAPR), leading to stringent linearity requirements for
signal amplification. In the meantime, the power dissipation of the future com-
munication systems must be remained as low as possible [1]. To cope with
these challenges, high efficiency and linear radio frequency (RF) power ampli-
fiers (PAs) are indispensable components. Unfortunately, due to the inherent
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nonlinear behavior of PAs, efficiency and linearity requirements often conflict
each other. In order to provide highly-efficient power conversion, PAs should be
driven into the saturation region. However, the saturated PAs produce not only
in-band distortion but also result in spectral regrowth that interferes the adja-
cent frequency band channels. Consequently, the spectra utilization efficiency is
reduced. In contrast, the nonlinear distortion can be mitigated by a traditional
back-off approach, but this generates low power efficiency due to high PAPR of
the transmitted signals. In order to maintain a low level of distortion without
sacrificing the system energy efficiency requirement, PA linearization techniques
are often used [2]. Thanks to its flexibility and excellent linearization perfor-
mance, baseband digital predistortion (DPD) has been recognized as one of the
most cost-effective linearization techniques [3–9], and it also tends to be popu-
larly and widely used in wireless transmitters for the next generation wireless
communication systems. In this scheme, a predistorter (PD) block is placed in
front of a PA. The PA input signal is pre-distorted by the PD whose transfer
function is the inverse of that of the PA. Ideally, the cascade of the PD and PA
behaves as a linear amplification system and the original input is amplified by a
constant gain.

In practice, the PA characteristics change with time due to process, sup-
ply voltage, and temperature (PVT) variations. In order to track time-varying
change in the PA characteristics, an adaptive DPD using cost-effective learn-
ing architectures has become one of the most preferred choices. There are two
commonly and widely used learning architectures for PD parameter identifica-
tion: indirect learning architecture (ILA) [10–12] and direct learning architecture
(DLA) [8,9,13,14]. Although DLA is more robust than ILA in terms of noise at
the PA output and can provide unbiased parameter estimates, it is more com-
plex identification process since the adaptive algorithms used in DLA require
many iterations to find a set of parameters that minimizes the optimization cri-
terion [3]. For these reasons, the adaptive ILA is most often used for identifying
the PD parameters in RF PAs [3]. The adaptive ILA using least mean squares
(LMS) for linearizing PAs was developed in [15]. The advantage of LMS is its
simple implementation. However, it provides inaccurate estimation and has slow
convergence since increasing the step size parameter leads instability problems.
Moreover, it is also sensitive to the scaling of the input signal, making it very
hard to choose a proper step size [15]. In order to obtain faster convergence of
the adaptation, authors in [10,12] proposed the adaptive ILA using recursive
least squares (RLS). It is worth noting that the choice of forgetting factor λ is
often essential to make a good trade-off between the convergence and accuracy.
For RLS, a decrease in the forgetting factor λ leads to its sensitivity to noise
and a larger fluctuation of parameter estimates [16], resulting in inefficiency
linearization performance.

In this paper, we propose an adaptive ILA using recursive prediction error
minimization (RPEM) algorithm to linearize PAs, which allows time-varying
forgetting factor λ. Thus, the RPEM algorithm reduces the fluctuation of the
PD parameter estimates, speeds up the convergence, mitigates the steady-state
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mean square error and hence minimizes the total nonlinear distortion at the
PA output. As a result, the adaptive ILA with RPEM effectively compensate
the nonlinear distortion of the PA even if the PA characteristics changes due
to PVT drift and other factors such as type of signals, high-order modulation
schemes, input power levels etc. The rest of the paper is organized as follows.
Section 2 proposes the one using RPEM. Simulation results are presented in
Sect. 3. Conclusions are finally drawn in Sect. 4.

2 Proposed Adaptive ILA Using RPEM for Linearizing
RF Power Amplifiers

Figure 1 shows the block diagram of the ILA-based DPD technique, where a
post-distorter (or training) block is used to identify the postinverse of the PA.
The baseband signal u(n) is fed to the predistorter, which generates a signal
x(n) that is a PA input. The PA output signal is normalized by a linear gain
G0, producing the normalized output z(n), i.e., z(n) = y(n)

G0
. The postdistorter

model has the input z(n) and the output zp(n). Its parameters are identified by
minimizing the error signal e(n) = x(n) − zp(n) using the adaptive algorithms.
Note that both the PD and postdistorter models are identical. Thus, when the
coefficients of the postdistorter are identified, they are directly copied to the
PD model. This process is repeated iteratively until the ILA linearization has
converged. At convergence, the cascaded PD and PA system behaves linearly.
Since the MP models have owned low computational cost, satisfactory accuracy,
and easy hardware implementation, they have become promising choices and
been widely applied for behavioral modeling and predistortion of PAs exhibiting
nonlinear memory effects [2,4,12,17]. Therefore, both the PD and postdistorter

RF PA

-

+

Predistorter

+ Postdistorter
(Training)

Adaptive RPEM 
algorithm

Fig. 1. Block diagram of Indirect learning architecture (ILA) using the proposed
RPEM adaptive algorithm.
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are modeled by the same MP model that has Q as the nonlinearity order and P
as memory depth, and ωkm as coefficients. The input and output relation of the
PD model is given by

x(n) =
Q∑

k=1

P∑

m=0

ωkmu(n − m)|u(n − m)|k−1 = ωTφ(n), (1)

where
ω = [ω10, . . . , ωQ0, . . . , ω1P , . . . , ωQP ]T, (2)

and
φ(n) = [φ10(n), . . . , φQ0(n), . . . , φ1P (n), . . . , φQP (n)]T (3)

with
φkm(n) = u(n − m)|u(n − m)|k−1

. (4)

The symbol T indicates the matrix transpose.
The input and output of the postdistorter model can be expressed by

zp(n) =
Q∑

k=1

P∑

m=0

ωkmz(n − m)|z(n − m)|k−1 = ωTz(n), (5)

where ω is defined as in (2) and

z(n) = [z10(n), . . . , zQ0(n), . . . , z1P (n), . . . , zQP (n)]T (6)

with
zkm(n) = z(n − m)|z(n − m)|k−1

. (7)

The prediction error e (n, ω) is defined by

e (n, ω) = x(n) − zp(n) = x(n) − ωTz(n). (8)

The adaptive algorithms are derived by minimizing corresponding lost functions
that refer to scalar-valued functions of all the prediction errors e (n, ω).

The coefficient vector ω of the predistorter is estimated by using the Gauss-
Newton RPEM algorithm in [16] that minimizes the following cost function.

fL (ω) = lim
L→∞

1
L

L∑

l=1

E
{
e2 (l, ω)

}
, (9)

where e(l, ω) is given as in (8).
The formulation of the RPEM algorithm is derived in [16], which requires the

negative gradient of e (l, ω) with respect to ω. From (8), the negative gradient
is given by

− ∂e (n, ω)
∂ω

= zT(n). (10)

When applying the RPEM algorithm [16] for PA linearization, the adaptive ILA-
based DPD using RPEM algorithm is described in Algorithm 1, where ρ also is
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Algorithm 1. The proposed adaptive ILA-based DPD technique using RPEM.
1: Initialize: n = 0, λ0, λ(0),P(0) = ρI.
2: for n = 1 to L − 1 do
3: x(n) = ωT(n − 1)φ(n)
4: y(n) = FPA {x(n)} .

5: z(n) = y(n)
G0

6: zp = ωT(n − 1)z(n)
7: e(n) = x(n) − zp(n)
8: λ(n) = λ0λ(n − 1) + 1 − λ0

9: k(n) = P(n−1)z(n)

λ(n)+zT(n)P(n−1)z(n)

10: P(n) = 1
λ(n)

[
P(n − 1) − k(n)zT(n)P(n − 1)

]

11: ω(n) = ω(n − 1) + k(n)e(n).

12: End For

a positive constant and λ(n) is a forgetting factor that tends exponentially to 1
as n → ∞. λ0, λ(0) and P(0) are initial variables designed by users. Typically
chosen values for λ0 and λ(0) are λ0 = 0.99 and λ(0) = 0.95 [16].

It is crucial that the evaluation criteria should be adopted to clearly validate
the performance of PA behavioral modeling and DPDs. Therefore, this part
defines the figures of merit for performance evaluation. The most commonly
used criteria are normalized mean square error (NMSE) in time domain, adjacent
channel power ratio (ACPR) in frequency domain, and error vector magnitude
(EVM) that are defined as in [3,18].

Firstly, NMSE is an estimator of the overall difference between the predicted
and measured signals in time domain. It is often defined in decibels as

NMSE = 10log10

⎛

⎜⎜⎝

N∑
n=1

(|y[n] − x[n]|)2

N∑
n=1

(|x[n]|)2

⎞

⎟⎟⎠ , (11)

where x(n) is the experimental output (or desired output) of the DUT, and y(n)
is the output obtained from the model.

Moreover, ACPR is the ratio between the total adjacent channels’ powers to
the main channel signal power. It describes the degree of the signal regrowth
into neighbouring channels. Since the ACPR characterizes the maximum power
allowed to be radiated outside the allocated band, it plays a very important role
in wireless radio standards. The ACPR is often expressed in decibels as

ACPR = 10log10

(∫
Badj

|Y (f)|2
∫
Bch

|Y (f)|2
)

(12)

where |Y (f)| denotes the power spectrum of the measured output signal y(n),
Badj and Bch refer to the bandwidth of the adjacent and main channels, respec-
tively.
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The EVM is a measure criterion that quantifies the imperfection to the output
signal when compared to the input one. It describes the in-band distortion of
the PA and is defined as

EVM =

√√√√√√√√

L∑
j=0

[(
Ij − Îj

)2

+
(
Qj − Q̂j

)2
]

L∑
j=0

[
I2j + Q2

j

] (13)

where Ij and Qj are the ideal output signal in-phase and quadrature components,
and Îj and Q̂j are their output measured counterparts, respectively.

3 Simulation Results

In order to demonstrate the proposed DPD linearization method, we tested a
simulated PA that is modeled by a Wiener model consisting of a FIR filter
followed by memoryless nonlinearity model. The coefficients of the FIR filter are
as in [19–21]

h0 = 0.7692, h1 = 0.1538, h2 = 0.0769. (14)

For the memoryless nonlinearity model, we use Saleh’s model [22], which is
defined by

y(n) =
αa |v(n)|

1 + βa|v(n)|2 e
j∠

[
v(n)+

αϕ|v(n)|2
1+βϕ|v(n)|2

]
, (15)

with
v(n) = h0x(n) + h1x(n − 1) + h2x(n − 2), (16)

where x(n) and y(n) are the input and output of the simulated PA, respectively,
and v(n) is the input of Saleh model. The parameters of Saleh model are as
in [19]

αa = 20, βa = 2.2, αϕ = 2, βϕ = 1. (17)

The transmitted symbols are modulated by 16-QAM with 3.84 MHz bandwidth.
The input modulated signal is filtered by a raised cosine pulse shaping filter with
the roll-off factor of 0.22.

The AM/AM and AM/PM characteristics computed at the instantaneous
samples of the PA input and output, are shown in Fig. 2. It is clear that the
simulated PA suffers from the nonlinearity and memory effects. Figure 3 shows
the gain performance of the simulated PA with the average input power. One
can observe that the gain in linear region is about 26 dB. The average input
power at 1 dB compression point and at 3 dB are around −1 dBm and 4.3 dBm,
respectively.

The MP model is used to model nonlinear behavior of the PA. In order to
reduce the computational complexity, the orders (N and M) of the MP model are
optimized by using a performance-based sweeping method [17]. Figure 4 shows
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Fig. 2. The PA characteristics. (a) AM/AM. (b) AM/PM.

the NMSE performance versus the orders of the PA model. From this figure, we
can see that the optimal values of N and M are N = 5 and M = 2, respectively,
in order to achieve a good trade-off between the best NMSE and computational
complexity.

In order to validate the proposed DPD, the RPEM algorithm is initialized
when λ0 = 0.99, λ(0) = 0.95 and the initial weight vectors ω(0) have a first ele-
ment as 1 and the others as 0. In this simulation, the ACPR values are measured
at the upper adjacent channels, corresponding to frequency offsets of 5MHz.
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Fig. 3. Gain versus average input power of simulated PA.
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Figure 5 shows effectiveness in canceling the spectral regrowth of the pro-
posed approach. for the input power of −4 dBm. It can be seen that there is a
significant spectral regrowth reduction after DPD. The adaptive RPEM algo-
rithm converges after 10-K samples, as shown in Fig. 6.
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Fig. 5. Power spectral density (PSD) of the PA output before and after DPD using
various adaptive algorithms with the input power of −4 dBm.
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Fig. 6. Learning curves for adaptive RPEM algorithms.

Figures 7(a) and (b) respectively show the ACPR and EVM performance
of the proposed DPD for various input power levels. From these figures, one
can observe that the proposed DPD technique shows a significant performance
improvement in terms of ACPR and EVM. It obtains the ACPR values almost
equal to those of input. Furthermore, after applying RPEM-ILA, the EVM values
are significantly reduced and less than 0.26%, which shows excellent performance
in in-band distortion mitigation. This is because the RPEM algorithm makes
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Fig. 7. ACPR and EVM performance after the proposed DPD using adaptive RPEM
algorithm. (a) ACPR. (b) EVM.

the PD coefficient estimates more consistent and precise in steady state. The
simulation results have clarified the improvements of the proposed technique
compared with LMS [15] and RLS-based [10,12] ILA methods.

4 Conclusions

In this paper, an adaptive ILA linearization using the RPEM algorithm has
been proposed. Thanks to the time-varying forgetting factor, the PD coefficient
estimates are consistent and accurate in steady state, leading to speed up the
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convergence, reduce the NMSE, and minimize the total nonlinear distortion at
the PA output. The simulation results confirm that the nonlinear distortion of
the PA operated under different conditions (for example, the different input
powers), can be almost fully compensated by employing the adaptive ILA with
RPEM. In other words, the proposed DPD technique effectively linearizes the
PA even if its characteristics change. So, this approach provides a very promising
solution for future wireless communication system where the PA characteristics
change due to the type of signal, high-order modulation, working condition, etc.
The future works will target the optimization, hardware implementation and
more detail analysis results of the proposed linearization technique.
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