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Abstract. We design and analyze collaborative contextual combinatorial cascad-
ing Thompson sampling (C4-TS). C4-TS is a Bayesian heuristic to address the
cascading bandit problem in the collaborative environment. C4-TS utilizes poste-
rior sampling strategy to balance the exploration-exploitation tradeoff and it also
incorporates the collaborative effect to share information across similar users.
Utilizing these two novel features, we prove that the regret upper bound for C4-
TS is Õ(d(u +

√
mKT )), where d is the dimension of the feature space, u is

the number of users, m is the number of clusters, K is the length of the rec-
ommended list and T is the time horizon. This regret upper bound matches the
theoretical guarantee for UCB-like algorithm in the same settings. We also con-
duct a set of simulations comparing C4-TS with the state-of-the-art algorithms.
The empirical results demonstrate the advantage of our algorithm over existing
works.

1 Introduction

Most recommendation systems recommend an ordered list of candidate items to users
due to the limited space. The user examines the recommended list sequentially, clicks
on the first satisfying item and stops examining further. The click of the user reveals
that the items before the clicked item are not satisfying and the items after the clicked
item are unexamined. The recommendation systems observe this feedback and adjust
its recommendation strategy accordingly. This kind of interaction is often formulated
as the cascading model, which is simple, intuitive and effective in characterizing user
behaviours.

We consider the contextual combinatorial cascading model in a collaborative envi-
ronment. In the stochastic contextual settings, the expected reward of an item is assumed
to be a linear function of the item features and a stationary but unknown user vector.
At each time step, the learning agent recommends a combination of items to the user. It
then observes the cascading feedback of the user and adjusts its recommendation strat-
egy accordingly. The goal of the learning agent is to maximize the cumulative reward
in T rounds. As the expected rewards of the items are unknown to the learning agent,
it has to balance between exploring new information to improve future performance
and exploiting the best empirical items so far. This tradeoff is modelled by the ban-
dit problems which have been well studied in the literature. While effective, standard
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bandit algorithms often work in a content-dependent regime, so that any collabora-
tive effects among users are ignored. This drawback hinders the practical deployment
of bandit algorithms in highly dynamic and large-scale domains, in which incorporat-
ing collaborative effects often helps to accumulate information more efficiently. Thus,
exploiting collaborative effects into bandit algorithms can be one of the most promis-
ing approaches to further improvement of the recommendation performance. But it also
raises new challenges in the design and analysis of the algorithm.

In this paper, we propose collaborative contextual combinatorial cascading Thomp-
son sampling (C4-TS) algorithm. Following the approaches in [8,13], C4-TS maintains
a dynamic graph to represent the partition of users. If two users are connected, they are
considered to be in the same cluster. The graph is fully-connected at the beginning, and
the edges are gradually removed as the algorithm accumulates more information about
user preference. At each round, the algorithm considers both the historical feedbacks of
the user and the collaborative information to make decisions. It applies posterior match-
ing strategy by recommending the items according to their probability of being optimal.
The feedback of the users is then used to update the user vector and the graph.

Our algorithm is based on Thompson sampling because of its advantage over UCB
in both empirical performance [5,6,15,17,18] and computational efficiency [3,16].
Although the regret upper bound of UCB-like algorithm in similar settings has been
studied [13], the randomness of Thompson sampling presents additional challenges.
Under some reasonable assumptions, we utilize the matrix martingale theory to bound
the variance of the reward estimator and quantify the exploration-exploitation tradeoff.
We prove an upper bound of Õ(d(u +

√
mKT )) for the expected cumulative regret,

where u is the number of users,m is the number of clusters, d is the dimension of feature
space, K is the length of the recommended list, and T is the time horizon. The notation
Õ ignores dependence on the logarithmic factors. This bound matches the regret upper
bound for UCB-like algorithm. We also conduct experiments on a synthetic dataset to
demonstrate the advantage of the model and algorithm over existing studies.

The rest of this paper is organized as follows. Section 2 introduces the related
works in similar settings. Section 3 introduces the basic model settings (learning model,
notations and assumptions) and presents a detailed description of C4-TS algorithm.
Section 4 provides the theoretical analysis of its regret bound. Section 5 reports the
result of simulations. Section 6 concludes this paper.

2 Related Work

Cascading bandit was first introduced by Kveton and Branislav [10]. They also pro-
posed CascadeUCB1 and CascadeKL-UCB to solve the problem and provided gap-
dependent regret upper bound of the algorithms. The regret upper bound of CascadeKL-
UCB matches the lower bound of the problem within a logarithmic factor. Zong and
Ni [18] then generalized the cascading bandit with linear payoff and proposed Cas-
cadeLinUCB and CascadeLinTS. They also provided an upper bound on the regret
of CascadeLinUCB and suggested that the same theoretical guarantee should hold for
CascadeLinTS. The work [12] by Li and Wang generalized the contextual combinato-
rial cascading setting with position discounts and more general reward functions and
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provided a similar theoretical guarantee. The first theoretical analysis of Thompson
sampling for non-contextual cascading bandit is provided by Cheung and Tan [6]. They
proved that the regret upper bound of CascadeTS matches the state-of-the-art regret
bounds for UCB-like algorithms.

Beyond the general settings of cascading bandit and Thompson sampling, our work
is also closely related to the dynamic clustering of bandits. Clustering over bandits to
utilize collaborative information has been studied in a series of works. These works
are based on the assumption that the algorithm servers a large set of users and these
users can be partitioned into several groups. All users in the same group can share
feedbacks to facilitate customizing personal recommendation. The work [8] first con-
sidered online clustering of contextual bandits. It used the confidence interval of the
user vector to estimate user similarity and share information across similar users. The
work [14] incorporates dynamic clustering to divide users into groups and customizes
the bandits to each group. They first used the K-means clustering algorithm within the
contextual bandit framework. In [19], the authors developed a collaborative contextual
bandit algorithm and leveraged the adjacency graph to share information and feedbacks
among similar users while online updating. In [11], the authors extended the work [19]
by performing online clustering at both the user side and the item side. They also used
a sparse graph to represent the clusters to avoid expensive computation. The work [7]
considered a variant of online clustering where the clusters over users are estimated in
a context-dependent manner.

The most similar work to ours is [13]. In this paper, the authors first formulated the
problem of dynamic clustering of contextual cascading bandits. They designed UCB-
like algorithm CLUB-cascade to address the problem and provided an upper bound for
its cumulative regret. Our work is based on Thompson sampling which tends to out-
perform UCB-like algorithms empirically [18]. We also give an alternative proof of the
convergence rate of online clustering and provide a theoretical analysis of Thompson
sampling in the contextual cascading settings.

3 Preliminaries

3.1 Problem Settings

We first formulate the collaborative contextual combinatorial cascading problem. In
this problem, there are u users and these users can be partitioned into m clusters where
n � m. The clusters are fixed but unknown to the learning agent. All users in the same
cluster share the same preference which is encoded by a user vector θ ∈ R

d. For any
users i and j, if they are not in the same cluster, then ‖θi − θj‖ ≥ γ.

At each round t, the learning agent interacts with user it to customize personal rec-
ommendation. It first selects an ordered list of items Xt = (Xt,1,Xt,2, ...,Xt,k) from
item set X ⊂ R

d to recommend. The user checks the recommended list sequentially,
clicks the first satisfying item and stops checking further. The learning agent observes
the index of the clicked item Ct. It reveals that the first Ct − 1 items are not satisfy-
ing, the payoff of the Ct-th recommended item is 1, and the rest items are not checked
by the user. If no item is clicked, the observed payoff will be Ct = ∞. The observed
payoff r(x) of an item x is generated by sampling from a Bernoulli distribution with



Collaborative Contextual Combinatorial Cascading Thompson Sampling 121

mean E[r(x)]. The expected reward E[r(x)] of an item x is calculated by a linear func-
tion E[r(x)] = xT θ. We assume that the probability of the user clicking each item is
independent. Thus, the expected reward of a list X is

E[r(X)] = 1 −
∏

x∈X

(1 − xT θ).

It is worth noting that rearrangement of the items does not change the expected
reward of a list. We define the optimal item list X∗ as the list with maximum expected
reward X∗ = argmaxX⊂X E[r(X)].

The instantaneous expected regret R(t) at round t is defined as the gap between the
expected reward of the optimal item list and that of the recommended list. The objective
of the algorithm is to minimize the expected cumulative regret in T rounds:

E[R(T )] = E[
T∑

t=1

(r(X∗) − r(Xt))],

where the expectation is taken over the randomness in selecting the recommended list
Xt and the noise of the feedbacks.

3.2 Notations

We use ‖x‖p to denote the p-norm of x ∈ R
d. For matrix M ∈ R

d×d and vector
x ∈ R

d, we denote by ‖x‖M =
√

xT Mx the weighted 2-norm. We use λmin(M) and
λmax(M) to denote the smallest and the largest eigenvalue of matrix M respectively.

Assumption 1 (Contextual vector and user vector). The contextual vectors and the user
vector are in a closed subset of Rd such that 0 < ||x||22 ≤ 1 for all x ∈ X and θ. This
assumption is required so that the regret bound does not depend on the scale of the
vectors. If 0 < ||x||22 ≤ L, the regret bound would increase by a factor L.

Assumption 2 (Eigenvalues). For any round t, there exists a constant λmin such that
∀t, λmin ≤ λmin(E(xtx

T
t )). In standard contextual bandit algorithms, this assumption

is often violated. The probability of selecting the optimal item will be 1 after enough
rounds. Thus the smallest eigenvalue will be λmin(E[xtx

T
t ]) = λmin(x∗x∗T ) = 0. But

in cascading settings, if the expected reward of the optimal item is smaller than 1, then
the suboptimal items will be checked by the user with at least constant probability, thus
λmin(E[xtx

T
t ]) > λmin is a reasonable assumption.

3.3 Collaborative Contextual Combinatorial Cascading Thompson Sampling

Our algorithm maintains a posterior distribution N (θ̂t, Vt) of user vector θ for each
user. The posterior distribution is updated with the recommended lists and the feed-
backs. Let (X1,X2, ...,Xn) be the sequence of lists recommended to one user and
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(C1, C2, ..., Cn) be the observed rewards until round t , the posterior distribution of
user vector θ at round t + 1 is N (θ̂t, V

−1
t ), where Ki = min(K,Ci) and

Vt =
n∑

i=1

Ki∑

k=1

Xi,kXT
i,k, ft =

n∑

i=1

Ki∑

k=1

XT
i,kI{k = Ci}, θ̂t = (λI + Vt)−1ft. (1)

Our algorithm also maintains an undirected graph Gt(|u|, Et) to store the clus-
ter information. The graph is initialized as a fully-connected graph and the edges are
removed gradually. At each round t, the algorithm first selects a user it to serve. It then
finds the connected component set of it in graph Gt−1, which is referred to as Mt. The
posterior distribution is then calculated by all the checked items and the feedbacks of
the cluster Mt. The algorithm then samples θ̃it,Mt

from the distribution and generates
the list by Xt,k = maxx∈X\{Xt,1,Xt,2,...Xt,k−1}xT θ̃it,Mt

. The algorithm then observes
the feedback of the user and updates the user vector and the graph respectively.

Theorem 1. For the collaborative contextual combinatorial cascading bandit problem,
under Assumptions 1 and 2, the expected regret bound for C4-TS algorithm within time
horizon T is

E[R(T )] = O(d
√

mKT lnKT + ud ln duT )

Algorithm 1. C4-Thompson sampling
Input: Set of items X , λ, α, β > 0
Init: G0 = (|u|, E0) is a fully-connected graph over the user set |u|, for any user i ∈ [u],
fi,0 = 0d, Vi,0 = λId, θ̂i,0 = (Vi,0 + λI)−1fi,0.
for t = 1, 2, 3..., T do

Select user it to serve and find the user set Mt ⊂ |u| from graph Gt−1 so that all users
in Mt are connected to it

Compute the following variable:
Vit,Mt = λI +

∑
j∈Mt

Vj,t−1

fit,Mt =
∑

j∈Mt
fj,t−1

θ̂it,Mt = V −1
it,Mt

fit,Mt

Sample θ̃it,t from distribution N (θ̂it,Mt , αV −1
it,Mt

)
for k ∈ [K] do

Extract Xt,k = argmaxx∈X\{Xt,1,Xt,2,...Xt,k−1}xT θ̃it,t
end for
Recommend list Xt to user it and observe payoff Ct

Set rt = I(Ct ≤ K) and Ct = min(Ct, K)
Update fit,t, Vit,t, θ̂it,t and Nit,t as in Equation (1)
for l ∈ [u] do

if ‖θ̂it,t − θ̂l,t‖2 ≥ β(

√
1+ln(1+Nit,t

)

1+Nit,t
+

√
1+ln(1+Nl,t)

1+Nl,t
) then

Delete the edges (it, l) ∈ Et−1

end if
end for

end for
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4 Regret Analysis

4.1 Proof Outline

The proof of Theorem 1 can be split into two parts. In the first part, we bound the
expected number of rounds the algorithm need to partition the users into the right
clusters, which is O(ud ln duT ). In the second part, we prove that when the users are
correctly partitioned, the expected regret bound is O(d

√
mKT lnKT ). Thus the total

regret is E[R(T )] = O(d
√

mKT lnKT + ud ln duT ).
We follow three steps to show that the algorithm needs at mostO(ud ln duT ) rounds

to partition the users into the right clusters. First, we notice that for any user, the 2-norm
distance between θ̂t and θ decreases very fast [13]:

‖θ̂t − θ‖22 ≤ ‖θ̂t − θ‖2Vt−1

λmin(Vt−1)
= O(

d lnNt−1

Nt−1
),

where ‖θ̂t − θ‖2
V −1
t−1

is the weighted 2-norm and λmin(Vt−1) is the smallest eigenvalue

of matrix Vt−1. Second, we prove that under Assumption 2, the smallest eigenvalue of
the cumulative matrix Vt−1 grows linearly with the number of checked arms Nt−1 =∑t−1

i=1 Ci with high probability. Third, we model Ct as a truncated Poisson variable
and show that after serving the user for O(d lnudT ) rounds, the confidence interval for
user vector will be smaller than γ/2, where the γ is the constant in the assumption of
clusters. Thus, after O(ud lnudT ) rounds, the edges between different clusters will be
removed.

After the clusters are correctly partitioned, the recommendation is based on the
estimates of cluster vector and its covariance matrix. We follow three steps to bound
the expected cumulative regret up to round T . First, we define event Fk = {the k-th
item in Xt is examined} for any time t and k ∈ [K], and decompose the regret as [18]:

E[R(t)] ≤ E[
K∑

k=1

I(Fk)(r(X∗
k) − r(Xt,k))]

Thus, the instantaneous regret can be bounded by the difference between expected
rewards of the best items and the checked items. Second, We define event Eμ(t), Eθ(t)
and prove that these events happen with high probability. If both events are true, we
further decompose the regret as

E[R(t)] ≤ E[
Ct∑

k=1

(αt + βt)(st(X∗
k) + st(Xt,k))],

where st(x) = ‖x‖Vt−1 .
Finally, we show that under assumption 2, the smallest eigenvalue of the matrix

Vt−1 grows linearly with the number of items the user has observed, which is
referred to as Nt−1 in the algorithm. We can then prove that the sum of the variance∑T

t=1

∑Ct

k=1 st(X∗
k) is of order

√
dKT lnKT . Then, substituting this result along with

Lemma 2, we obtain the desired expected regret bound:

E[R(T )] = O(d
√

mKT lnKT + ud ln duT )
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4.2 Proof of Part 1

Definition 1. DefineEλ(t) as the event that the smallest eigenvalue of Vt grows linearly
with Nt, where Nt is the number of checked items after t rounds. Formally, define Eλ(t)
as the event that

λmin(Vt) ≥ 1/2Nt · λmin, ∀Nt ≥ (
8

λ2
min

+
4

3λmin
) ln

dut2

δ
,

We prove that event Eλ(t) holds with probability at least 1 − δ
ut2 by substituting

δ = δ′/ut2 into Lemma 6.

Definition 2. Define Eθ(t) as the events that the estimator θ̂ is close to its real value θ.
More precisely, define Eθ(t) as the event that

|θ̂t+1 − θ|Vt
≤ αt,

where αt(δ) = R
√

d ln ut2(1+Nt/λ)
δ +

√
λ.

We prove that event Eθ(t) holds with probability at least 1 − δ
ut2 by substituting

δ = δ′/ut2 into Lemma 5.
If the events Eλ(t) and E

θ(t) both hold for all users, then for any user,

‖θ̂t+1 − θ‖2 ≤ ‖θ̂t+1 − θ‖Vt√
λmin(Vt)

≤
√
2αt√

Ntλmin

≤ γ

2
,

where the last inequality is valid when

Nt ≥ 8d
λminγ2

ln
uT 2

δ
.

Combining with the condition in Eλ(t), it is required that

Nt ≥ max{ 8d
λminγ2

ln
uT 2

δ
, (

8
λ2

min

+
4

3λmin
) ln

duT 2

δ
}.

If the user has been served in t rounds, where

t ≥ 2K2

q2
ln

8duT

δ
+

2
q
{ 8d
λminγ2

ln
uT 2

δ
, (

8
λ2

min

+
4

3λmin
) ln

duT 2

δ
} := t0,

the algorithm will be able to partition the user into the real cluster with probability at
least 1 − 4δ/u. The above inequality is proven by modeling Ct as a truncated Poisson
variable with mean q where q = O(K/p). And the lower bound of t is calculated by
using Lemma 4.

It reveals that the after ut0 rounds, the user clusters are correctly partitioned with
probability at least 1 − 4δ. Thus the cumulative regret before all the users are correctly
partitioned is

E[R′(T )] = O(ud ln duT )
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4.3 Proof of Part 2

After the users are correctly clustered, the information learned by a user is shared by
all users in the same cluster. And the users in different clusters are independent. We
consider the cumulative regret of one cluster. Suppose the users in the cluster are served
in T rounds.

Following the previous approach [10,11], we rearrange the elements of the optimal
list X∗ so that if x ∈ X∗ and x ∈ Xt, then index(X∗, x) = index(Xt, x). Under this
arrangement, for all round t,

∀k ∈ [K], X∗T
k θ ≥ XT

t,kθ and X∗T
k θ̃t ≤ XT

t,kθ̃t.

The algorithm uses the user feedbacks and contextual vector to update the estimator
θ̂t and the covariance matrix V −1

t . As the algorithm accumulates more information
each round, θ̂ approaches θ gradually and the variance of expected reward of each item
decreases. If θ̃, θ̂, and θ are close enough, the algorithm is likely to select the optimal
list and the regret can be bounded by the variance. This intuition leads to the definition
of the following two events.

Definition 3. Define E
θ(t) and E

μ(t) as the events that xT θ̂t and xT θ̃t are concen-
trated around xT θ and xT θ̂t respectively. Formally, define Eθ(t) and E

μ(t) as

Event E
θ(t) : ∀x ∈ X : |xT θ̂t − xT θ| ≤ αtst(x)

Event E
μ(t) : ∀x ∈ X : |xT θ̃t − xT θ̂t| ≤ βtst(x),

where αt(δ) = R
√

d ln t2(1+Nt/λ)
δ +

√
λ, βt =

√
4d ln t

δ and st(x) = ‖x‖V −1
t−1

.

We prove in Lemma 5 that both events hold with probability at least 1−δ/t2. And if
events Eμ(t) and E

θ(t) are both true, the instantaneous expected regret can be decom-
posed as:

E[R(t)] = E[
∏

k∈[K]

(1 − r(X∗
k)) −

∏

k∈[K]

(1 − r(Xt,k))]

≤ E[
K∑

k=1

[
k−1∏

j=1

(1 − r(Xt,j))](r(X∗
k) − r(Xt,k))]

≤ E[
K∑

k=1

I(Ft,k)(r(X∗
k) − r(Xt,k))]

≤ E[
K∑

k=1

I(Ft,k)(αt + βt)(st(X∗
k) + st(Xt,k))], (2)

where Ft,k is defined as the event that the item Xt,k is checked by the user. Equation
(2) is by

r(X∗
k) − r(Xt,k) ≤ (X∗T

k − XT
t,k)θ̃t + (αt + βt)(‖X∗

k‖V −1
t−1

+ ‖Xt,k‖V −1
t−1

)

≤ (αt + βt)(st(X∗
k) + st(Xt,k)).
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If event Eλ(t) holds, then the expected cummulative regret is

E[R(T )] ≤
T∑

t=1

E[
K∑

k=1

I(Ft,k)(αt + βt)(st(X∗
k) + st(Xt,k))]

≤ (αT + βT )
T∑

t=1

E[
Ct∑

k=1

st(X∗
k) + E[

Ct∑

k=1

st(Xt,k)]

≤ (αT + βT )(
√

2d
λmin

(2
√

TK lnTK + K) +

√
2dTK ln(1 +

KT

λd
)).

(3)

If event Eλ(t) is true for any round t, then λmin(Vt−1) ≥ 1/2Nt−1λmin. It implys

that for any item x ∈ X , ‖x‖V −1
t−1

≤
√

2d
Nt−1λmin

, where Nt−1 =
∑t−1

i=1 Ci is number

of checked items. Thus applying Lemma 7, we get that

T∑

t=1

Ct∑

k=1

st(X∗
k) ≤

√
2d

λmin
(C1 +

T∑

t=2

Ct√∑t−1
i=1 Ci

)

=
√

2d
λmin

(
√
2KT lnKT + K).

And the second term of Eq. (3) follows from Lemma 2.
Substituting the value of αT and βT in E[R(T )], we obtain that for one cluster, if

the users in the cluster are served in T rounds, the cumulative regret is:

E[R(T )] = O(d
√

KT lnKT ).

Suppose the users are partitioned into m clusters and each cluster is served in
T1, T2, ..., Tm rounds where

∑m
i=1 Ti = T , the total regret is

E[R′′(T )] =
m∑

i=1

E[R(Ti)]

≤ d lnKT

m∑

i=1

Ci

√
KTi

= O(d
√

mKT lnKT )

Combining the results of part 1 and part 2 completes the proof of Theorem 1.

4.4 Technique Lemmas

In this section, we introduce the technique lemmas used in the proof of Theorem 1.

Lemma 1. (Confidence Ellipsoid [1]). Let (xt : t ≥ 0) be a sequence of d-dimensional
vectors and ‖xt‖2 ≤ 1. Let rt = xT

t θ+εt where εt isR-sub-Gaussian for some constant
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R, Vt = λI +
∑t

i=1 xtx
T
t and θ̂t = V −1

t

∑t
i=1 xiri. Then, for any 0 < δ < 1 and

t ≥ 1,

||θ̂t − θ||Vt
≤ αt(δ)

holds with probability at least 1 − δ, where

αt(δ) = R

√
d ln

1 + t/λ

δ
+

√
λ.

Lemma 2. (Sum of standard deviation [13]). Let λ > 1, for any sequence
(X1,X2, ...,XT ), let Vt = λI +

∑t
i=1

∑Ct

k=1 Xi,kXT
i,k where Ct ≤ K. Then

T∑

t=1

Ct∑

k=1

‖Xt,k‖V −1
t−1

= O(

√
dTK ln(1 +

TK

λd
)).

Lemma 3. (Azuma-Hoeffding inequality [4,9]). If (Yt : t ≥ 0) is a super-martingale
process, and for all t ∈ [T ], |Yt+1 − Yt| ≤ ct for some constant ct, then for any a ≥ 0,

P (YT − Y0 ≥ a) ≤ 2e
− a2

2
∑T

t=1 c2t .

Lemma 4. (Sum of variables) Let (Ct : t ≥ 1) be a sequence of truncated Poisson
variables with mean 1 ≤ qi ≤ K and q = mini∈[t]{qi}. Let δ > 0 and B > 0, then

t∑

i=1

Ci ≥ B

holds for all t ≥ 2B
q + 2

q2 k2 ln 2
δ with probability at least 1 − δ.

Proof. We construct a super-martingale process by defining Xi = Ci − qi and Yi =∑i
j=1 Xj . By the Azuma-Hoeffding inequality (Lemma 3), we obtain that for all t ≥

2B
q + 2

q2 k2 ln 2
δ ,

P (
t∑

i=1

Ci ≤ B) = P (
t∑

i=1

(qi − Ci) ≥
t∑

i=1

qi − B) ≤ 2e− (tq−B)2

2tk2 ≤ δ.

Lemma 5. (High probability property of the events). For all t and 0 < δ < 1, event
E

μ(t) happends with probability at least 1 − δ
t2 . And for any possible filtration event

E
θ(t) happens with probability at least 1 − 1

t2 .

Proof. The proof of this lemma follows from previous work on linear Thompson sam-
pling [3]. The high probability property of Eμ(t) is proven by applying the concentra-
tion inequality stated as Lemma 7 in [1]. The probability bound for Eθ(t) is obtained
by applying the concentration inequality of Gaussian random variables [2].
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Lemma 6. (Lower bound of the smallest eigenvalue of sum of hermitian matrices). Let
(xtx

T
t : t ≥ 1) be a sequence of d × d matrices generated sequentially from random

distribution xtx
T
t ∈ R

d×d. Suppose that for all t, E[xtx
T
t ] is full rank Hermitian matrix

and E[xtx
T
t ] ≥ λmin (Assumption 2) and ‖x‖ ≤ 1 (Assumption 1). Let Vt =

∑
t xtx

T
t ,

then for any t ≥ ( 8
λ2
min

+ 4
3λmin

) ln d
δ , event λmin(Vt) ≥ 1/2tλmin holds with proba-

bility at least 1 − δ.

Proof. We first define three random sequences:

Xt = E[xtx
T
t ] − xtx

T
t

Yt =
t∑

k=1

Xk =
t∑

k=1

E[xkxT
k ] −

t∑

k=1

xkxT
k

Wt =
t∑

k=1

Ek−1[X2
k ].

As EXt = E[E[xtx
T
t ] − xtx

T
t ] = 0, Yt is a matrix martingale whose values are

Hermitian matrices with dimension d × d and Xt is the difference sequence. Note that
λmax(Xt) ≤ 1, then by the Matrix Freedman’s inequality, for any a and b:

P(λmax(Yt) ≥ a and λmax(Wt) ≤ b) ≤ d · exp− a2/2
b+a/3 .

We define that Vt =
∑t

k=1 xkxT
k and Gt =

∑t
k=1 E[xkxT

k ], then Vt + Yt = Gt.
By the Wely’s Theorem λmin(Vt) + λmax(Yt) ≥ λmin(Gt), then

P(λmin(Vt) ≥ 1
2
tλmin) ≥ P(λmin(Gt) − λmax(Yt) ≥ 1

2
tλmin)

= P(λmax(Yt) ≤ λmin(Gt) − 1
2
tλmin)

= 1 − P(λmax(Yt) ≥ λmin(Gt) − 1
2
tλmin)

≥ 1 − P(λmax(Yt) ≥ 1
2
tλmin) (4)

= 1 − P(λmax(Yt) ≥ 1
2
tλmin and ‖Wt‖ ≤ t) (5)

≥ 1 − d · exp(− λ2
mint2/8

t + 1/6λmint
).

Equation (4) holds because of the assumption that λmin(E[xtx
T
t ]) ≥ λmin and

the Wely’s inequality and Equation (5) holds because of the fact that λmax(Wt) =
λmax(

∑t
k=1 E[(xkxT

k )
2] − E[xkxT

k ]
2) ≤ t holds with probability 1.

Thus, for any t ≥ ( 8
λ2
min

+ 4
3λmin

) ln d
δ , P(λmin(Vt) ≥ 1/2tλmin) ≥ 1 − δ, which

completes the proof.

Lemma 7. Suppose S = (at : t ∈ [T ]) is a finite sequence of positive integer and
1 ≤ ai ≤ K for any i ≤ T . Let f(S) = a1 +

∑T
t=2

at√∑t
j=1 aj

. Then, f(S) =

O(K +
√

KT lnKT ).



Collaborative Contextual Combinatorial Cascading Thompson Sampling 129

Proof. We first prove that for any sequence S1 = (a1, a2, ..., aT ), if there exist 1 ≤
i ≤ T that ai ≥ ai+1, we can switch these two elements ai+1 and ai so that we get
another sequence S2 = (a1, a2, ..., ai+1, ai, ...aT ) and f(S2) ≥ f(S1). We set that∑i−1

j=1 aj = M , then

f(S2) − f(S1) =
ai+1√

M
+

ai√
M + ai+1

− ai√
M

− ai+1√
M + ai

=
ai+1 − ai√

M
+

ai√
M + ai+1

− ai+1√
M + ai

We define a function g(x) = 1√
M+x

, as g′′(x) = 3
4 (M + x)−

5
2 ≥ 0, g(x) is a

convex function. Then,

∀x1, x2 ≥ 0 and t ∈ [0, 1], g(tx1 + (1 − t)x2) ≤ tg(x1) + (1 − t)g(x2).

We substitute x1 = 0, x2 = ai+1, t = 1 − ai/ai+1 into above inequality, and we
obtain

g(ai) ≤ (1 − ai

ai+1
)g(0) +

ai

ai+1
g(ai+1)

Thus,

ai+1√
M + ai

≤ ai+1 − ai√
M

+
ai√

M + ai+1

,

so that f(S2) ≥ f(S1).
For any sequence S, if the elements of the sequence are fixed, we can recursively

switch the elements to get the maximum value of f(S). The maximal value is obtain
when a1 ≤ a2 ≤ ... ≤ aT . As the value of the elements can only be selected from
K positive integers, we assume that the integer 1 ≤ k ≤ K is selected Tk times and∑K

k=1 Tk = T , thus

a1 +
T∑

i=2

ai√∑i
i=1 ai

≤ K +

√√√√(
T∑

i=1

ai)(
T∑

i=2

ai∑i
j=1 aj

) (6)

≤ K +

√√√√KT (
T∑

i=2

ai∑i
j=1 aj

)

≤ K +

√√√√KT (
K∑

k=1

Tk∑

j=1

k
∑k−1

h=1 hTh + (j − 1)k
) (7)

≤ K +

√√√√KT (
K∑

k=2

ln
k

k − 1
+ ln

K∑

k=1

k

K
Tk) (8)

= O(K +
√

KT lnKT ),
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where Eq. (6) follows from the Cauchy–Schwarz inequality and ai ≤ K, Eq. (7) follows
from the fact that after the rearrangement of the sequence, ai ≤ ai+1 holds for any 1 ≤
i ≤ T − 1, and

∑K
k=1 Tk = T . Equation (8) holds because

∑Tk

j=1
k

∑k−1
h=1 hTh+(j−1)k

≤
ln

∑k
i=1

i
kTi − ln

∑k−1
i=1

i
kTi.

5 Experiment

We evaluate our algorithm C4-TS on a synthetic dataset. Its performance is compared
with CLUB-cascade, CascadeLinUCB and CascadeLinTS, which are the most related
algorithms. The empirical results demonstrate the advantage of using Bayesian heuristic
and online clustering.

Fig. 1. These figures compare C4-TS with CLUB-cascade, CascadeLinUCB and CascadeLinTS
on Synthetic dataset. Plots reporting the cummulative regret over time step T. The basic setting is
that there are 200 items, 20 users and 2 clusters. The users in different clusters have orthogonal
user vectors. The dimension of feature space is d = {20, 40}. The length of recommended list is
K = {4, 6, 8}

In all the subfigures, we generate a candidate set with Nitems = 200 items, each
item is represented by a d-dimensional feature vector x ∈ R

d with xT x ≤ 1 and
d ∈ {20, 40}. We then generate Nusers = 20 users and the users can be grouped
into two clusters. We set that the users in the same cluster share the same user vectors
θ ∈ R

d. And for users in different clusters, we set that their user vectors are orthogonal
so that γ =

√
2 in these settings. The observed payoff for user θ to item x is a Bernoulli

random variable, whose mean is the linear function xT θ. At each round, the algorithm
selects a user to serve and recommends K = {4, 6, 8} items to the user. The algorithm
then observes the cascading feedback and updates its parameters accordingly.

In Fig. 1, we plot the cumulative regret as a function of time step T for C4-TS,
CLUB-cascade, CascadeLinUCB and CascadeLinTS. It is obvious that our algorithm
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outperforms other algorithms in all settings. We compare the performance of the col-
laborative algorithms and the standard bandit algorithm. It can be seen that the collabo-
rative algorithms significantly outperform those algorithms without online clustering in
all settings, which demonstrates the advantage of utilizing collaborative effect in these
algorithms. We can also compare the performance of Thompson sampling and UCB-
like algorithms. Although CascadeLinTS does not perform as well as CascadeLinUCB,
our algorithm outperforms CLUB-cascade in all settings. In fact, we can tune Cas-
cadeLinTS by adjusting the exploration rate so that CascadeLinTS performs as well
as CascadeLinUCB, but Fig. 1 is a clear proof of the collaborative effect on Thomp-
son sampling. It can be seen that the collaborative algorithms benefit from collabora-
tive effects after several rounds. This observation is empirical evidence of part 1 that
the algorithm can find the cluster structure efficiently. Another important property of
Thompson sampling is that it often has higher variance than UCB. An explanation is
that Thompson sampling requires additional randomness because it samples from the
posterior distribution of θ to explore information. In contrast, UCB-based algorithms
explore by adding a deterministic positive bias.

6 Conclusion

We design and analyze C4-TS algorithm for the stochastic cascading bandit in a col-
laborative environment. We prove that the regret bound of our algorithm matches the
regret bound for UCB-like algorithms. And the experiments conducted on a synthetic
dataset demonstrate the advantage of our algorithm over existing UCB-like algorithms
and standard Thompson sampling algorithm. Further investigations include deriving the
lower regret bound for cascading bandit and the frequentist regret bound for Thompson
sampling algorithms.
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