
Generating Test Data for Blackbox Testing
from UML-Based Web Engineering Content

and Presentation Models

Quyet-Thang Huynh1, Dinh-Dien Tran1, Duc-Man Nguyen2,
Nhu-Hang Ha2, Thi-Mai-Anh Bui1, and Phi-Le Nguyen1(&)

1 School of Information and Communication Technology,
Hanoi University of Science and Technology, Hanoi, Vietnam

{thanghq,anhbtm}@hust.soict.edu.vn,

trandinhdien@gmail.com, lenp@soict.hust.edu.vn
2 Duy Tan University, Da Nang, Vietnam

{mannd,hatnhuhang}@duytan.edu.vn

Abstract. Software testing is a process that produces and consumes huge
amounts of data. Thus, the test data is usually either gathered manually by the
testers or randomly generated by tools. The manual method consumes lot of
time and highly depends on the testers’ experience while the random approach
faces the problem of redundant test data caused by identical use cases. By
leveraging the concept of Model-based testing, this paper provides a novel
method of testing to save the cost of manual testing and to increase the reliability
of the testing processes. In Model-based testing, test cases and test data can be
derived from different models. In this paper, we present a technique to generate
test data from UML-based Web Engineering (UWE) presentation model for web
application testing by using formal specification and Z3 SMT solver. We also
build a model-based testing Eclipse Plug-in tool called TESTGER-UWE that
generates test data based on the model of UWE for the web application. We
evaluate the proposed methods by applying them to generate test data for an
Address Book project of UWE. Experimental results show that our proposed
methods can reduce the time significantly when generating test data for
automation test tools such as Selenium, Katalon, Unit test, etc.

Keywords: Web application testing � Model-based testing �
Test case generation � UML-based Web Engineering

1 Introduction

The UWE is an object-oriented approach, which was presented by the end of the 90s
[1, 2]. This concept aims to find a standard for building models of analyzing and
designing web systems based on object-oriented hypermedia design method
(OOHDM) [3], relationship management methodology (RMM) [4], and web search and
data mining (WSDM) [5]. These models are built at the different phases of the software
development process and represent different views of the Web application corre-
sponding to the different concerns. UWE follows a strict separation of concerns in the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
T. Q. Duong et al. (Eds.): INISCOM 2019, LNICST 293, pp. 207–219, 2019.
https://doi.org/10.1007/978-3-030-30149-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30149-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30149-1_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30149-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-30149-1_17

early stages of the development and implements a model-driven development process.
In UWE, UML diagrams are exploited to visualize the models. By such ways, UWE
can represent the structural aspects of the different views and provide support for
model-driven web applications development [5]. Model-driven software development
stresses the use of models at all levels of the software development process. This result
changes the way software is designed, maintained, and tested [6]. According to [7]:
“Testing often accounts for more than 50% of the required effort during system
development”.

A testing cycle encompasses three main parts: (i) Test case generation, (ii) Test
execution, and (iii) Test evaluation. Test case and test data generation is perhaps the
most complex and challenging part. Testing is a cumbersome task which needs to
assure customer satisfaction and product safety. Automated test data generation is one
of the main factors that contribute to the quality of automated testing. It is used for
automatically generating test data for software under test (SUT) during software test-
ing. Automation in the test data generation process could reduce testing expenses and
increase the reliability of the entire testing process. For these reasons, automated test
data generation has remained a topic of interest for the past four decades [9]. In many
cases, model-based testing is more efficient than other testing techniques due to its
possibility in generating large test suites and test data to provide evidence for accurate
system implementation [8, 10].

In this paper, we aim at proposing a technique to generate test cases and test data
from the UWE presentation model for Web application testing. We used the results of
the previous study of Nguyen et al. [29] on the generation of test data using the formal
specification and Z3 SMT Solver. From UWE presentation model and content models,
they are transformed to XMI file, from which the formal specification file (called
myDSL-Domain Specific Language defined by [29]) is generated for each Presentation
class. Then the generation test engine invokes Z3 SMT Solvers to generate test data.
We also build a plug-in tool called TESTGER-UWE that supports to transform XMI to
myDSL and generate test data. The proposed method applies to the Address Book
project of UWE.

The rest of this paper is organizing as follows: Sect. 2 provides the related studies;
the proposed method is presenting in Sect. 3; In Sect. 4, we apply the proposed
approach to generate test data for an Address book case study; Sect. 5 presents the
results and discussion; Sect. 6 concludes the paper and describes our future works.

2 Related Works

UML is most generally used to provide a standard way to visualize the design of a
system and also widely used for test case generations. There are many types of research
in recent years about various techniques for the generation of test cases from UML
diagrams.

Wang, et al. [11] proposed use case modeling for system tests generation. The
proposed technique uses use case specifications, a domain model, a class diagram and
constraints to generate executable system test cases. Oluwagbemi and Asmuni [12]
presented an enhanced method for generating test cases from various UML diagrams.

208 Q.-T. Huynh et al.

A robust scheme for collecting artifacts from the underlying diagrams of the software
under test was proposed. The intermediate representation of the artifacts is in the form
of a tree over which the traversal of contents generates test cases. Anbunathan and
Anirban [13] developed a method using basis path testing approach for test cases
generation from UML class diagrams. From the class diagrams, a corresponding state
chart diagram has been drawn and then is converted into a control flow graph. Test
cases are generated manually as well as automatically, and the effectiveness of test
cases has been performed using mutation analysis. Results show a significant decrease
in cost as compared to other existing techniques.

Vinaya and Ketan [14] have presented a method for the generation of test cases
from UML use case diagrams, class diagrams, and sequence diagrams, and then
transform it into a Sequence Diagram Graph. A data dictionary is presented in the form
of Object Constrained Language (OCL). The UML diagrams are drawn with the help of
magic draw tool and then exported to XML format. The XML file has been parsed in
java for extracting different nodes of the graph and generates all set of the scenarios
from start node to end nodes.

Papadopoulos and Walkinshaw [15] presented a model-inference driven testing
framework that is designed to support the inference-driven test generation for programs
that are not sequential. The framework is designed to be modular; it is not necessarily
tied to a specific model inference or test generation framework and can be in principle
applied to any executable program, without the need for access to the source code.

The framework is deliberately flexible and uses C4.5 algorithm to infer decision
trees from program executions and uses the Z3 solver to generate and execute tests
from it [15]. The authors provided an openly-available Java implementation that can be
extended to handle different types of programs, models, and test generators. The
authors developed an evaluation of three openly-available programs and indicated that
inference-driven testing could produce better test sets more efficiently than random
testing.

According to Jain and Porwal survey, most of the researches proposed an approach
to test data generation based on actually executing the program, analyzing the dynamic
data flow, and using a function minimization method. These researches use popular
heuristic approaches like Genetic Algorithm, Simulating Annealing, Particle Swarm
Optimization, Ant Colony Optimization has been widely applied to search for effective
test data. These approaches are verified to be more optimized than the random tech-
nique [16–22].

Currently, on the market, there are some tools to support test data generation online
and offline for Data Driven Testing such as Generate data, Mockaroo, Yan Data Ellan
[26–28] but these tools only let testers create data generation fields, select predefined
data types and generate data. Their limitation is not to modify data size constraints and
other user-defined constraints.

From the literature review, we could observe that there are different methods
available to generate test cases and test data using different techniques. Studies focused
on test case generation from UML diagrams by converting UML models to interme-
diate graphs and generating test cases. Other studies on test data generation are mostly
based on the program code using meta-heuristics algorithms and optimization
techniques.

Generating Test Data for Blackbox Testing 209

3 A Novel Approach for Test Data Generation from UWE
Content and Presentation Models

A metamodel represents these model elements and their relationships. UWE is com-
patible with the MOF exchange metamodel and therefore with XMI-based XML
exchange format tools. The advantage of UML CASE tools which support for UML
profiles or UML extension mechanisms can be used to create UWE models of web
applications such as automatic model generation.

The presentation model provides an abstract view of the user interface (UI) of a
web application. It is based on the navigation model. It describes the basic structure of
the user interface, such as UI components (e.g., text, images, anchors, forms) used to
represent navigation nodes. The UI components do not represent specific components
of any presentation technology, but only describe what functionality is required at that
particular point in the user interface. The basic elements of the presentation model are
presentation classes, which are directly based on the nodes from the navigation model.
Presentation classes may contain other presentation elements. In the case of UI com-
ponents, such as text or images, the presentation properties associated with the navi-
gation attribute containing the content will be displayed.

Based on our previous research on model transformation with OCL integration [23,
24] and development of rules and algorithms for code in UWE [30], we continue to
expand and develop test case/test data generation technique for generating code, as well
as test data based on UWE metamodels. In this context, we propose a new approach to
generate test data using XMI file, domain specific language and Z3 SMT Solvers from
the study of Nguyen and et al. [29]. The proposed framework is shown on Fig. 1.

Fig. 1. The proposed framework for Test Data Generation.

210 Q.-T. Huynh et al.

The process of developing Web Application with model transformation techniques,
using MagicUWE will include 5 steps as follows. We propose the technique for test
data generation from UWE Content and Presentation Models to be implemented in
step 3, step 4 and step 5, according to the framework shown in Fig. 1.

Step 1. Build up the charts in term of Content, Navigation, Presentation, Process
structure and/or Process flow.
Step 2. Use MagicDraw to transform Content, Presentation Models to XMI file (e.g.
Fig. 2)

Step 3. Leverage suggested functions to transfer XMI to formal specifications DSL.
We utilize the results of previous research, proposed by Nguyen et al. [29]
regarding the use of formal language to specify software requirements, the myDSL
edit tool is built upon xText and DSL (Java environment), Fig. 3 shows the formal
specification (called myDSL) of the Contact Class in Presentation model.

Step 4. Then, the engine generates data by transferring specification from the 3rd

step to Z3 SMT language and call Z3 SMT solvers to find a set of solutions (test
cases and test inputs). Z3 offers a compelling match for software analysis and
verification tools since several common software constructs map directly into

Fig. 2. An example of XMI file of Content model

Fig. 3. myDSL of Contact class.

Generating Test Data for Blackbox Testing 211

supported theories. It is best used as a component in the context of other tools that
require solving logical formulas. Figure 4 show the screenshot of generating test
data.
Step 5. The results provide the test data in the format of XLS or CSV that shown in
Table 1 (an example data), Tester and Developer can use these results for different
testing purposes, especially for Data Driven Testing method of web applications.
They also can use the results of test data to do some heuristics to optimize the data
results by adding other constraints to the myDSL file and performing test generation
again.

In Black Box Testing the code is not visible to the tester, functional test cases can
have test data meeting following criteria:

• No data: Check system response when no data is submitted
• Valid data: Check system response when Valid test data is submitted
• Invalid data: Check system response when InValid test data is submitted
• Illegal data format: Check system response when test data is in an invalid format
• Boundary Condition Dataset (BVA): Test data meeting boundary value conditions
• Equivalence Partition Data Set (EPC): Test data qualifying your equivalence

partitions.

4 Case Study: Address Book Web Application

Address Book with Searches is a typical example, used as a case study in UWE
engineering research [25]. In this study, we also use this example to illustrate the
proposed technique given in Sect. 3. This is an address book of contacts. Each contact

Fig. 4. Screenshot of generating test data tool

212 Q.-T. Huynh et al.

will contain a name, two phone numbers (main and alternative), two postal addresses
(main and alternative), an e-mail address and a picture. The page will publish the
details of the contact(s) matching a filtering condition. Users can create new, edit,
update and search the contacts.

Figure 5 shows the content model of the Address Book with Searches, with the
classes defined for Address-Book, Contact, Address, and Phone [25]. Figure 6 indi-
cates the presentation model. The address book page contains the Introduction section
and the Contacts list. For each contact, the corresponding email, phone and address
fields are displayed [25].

Fig. 5. UWE content model of the Address Book with Searches [25]

Fig. 6. UWE presentation model of a simple Address Book [25]

Generating Test Data for Blackbox Testing 213

UWE specifies Web applications following the separation of concerns, i.e. mod-
eling content, navigation structure, and presentation separately. Increasing functionality
of the web application suggests making a detailed elicitation of requirements. Figure 7
(a) is the use case of the project. Figure 7(b) shows the presentation model of the
running case study. The container form is selected to provide a more intuitive repre-
sentation of pages. The ContactCreationOnUpdate page contains Contact’s fields to be
updated, buttons, image, message forms.

Apply the proposed method in Sect. 3 by following 6 steps:

Step 1 – Open AddressBookContent.mdzip in MagicDraw.
Step 2 – Export UWE content and presentation models to XMI format.

Table 1. Example test data for Contact form

Name Email Result

oJRNjn dmC3Ih Fail
hhC4fCkA 0ZQ6kf@qe9Y.ca Success
m x Fail
6de FeX Fail
yrw9bobAMpLyOrAfw 6elcYlQV Fail
5u j7 Fail
jfyK8Yi SsQtPWd Fail
5GhPr0LXw oJ3WWV@NShJV.bMN Success
ntZt y13 M Fail
Hj%rD G6amh@CO.Va Fail

Fig. 7. (a) Use case of Address Book, (b) Presentation models [25]

214 Q.-T. Huynh et al.

Step 3 – Transform XMI to DSL.
Step 4 – Call gentest engine to generate test data from DSL input file.
Step 5 – Validate the output and add some Heuristics and/or modify DSL file and
re-generate test data.

Steps 3 to 5 are features of TESTGER-UWE plug-in tool.
Use the output to different purposes such as Selenium, Katalon, Testcomplete or

Data Driven Testing framework.

5 Results and Discussion

Experimental results for Address Book application (including Simple Address Book,
Address Book with Search feature and Address Book with Update Content), depending
on the number of input fields on each form, or attribute fields in classes of Content
models, the data type of each field as well as their size that are adapted from XMI to
each respective DSL specification. For data fields at Presentation model, it must be
based on the class diagram of a Content model to determine the type and size (or data
constraints). The data generated for the fields is described in Table 2.

In this study, we only tested about 100 records data for each class/form. Data may
be generated more by adjusting the data generation parameters. The data types sup-
ported in this study are Numeric, String (string length), Boolean type. Other data types
will be studied in the future. The generated data corresponding to each data type is

Table 2. The result of generating test data for content and presentation models

Class of
content/presentation

Data
type

Coverage of test data No. Rows
generated

AddressBook String Random values; minlength, maxlength,
BVA, EPC (len), Valid data, Invalid data

100

Contact String Random values; minlength, maxlength,
BVA, EPC (len), Valid data, Invalid data

200

Address String Random values; minlength, maxlength,
BVA, EPC (len), Valid data, Invalid data

200

Integer Random values; min, maxint, BVA, EPC,
valid data, invalid data

200

Phone Integer Random values; min, maxint, BVA, EPC,
valid data, invalid data

200–1000

Picture Integer Random values; min, maxint, BVA, EPC,
valid data, invalid data

200

SearchForm String Random values; minlength, maxlength,
BVA, EPC (len), Valid data, Invalid data.

100

WorkingAreaForm String Random values; minlength, maxlength,
BVA, EPC (len), Valid data, Invalid data.

200

Number Random values; min, maxint, BVA, EPC,
valid data, invalid data

200

Generating Test Data for Blackbox Testing 215

declared/bound to valid data, invalid data, invalid format, using BVA and EPC to
optimize output and detect the corner error.

Table 3. The comparison of 3 online tools with TESTGER-UWE

TESTGER-UWE Generatedata Mockaroo Yan Data Ellan

Format output
data

CSV, XLS CSV, XLS,
JSON, SQL,
XML

CSV, XLS,
JSON, SQL

CSV, XLS,
JSON, SQL,
XML

Data coverage Valid, invalid data,
invalid format, BVA,
EPC

Valid, invalid
data

Valid,
invalid data

Valid, invalid
data

Generate type Random Random Random Random
Change/add
constraints

Yes No No No

Number row of
data at a time

5000+ 5000 5000 10000

Meaningful of
data

No Yes Yes Yes

Ease of use Plug-in/standalone Online Online Online
Expected result Yes No No No

Bold values in this table are advanced features of TESTGER-UWE compared to other tools.

Fig. 8. Generatedata.com screenshot

216 Q.-T. Huynh et al.

http://generatedata.com/

Comparing experimental results with the Generate data [26], Mocka-roo [27], Yan
Data Ellan [28] shows that these tools have many advanced features such as generating
data into SQL, XML, Firebase, JSON, and more meaningful data. However, most of
them have fees (to pay), do not generate data to cover cases of invalid data, data sizes,
wrong format, additional constraints to optimize, adjust generated data as TESTGER-
UWE tool. Table 3 presents a comparison of 3 online tools with TESTGER-UWE.
Figures 8 and 9 are a screenshot of Generatedata.com and Mockaroo.com and gener-
ated data.

6 Conclusion and Future Work

In this paper, we proposed a method to generate test data from UWE Content and
Presentation. Specifically, our method first converts the content of the UWE Content
and Presentation into XM. We also developed a tool named TESTGER-UWE tool,

Fig. 9. Mockaroo.com screenshot and generated data example

Generating Test Data for Blackbox Testing 217

http://generatedata.com/
https://mockaroo.com/
https://mockaroo.com/

which generates the specification DSL and call Z3 SMT solver to generate test data.
Our proposed approach is not only suitable for unit testing and Data Driven Testing but
also can be applied to various testing purposes.

In the future, we will expand our approach to cover other types of data and generate
test scripts for unit test or automated tests using Selenium, Katalon.

Acknowledgments. This research is funded by Hanoi University of Science and Technology
under Grant number T2018-PC-015.

References

1. Baumeister, H., Koch, N., Mandel, L.: Towards a UML extension for hypermedia design. In:
France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 614–629. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8_43

2. Wirsing, M., et al.: Hyper-UML: specification and modeling of multimedia and hypermedia
applications in distributed systems. In: Proceedings of 2nd Workshop. German-Argentinian
Bilateral Programme for Scientific and Technological Cooperation, Konigswinter (1999)

3. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Commun. ACM 38
(8), 45–46 (1995)

4. Isakowitz, T., Stohr, E.A., Balasubramanian, P.: RMM: a methodology for structuring
hypermedia design. Commun. ACM 38(8), 34–44 (1995)

5. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based web engineering. In: Rossi,
G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modelling and
Implementing Web Applications. Human-Computer Interaction Series, pp. 157–191.
Springer, London (2008). https://doi.org/10.1007/978-1-84628-923-1_7

6. Valverde, F., Valderas, P., Fons, J., Pastor, O.: A MDA-based environment for web
applications development: from conceptual models to code. In: International Workshop on
Web-oriented Software Technology (IWWOST 2007), in conjunction with ICWE (2007)

7. Baker, P., Dai, Z.R., Grabowski, J., Haugen, P., Schieferdecker, I., Williams, C.: Model-
Driven Testing: Using the UML Testing Profile. Springer, Heidelberg (2007)

8. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann, Burlington (2006). ISBN-10: 0123725011

9. Mahmood, S.: A systematic review of automated test data generation techniques. Master
thesis, Software Engineering, School of Engineering, Blekinge Institute of Technology
(2007)

10. Polamreddy, R.R., Irtaza, S.A.: Software testing: a comparative study model-based testing vs
test case-based testing. Master thesis, Software Engineering, School of Engineering,
Blekinge Institute of Technology (2012)

11. Wang, C., Pastore, F., Goknil, A., Briand, L., Iqbal, Z.: Automatic generation of system test
cases from use case specifications. In: Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015 (2015). https://doi.org/10.1145/2771783.
2771812

12. Oluwagbemi, O., Asmuni, H.: An approach for automatic generation of test cases from UML
diagrams. Int. J. Softw. Eng. Appl. 9(8), 87–106 (2015)

13. Anbunathan, R., Anirban, B.: Dataflow test case generation from UML Class diagrams. In:
2013 IEEE International Conference on Computational Intelligence and Computing
Research (2013). https://doi.org/10.1109/iccic.2013.6724144

218 Q.-T. Huynh et al.

http://dx.doi.org/10.1007/3-540-46852-8_43
http://dx.doi.org/10.1007/978-1-84628-923-1_7
http://dx.doi.org/10.1145/2771783.2771812
http://dx.doi.org/10.1145/2771783.2771812
http://dx.doi.org/10.1109/iccic.2013.6724144

14. Vinaya, S., Ketan, S.: Automatic generation of test cases from UML models. In:
International Conference on Technology Systems and Management (ICTSM) (2011)

15. Papadopoulos, P., Walkinshaw, N.: Black-box test generation from inferred models. In:
2015 IEEE/ACM 4th International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (2015). https://doi.org/10.1109/raise.2015.11

16. Jain, N., Porwal, R.: Automated test data generation applying heuristic approaches—a
survey. In: Hoda, M.N., Chauhan, N., Quadri, S.M.K., Srivastava, P.R. (eds.) Software
Engineering. AISC, vol. 731, pp. 699–708. Springer, Singapore (2019). https://doi.org/10.
1007/978-981-10-8848-3_68

17. Mahadik, P.P., Thakore, D.M.: Survey on automatic test data generation tools and
techniques for object-oriented code. Int. J. Innov. Res. Comput. Commun. Eng. 4, 357–364
(2016)

18. Korel, B.: Dynamic method for software test data generation. Softw. Test. Verif. Reliab. 2
(4), 203–213 (1992)

19. Latiu, G.I., Cret, O.A., Vacariu, L.: Automatic test data generation for software path testing
using evolutionary algorithms. In: Third International Conference on Emerging Intelligent
Data and Web Technologies (2012)

20. Varshney, S., Mehrotra, M.: Search based software test data generation for structural.
ACM SIGSOFT Softw. Eng. Notes 38(4), 1–6 (2013)

21. Nayak, N., Mohapatra, D.P.: Automatic test data generation for data flow testing using
particle swarm optimization. In: Ranka, S., et al. (eds.) IC3 2010. CCIS, vol. 95, pp. 1–12.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14825-5_1

22. Jiang, S., Zhang, Y., Yi, D.: Test data generation approach for basis path coverage.
ACM SIGSOFT Softw. Eng. Notes 37(3), 1–7 (2012)

23. Nguyen, T.T.L., Tran, D.D., Bui, Q.T., Huynh, Q.T.: Integration MDA techniques in solving
a class of web application with similar structure. In: 2015 ANU/SEED-Net Regional
Conference for Computer and Information Engineering, Hanoi, 1–2 October 2015, pp. 78–
83 (2015). ISBN 978-604-938-689-3

24. Tran, D.D., Huynh, Q.T., Tran, Q.K.: Model transformation with OCL integration in UWE.
In: FICTA2018: 7th International Conference on Frontiers of Intelligent Computing: Theory
and Applications, 29–30 November 2018

25. http://uwe.pst.ifi.lmu.de/exampleAddressBookWithSearches.html
26. http://generatedata.com/
27. Mockaroo, Random realistic test data generation in CSV, JSON, SQL, and Excel formats.

https://mockaroo.com/
28. Yan Data Ellan. http://www.yandataellan.com/
29. Nguyen, D.M., Huynh, Q.T., Nguyen, T.H., Ha, N.H.: Automated test input generation via

model inference based on user story and acceptance criteria for mobile application
development. Int. J. Softw. Eng. Knowl. Eng. (2019). ISSN 1793-6403

30. Tran, D.-D., Huynh, Q.-T., Bui, T.-M.-A., Nguyen, P.-L.: Development of rules and
algorithms for model-driven code generator with UWE. In: SOMET (2019)

Generating Test Data for Blackbox Testing 219

http://dx.doi.org/10.1109/raise.2015.11
http://dx.doi.org/10.1007/978-981-10-8848-3_68
http://dx.doi.org/10.1007/978-981-10-8848-3_68
http://dx.doi.org/10.1007/978-3-642-14825-5_1
http://uwe.pst.ifi.lmu.de/exampleAddressBookWithSearches.html
http://generatedata.com/
https://mockaroo.com/
http://www.yandataellan.com/

	Generating Test Data for Blackbox Testing from UML-Based Web Engineering Content and Presentation Models
	Abstract
	1 Introduction
	2 Related Works
	3 A Novel Approach for Test Data Generation from UWE Content and Presentation Models
	4 Case Study: Address Book Web Application
	5 Results and Discussion
	6 Conclusion and Future Work
	Acknowledgments
	References

