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Abstract. In this study, we propose a new approach to determine intru-
sions of network in real-time based on statistical process control tech-
nique and kernel null space method. The training samples in a class are
mapped to a single point using the Kernel Null Foley-Sammon Trans-
form. The Novelty Score are computed from testing samples in order
to determine the threshold for the real-time detection of anomaly. The
efficiency of the proposed method is illustrated over the KDD99 data
set. The experimental results show that our new method outperforms
the OCSVM and the original Kernel Null Space method by 1.53% and
3.86% respectively in terms of accuracy.

Keywords: Network security · Kernel Quantile Estimator ·
One-class classification · Kernel Null Space · Support vector machine

1 Introduction

Nowadays, every computer system has the security policies but these policies
have not been strong enough to prevent or detect all new types of attacks.
Therefore, building one monitoring system is essential to alarm novelties early.
Detecting incoming intrusion early helps systems reduce the damage and protect
the crucial information. Intrusion detection system (IDS) is the key to resolve
these problems and attract a lot of researchers to work on the issue [3]. IDS has
been used in a great number of applications such as network intrusion, fraud
detection and security systems.

Currently, there are two families of mechanisms in IDS: signature-based IDS
and anomaly-based IDS. In this paper, we focus on developing an anomaly-based
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IDS solution, in which the designed IDS system is trained based on knowledge
of normal traffic only; the system does not need to be trained with attack data
traces in advance to know if incoming traffic is anomaly or normal. This charac-
teristic is good for the attack detection aspect because attack manners may vary
over time; so, we may be in the situation that the system was not trained with
an attack pattern before. In case of never-seen-before attacks, an IDS system
based on training of attack and normal data traces may not be effective any
more.

Among the anomaly-based IDS solution family, Novelty Detection is a
research direction attracting a great number of researchers. A model is built
from normal data to detect unknown abnormality by novelty detection algo-
rithms such as OCSVM [6,11] and Kernel Null Space [1,2,4]. There is also an
approach in intrusion detection using Statistical Process Control [7].

Our proposed solution aims at improving the performance of the Kernel Null
Space method [2] in terms of accuracy. To be more specific, we propose using a
Control-Chart based method called Kernel Quantile Estimator to determine the
detection threshold dynamically driven by each specific training data set instead
of using a fixed threshold as described in the existing Kernel Null Space solutions
[1,2,4]. The Control Chart Based on a Kernel Estimator of the Quantile Function
was also developed in [5]. In addition, we also optimize the kernel parameter of
the kernel function to improve the performance of novelty detection.

The rest of the paper is organized as follows: Sect. 2 elaborates the related
work. Our proposed Kernel Null Space solution for Novelty Detection is provided
in Sect. 3, followed by the performance evaluation in Sect. 4. Finally, conclusion
is given in Sect. 5.

2 Related Work

Generally, the novelty detection issues can be divided into two types based on the
number of known classes during the training phase: one-class and multi-classes.
Since our work focuses on one-class classification, we will review the state of
the art for the family of one-class novelty detection. To the best of our knowl-
edge, Kernel Null Space has the highest performance in novelty detection and
there are only three studies dealing with one-class classification in novelty detec-
tion using this method [1,2,4]. In [2], the authors proposed Kernel Null Space
for novelty detection but they made the experiment with a fixed threshold and
a fixed kernel parameter of the kernel function. In paper [1], the authors also
improved the performance of the original method. However, they only concen-
trated on decreasing the timing operating of the algorithm, the accuracy remains
unchanged. Following this trend, paper [4] improved the solution proposed in [2]
by decreasing the complexity of the kernel null space method without taking the
accuracy into account.

From another approach, the OCSVM method, which detects novelty by find-
ing the boundary of training data with maximum margin, is often used to solve
the one-class novelty detection problem, for example, in [11,12]. The OCSVM
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method has received more extensive attention since it can easily handle nonlin-
ear data with kernel trick and also achieve a high level of detection accuracy
[11].

As mentioned in Sect. 1, the solution we will explain throughout the paper
is to improve the accuracy of the Kernel Null Space method [2] in the favor
of anomaly detection. We propose a solution combining Kernel null space and
Control chart to automatically define an efficient detection threshold stemming
from each training data trace.

Simultaneously, we also use the optimizing parameter method proposed in
[11] to increase the accuracy for the algorithm. Our proposed solution is proved
to outperform the Kernel Null Space methods in [1,2,4] and OCSVM in [11,12]
in terms of Accuracy.

3 Intrusion Detection Scheme Using the Enhanced
Kernel Null Space Method

For an intrusion detection system to work accurately, we propose a so-called
an enhanced Kernel Null Space method to improve the accuracy of detecting
novelty samples. The scheme is elaborated as follows:

– Pre-process and normalize the attributes of the data set.
– Design an enhanced Kernel Null Space method to analyze data inputs.

In this method, the threshold is computed by Kernel Quantile Estimator [9] for
a given probability q. Figure 1 shows the process of the detection scheme, in
which Internet raw data coming to the detection system will be pre-processed,
and analyzed to test if it is a novelty (i.e. anomalies).

Fig. 1. Intrusion detection process

3.1 Pre-processing and Normalizing Data Attributes

In order to do the comparison with different intrusion detection methods, in the
experiment, we use the NSL-KDD data set [10] which is commonly used. Each
sample in this NSL-KDD corresponds to a real connection in the simulated
military network, containing 41 attributes with Normal and Attack-type labels.
In the data set, there are 39 types of attacks divided in 4 groups:
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– DoS - Denial of services, e.g. syn flood.
– R2L: Unauthorized access from a remote machine, e.g. guessing password.
– Probing: surveillance and other probing, e.g. port scanning.
– U2R: unauthorized access to local super user (root) privileges, e.g. buffer

overflow.

To make the data set simpler, reducing the redundancy without losing the infor-
mation, we pre-process the data set as follows:

- Conversion from the Symbolic type to the Numeric type: there are
3 attributes in the Symbolic manner such as: Protocol, Service, Flag which are
needed to be converted to the Numeric type to be compatible with the inputs
of the algorithm. The symbolic values are labeled as in Table 1.

Table 1. Symbolic-typed attributes

Attribute Symbolic Corresponding numeric value

Protocol type UDP 1

TCP 2

ICMP 3

Flag OTH 1

REJ 2

RTSO 3

RTSOSO 4

RSTR 5

S0 6

S1 7

S2 8

S3 9

SF 10

SH 11

Service 65 values From 1 to 65

- Normalization: Normalization of data in the NSL-KDD data set is nec-
essary since there are many big values in comparison with much smaller values
in the set. We apply the Min-max normalization method to turn all values to
the range [0, 1] as follows:

v̂i =
vi − min(vi)

max(vi) − min(vi)
, for i = 1, 2, . . . , 41 (1)

where:

vi: value of one attribute before normalization.
v̂i: value of one attribute after normalization.
i = 1, ..., 41: 41 attributes.
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3.2 Enhanced Kernel Null Space

Before describing the enhanced Kernel Null Space, we briefly re-call the One-
Class Classification using Kernel Null Space proposed in [2]. Let us consider a
dataset of N training samples {x1, x2, . . . , xN}, with each xi ∈ RD, and D is
the number of observed features. In the one-class setting, all the training sam-
ples belong to a single target class. The input features X = [x1, x2, . . . , xN ] are
separated from the origin in the high-dimensional kernel feature space similar
to one-class SVM [8]. As described in [2], a single null projection direction is
computed to map all samples on a single target value s. A test sample x∗ is
projected on the null projection direction to obtain the value s∗. Figure 2 illus-
trates the one-class approach with kernel null space. The novelty score of x∗ is
the distance between s and s∗:

NoveltyScore(x∗) =| s − s∗ | . (2)

*s s

( )XΦ

*(x )Φ

Fig. 2. The samples are separated from the origin in the kernel feature space with a
mapping Φ, then mapped on a point s, and the novelty score of a testing sample x∗ is
the distance of its projection s∗ to s.

A large novelty score indicates more likely novelty. In [2] and [1], a hard deci-
sion threshold θthreshold is used to determine whether the test sample x∗ belongs
to the target class or not. Determining the threshold plays a very important role
to the performance of the novelty detection process. To the best of our knowl-
edge, this threshold has been selected heuristically up till now. Therefore, in this
study, we propose an intrusion detection scheme based on an enhanced version
of this Kernel Null Space method.

The procedure of the enhanced Kernel Null Space method is illustrated in
Fig. 3 with two phases: the training phase and the detection phase.
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In the training phase: training data samples {x1, x2, . . . , xN}, which have
been already pre-processed, will be mapped on a point s in the Null Space
F. The intrusion detection system uses another data set called the validation
set that comprises other normal data samples {y1, y2 . . . , yM}. Each sample yi
of the validation set is mapped on a point ŝi in the feature null space, for
which NoveltyScore(yi) is calculated. After mapping all samples of the valida-
tion set and calculating Novelty scores for all of them, a set {NoveltyScore(yi)}
is formed. Based on this set of novelty scores, we use the Kernel Quantile Esti-
mator to derive the threshold θthreshold, which will be described in Sect. 3.2.

During the detection phase in real time, when a test data sample x∗ comes,
the system maps it on a point s∗ and then calculate its NoveltyScore(x∗). Then
by comparing the NoveltyScore(x∗) with θthreshold found in the training phase,
x∗ can be classified as Normal or Anomaly.

In the following subsections, we will elaborate how we achieve an optimal
kernel parameter on the given training data set and how to calculate threshold
θthreshold by Kernel Quantile Estimator.

Determination of Kernel and Kernel Parameter. In this paper, we select
the Gaussian kernel (or Radial Basic Function (RBF)) for Kernel Null Space
which is commonly used.

k(x, y) = exp

(
−‖ x − y ‖2

2σ2

)
(3)

where: σ stands for the kernel parameter in [0, 1].
Using the method proposed in [11], the optimal sigma σ∗ is estimated from

the data set {x1, x2, . . . , xN}. The optimal σ∗ is the one that maximizes the
objective function J(σ)

J(σ) =
2
N

n∑
i=1

exp
(

−Near(xi)
2σ2

)
− 2

N

n∑
i=1

exp
(

−Far(xi)
2σ2

)
(4)

Denote the nearest and farthest neighbors distances as:

Near(xi) = min
j �=i

‖ xi − xj ‖2

Far(xi) = max
i

‖ xi − xj ‖2

Threshold Calculation Based on Kernel Quantile Estimator. As men-
tioned, the threshold for the Novelty Score is the crucial key for the accuracy
in anomaly detection. A common method to choose a good threshold that we
have observed up till now is checking various discrete threshold values in the
increasing order until the test system outputs highest accuracy. But when we
have to cope with continuous values, that heuristic check-up hardly finds a good
threshold we can not check all continuous values.
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Fig. 3. Detection procedure using Kernel Null Space and Kernel Quantile Estimator

The set of the novelty scores is denoted by {NS1, NS2, . . . , NSM} and inves-
tigated for the probability density distribution. As observed in Fig. 4, the Novelty
Score values {NS1, NS2, . . . , NSM} can not be approximated by a normal dis-
tribution, i.e. the underlying distribution of the sample is unknown. In this case,
nonparametric methods could be used to explore this unknown underlying.
In this paper, we use the Kernel Quantile Estimator [9] to estimate θthreshold
over the set of Novelty Score values.
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Fig. 4. Probability density distribution of novelty scores

Let NS(1) ≤ NS(2) ≤ . . . ≤ NS(M) denote the corresponding order statistics
of the novelty scores. Suppose that K(.) is a density function symmetric about
Zero and that h → 0 as n → ∞, the Kernel Quantile Estimator can be calculated
as follows [9]:

KQp =
N∑
i=1

[∫ i
n

i−1
n

Kh(t − p)dt

]
NS(i) (5)

where h > 0 is the bandwidth. The bandwidth h controls the smoothness of the
estimator for a given sample of size n. Kh(.) = 1

hK( .
h ). And p is the proportion

of the quantile.
Here we use the standard Gaussian kernel for the resulting estimate KQp

which is a smooth unimodal,

K(u) =
1√
2π

exp(−u2

2
) (6)

The selection of h is important in kernel density estimation: a large h will lead
to an over-smoothed density estimate, while a small h will produce a ragged
density with many spikes at the observations. As described in [9], the bandwidth
computed as

hopt =
(

pq

n + 1

) 1
2

(7)

where: q = 1 − p
For a lot of continuous distributions used in statistics, specific quantiles such

as the p = 0.95, 0.975, and 0.99 quantiles are tabulated. Therefore, in our exper-
iment, we have investigated 3 cases of q: 0.05, 0.025 and 0.01 respectively. These
3 q values corresponds to 3 threshold value KQ(p = 1 − q) (i.e. θthreshold).
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4 Performance Evaluation

4.1 Data Description

In this experiment, we use the NSL-KDD data set [10] to test the detection
accuracy of the proposed solution. The training data set contains 13449 nor-
mal samples After training the system, the system performance is checked by
using 6000 normal and abnormal samples. To test performance, we use all 41
attributes/parameters of the data set.

4.2 Performance Analysis

There are some important performance metrics in the novelty (anomaly) detec-
tion domain that have been widely used to analyze the performance of a certain
detection method:

– Accuracy = TP+TN
TP+FP+TN+FN

– ReCall - True Positive Rate or Sensitivity = TP
TP+FN

– FPR - False Positive Rate: FPR = FP
FP+TN

Where TP (True Positive) is the number of anomalies correctly diagnosed as
anomalies; TN (True negative) is the number of normal events correctly diag-
nosed as normal; FP (False Positive) is the number of normal events incorrectly
diagnosed as anomalies; and FN (False Negative) is the number of anomalies
incorrectly diagnosed as normal events.

In our test, we compare the performance of the enhanced Kernel Null Space
with the original Kernel Null Space in which the threshold is heuristically
selected and fixed at 0.05 [2] and with the One Class Support Vector Machine
method (OCSVM) [11].

As mentioned in Sect. 3.2, we have tested with 3 different q values: 0.01, 0.025
and 0.05 and found out that q = 0.025 brings best performance. The results are
shown in Table 2:

As can be seen in Table 2, with the normalized and pre-processed 41-attribute
data set {X1,X2, . . . , XN}, the optimal kernel parameter estimated is σ∗ =
0.5957. Subsequently, from the given data set of Novelty scores {NS1, NS2,
. . . , NSM}, supposed that q = 0.025, the threshold is θthreshold = 0.0233.

Table 2. Performance comparison

σ = 0.5957 Kernel Null Space OCSVM Origin

q = 0.05 q = 0.025 q = 0.01 Kernel Null Space

θthreshold = θthreshold = θthreshold = with fixed

0.0097 0.0233 0.0514 threshold = 0.05

Accuracy 0.9548 0.9598 0.92 0.9445 0.9212

FPR 0.0443 0.018 0.006 0.0433 0.006

Recall 0.954 0.9377 0.846 0.9323 0.8483
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The obtained results show that; the enhanced Kernel Null Space slightly
outperforms the OCSVM and the original Kernel Null Space methods in both
terms of Accuracy and False Positive rate while a bit inferior to the Original
Kernel Null Space method in terms of Recall.

5 Conclusion and Future Work

In this research, we have proposed and elaborated an Intrusion Detection System
using the so-called enhanced Kernel Null Space method with data-driven thresh-
old retrieval. The proposed solution with data-driven findings such as q = 0.025
and σ = 0.5957 is proved to outperform the current OCSVM and Original Kernel
Null Space methods in terms of Detection Accuracy and False Positive Rate.

In the future, we would like to address the intrusion detection and the moni-
toring problem using deep learning, targeting on time series data with uncertain-
ties. We also focus on the detection ability of our proposed approach for large
stream data.
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