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Abstract. With the rapid development of mobile Internet, smart
devices, and positioning technologies, location-based social networks
(LBSNs) are growing rapidly. In LBSNs, point-of-interest (POI) recom-
mendation is a crucial personalized location service that has become a
research hotspot. To address extreme sparsity of user check-in data, a
growing line of research exploits spatial-temporal information, social rela-
tionship, content information, popularity, and other factors to improve
recommendation performance. However, the temporal and spatial trans-
fers of user preferences are seldom mentioned in existing works, and
interpretability, which is an important factor to enhance credibility of
recommendation result, is overlooked. To cope with these issues, we pro-
pose a context-aware POI recommendation framework, which integrates
users’ long-term static and time-varying preferences to improve recom-
mendation performance and provide explanations. Experimental results
over two real-world LBSN datasets demonstrate that the proposed solu-
tion has better performance than other advanced POI recommendation
approaches.
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1 Introduction

Geographical location information has played an increasingly important role
in people’s lives with the popularization of smart terminals and development
of geolocation technologies. Location-based social networks (LBSNs), combined
with location-based services and online social networks, are emerging rapidly. In
LBSNs, users can share their check-in activities as they visit point-of-interests
(POIs) (e.g., supermarkets, restaurants, attractions, and hotels). Massive check-
in data can be used to mine users’ visit preferences and introduce personalized
POI recommendation system, which not only helps users explore new areas and
discover new POIs but also enables POIs to increase the revenue through smart
location services (e.g., location-based advertising services). As a smart service
based on big data [1,2], POI recommendation has recently attracted increasing
attention from academics and industry [3–5].

POI recommendation is more complicated than traditional recommendation
system. Information such as distance, time, social relationships, category, and
popularity of POI must be considered in addition to user preferences and location
attributes [5]. Moreover, a user check-in matrix has higher sparseness than a
user-item matrix in traditional recommendation systems [6].

To alleviate data sparsity, existing approaches mainly utilize auxiliary infor-
mation such as time, geographical location, and social relationship. The temporal
and spatial transfers of user preferences are seldom mentioned. In current POI
recommendation algorithms, user interest is assumed static, but people’s interest
actually change over time. The visit preferences of people usually change along
with their workplace or accommodation. The POIs that they are interested in
may also change after beginning a relationship. At the same time, people have
static preferences because some interests are retained for a long time on the one
hand. For example, users who like reading books tend to go to bookstores. On
the other hand, some static interests are related to people’s rational choice in
nature. For example, people usually prefer to visit nearby POIs and famous POIs.
In addition, the interpretability of the recommendation results is an important
factor in the recommendation systems as it can increase the credibility of the
recommendation. However, current research has overlooked this factor. Existing
advanced POI recommendation algorithms typically take model-based methods
to mine visit preferences of users by integrating auxiliary information, such as
matrix factorization, which experiences difficulty in distinguishing the influence
of different factors and explaining recommendation results.

In light of the above discussion, we propose a collaborative filtering POI rec-
ommendation approach (HWREC) in this study. The proposed approach uses
improved Hawkes process to integrate user’s long-term static and time-varying
preferences, capitalizing on multiple contextual information, including spatial
clustering, spatial distance, spatial sequence transformation, temporal, and POI
popularity information, to improve performance of recommendation. More signif-
icantly, HWREC can explain recommendation results in several aspects accord-
ing to the preferences and historical check-in records.



Point-of-Interest Recommendation with Interpretability 747

The remainder of this paper is organized as follows. Section 2 describes the
preliminaries of the POI recommendation task. Section 3 presents the proposed
POI recommendation method in detail. Section 4 evaluates the effectiveness of
the proposed method. Section 5 reviews related work. Finally, Sect. 6 concludes
this study.

2 Preliminaries

2.1 Notation

In a LBSN, assume a set of N users represented as U = {u1, u2, . . . , uN} and a set
of M POIs represented as L = {ll, l2, . . . , lM}. Each POI has a geographic coordi-
nate g = <longitude, latitude>. The POIs can be clustered into K POI clusters
by the coordinates, denoted as C = {cl, c2, . . . , cK}. Each check-in activity is a
tuple <u, l, t> that represents user u ∈ U visiting POI l ∈ L at time t.

2.2 Problem Statement

The goals of POI recommendation task in this study are to recommend to each
user with top-k new POIs that he/she may be interested in but has not visited
before by learning users’ personalized preferences from their history check-in
activities, and explain the recommendation results.

3 Methodology

In this section, we describe the proposed HWREC method in detail.

3.1 Select Candidate POIs

To reduce the commutating complexity of the proposed solution, we first select
candidate POIs for users. Candidate POIs are obtained from similar users, which
makes this method a user-based collaborative filtering approach. Similar users
are believed to share similar behaviors. We analyze user behaviors according
to the geospatial aggregation phenomenon of their check-in POIs [7] and then
extract user features to compute similarity among users. The feature represen-
tation of a user is defined as follows:

Definition 1. User feature representations. A vector of check-in frequencies in
each POI cluster of a user.

First, we determine clusters of POIs in a certain geographic area by applying
the density-based spatial clustering of applications with noise (DBSCAN) algo-
rithm whose inputs are geographic coordinates of POIs. The DBSCAN allocates
a cluster to each POI and obtains noise POIs that do not belong to any cluster.
The features of a user ui are then expressed according to Eq. 1 expressed as
follows:
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Fi = {f0, f1, f2, . . . , fK}(0 ≤ i ≤ N) (1)

where f0 indicates the check-in frequency of user ui at noise points. f1 to fc

indicate the respective check-in frequency of user ui in clusters 1 to c. The
check-in frequency of the user ui in the cluster j is defined as Eq. 2:

fj =
k

n
(1 ≤ j ≤ m) (2)

where ni is the total number of check-in records for user ui. Similarly, the check-
in frequency of the user ui at the noise point is defined as Eq. 3:

f0 =
k0
ni

(3)

Finally, the similarity among users can be calculated as follows:

Sij =
∑

q∈Q

min(fiq, fjq) (4)

where Q is a set of clusters that users ui and uj have visited. The index q must
be positive, so the noise points will not be taken into account. According to
Eq. 4, we can identify a group of similar users for each user, and the candidate
POIs can be selected from his/her similar users’ historical check-ins.

Algorithm 1 illustrates the functionality of candidate POI selection.

Algorithm 1. Candidate POIs Selecting
Input: Users U , POIs L with coordinates g
Output: Candidate POIs set Pi of each user
1: Run DBSCAN on L to get Clusters C = {cl, c2, . . . , cK}
2: for each ui ∈ U do
3: calculate check-in count ni

4: for each ci ∈ C do
5: calculate check-in count ki in cluster ci

6: set check-in frequency fi = ki/ni

7: end for
8: set user feature Fi = {f0, f1, f2, . . . , fK}
9: end for

10: for each ui ∈ U do
11: for each uj ∈ U do
12: set Sij =

∑
q∈Q min(fiq, fjq)

13: end for
14: sorting Sij in descending order
15: get Candidate POIs Pi from top 1 similar user.
16: end for
17: return P = {P1, P2, . . . , PN}
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3.2 Improved Hawkes Process

The Hawkes process is a linear self-excited point process model proposed by
Hawkes in 1972 [8]. The model is widely used in various fields, such as economic
analysis and forecasting and social network modeling. This model believes that
previous events affect the probability of occurrence of future events, and the
incentives of past events are positive, additive, and decay over time. We introduce
the Hawkes process to model the spatio-temporal sequence of users’ check-in
records. The equation is as follows:

λulk(t) = μulk +
∑

li∈Hu

αlilke−δ(t−tli ) (5)

where λulk(t) is the intensity of user u visiting POI lk, μulk is the basic intensity
(probability) of u visiting lk, αlilk is the excited degree of historical check-in
<u, li>, e−δ(t−tli ) indicates the time decay of the historical check-in <u, li>,
and Hu is the set of POIs that user u has visited. The left part of the formula
can be considered as long-term preferences of a user, and the right part can be
considered as time-varying preferences.

Each user can have a personalized Hawkes process to estimate the probability
of visiting candidate POIs based on his/her historical check-ins to obtain the top-
k recommended POIs. The way of solving the parameters in Hawkes process is
described in the following sections.

3.3 Basic Intensity μulk

The basic intensity μulk can be calculated in different ways. Considering that
the distances from a user to POIs and the popularity of POIs are critical infor-
mation, we utilize the improved Huff model to integrate distance and popularity
to compute the basic intensity μulk .

The Huff model was proposed by David Huff. It attributes the attraction
of a mall to customers in two factors [9]: (1) the area size of the mall and (2)
the geographical distance between the mall and the customer. The original Huff
model is expressed as follows:

Pij =
Sjd

−γ
ij∑M

j=1 Sjd
−γ
ij

(6)

where Sj represents the area size of mall j, dij is the distance between customer
i and mall j, and γ is the distance attenuation coefficient.



750 G. Zhang et al.

In our study, the Huff model is improved to adapt to LBSN check-in datasets.
The equation is expressed as follows:

Pij =
υβ

j Haversine(d−γ
ij )

∑M
j=1 υβ

j Haversine(d−γ
ij )

(7)

where υj denotes the total number of check-ins of POI lj , which reflects the
POI popularity, and the exponential distribution υβ

j is used instead of Sj , where
β is an elasticity coefficient. Haversine(dij) is used to calculate the Haversine
distance between the last check-in location of user ui and the candidate POI lj ,
and γ is the distance attenuation coefficient. Haversine distance is the great-circle
distance between two points on a sphere given their longitudes and latitudes.

The Huff model is further normalized by the sigmod function to obtain the
basic intensity μulk of improved Hawkes process:

μulk =
1

1 + e−Pij
(8)

3.4 Excited Degree αli
lk and Time Decay Coefficient δ

The excited degree αlilk of historical check-in <u, li> with respect to future
check-in <u, lk> can be calculated by a POI transition graph.

Definition 2. POI-to-POI Transition Graph [4]. Graph = (L,E), where L is
the set of vertices, and E is the set of edges. Each vertex li(li ∈ L) represents a
POI. Each POI has an out-degree, defined as OutDegree(li), which represents
the number of transitions from li to other POIs. Each edge (li, lj) ∈ E represents
a transition li → lj. The number of transitions contained in each edge is defined
as EdgeWeight(li, lj).

Definition 3. Transition probability. The transition probability of li → lj is
defined as TP (li → lj), and calculated as follows:

TP (li → lj) =

{
EdgeWeight(li,lj)

OutDegree(li)
, if (OutDegree(li) > 0)

0, other
(9)

The excited degree αlilk = TP (li → lk) can be obtained by Eq. 9.
The time decay coefficient δ is a free parameter, we will discuss the tuning

method of δ and analyze its value in the experimental section.
The detailed algorithm is illustrated in Algorithm 2.
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Algorithm 2. POI Recommendation Based on Hawkes Process
Input: Users U , POIs L, check-in time T
Output: top − k POIs for each user
1: Run Algorithm 1 to get candidate POIs P = {P1, P2, . . . , PN} for each user
2: for each ui ∈ U do
3: for each lk ∈ Pi do
4: calculate Haversine(d−γ

ik ) between user ui and candidate POI lk
5: calculate popularity υk for POI lk
6: calculate basic intensity μuilk according to equation 7 and 8
7: for each lm ∈ Hui do
8: set αlmlj = TP (lm → lj)
9: end for

10: calculate visit preference of lk according to equation 5
11: end for
12: recommend to ui with top-k POIs according to visit preference.
13: end for

4 Experiments

4.1 Dataset

Two datasets are used in our experiments.

Gowalla Dataset. The Gowalla dataset used in this experiment is obtained
from Stanford University’s public dataset collection site1. The check-in data
cover different parts of the world, and the data densities vary from place to place,
which makes data mining inconvenient. In the experiment, the Manhattan area
of New York City, where user check-in is denser and data quality is higher, is
selected as the study area. The geographic range is latitude 40.60◦ to 40.85◦ N
and longitude 73.89◦ to 75.05◦ W. The contents of each check-in record in the
dataset include user ID, POI ID, geographic coordinate of POI, and check-in
time. The users whose check-in times are less than 5 and the POIs that have
been visited less than 10 times are filtered out. After preprocessing, the dataset
contains 59,336 check-in records made by 1,612 users at 2,299 POIs, and the
check-in time span is from February 2009 to October 2010.

Foursquare Dataset. Foursquare is a mobile service website based on user
geographical location information. It encourages mobile phone users to share
information about their current geographical location with others. In the exper-
iment, the Tokyo check-in dataset of Foursquare provided by [10] is used. The
contents of each check-in record in the dataset include user ID, POI ID, category
ID of POI, category name of POI, geographic coordinate of POI, and check-in
time. After filtering out users who have checked in less than 10 times and the
POIs that have been visited less than 10 times, the dataset contains 357,147
1 http://snap.stanford.edu/data/loc-gowalla.html.

http://snap.stanford.edu/data/loc-gowalla.html
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check-in records made by 2,293 users at 7,866 POIs, and the check-in time span
is from April 2012 to February 2013.

Table 1 shows the statistics of the two datasets.

Table 1. Statistics of dataset

Dataset Number of
users

Number of
POIs

Number of
check-in
records

Average
number of
check-ins

Check-in
matrix
density

Gowalla 1612 2299 59336 36.81 1.60%

Foursquare 2293 7866 357147 155.75 1.98%

4.2 Evaluation Metrics

For each user, the top 80% of the check-in data (sorted by check-in time in
ascending order) are used as the training data, whereas the remaining 20% are
used as the testing data. The visited probabilities of a user to the candidate POIs
are calculated according to the proposed HWREC algorithm, and the top-k POIs
sorted by visiting probability are recommended to the users.

To evaluate the performance of the proposed method, two metrics are used
[11], namely, precision and recall, and the equations are defined in 10 and 11,
respectively.

Precision =
∑

u |Ru

⋂
Tu|∑

u |Ru| (10)

Recall =
∑

u |Ru

⋂
Tu|∑

u |Tu| (11)

where Ru represents a set of POIs recommended for user u, and Tu represents a
set of POIs that actually visited by user u in the testing data.

4.3 Baseline Methods

We compare the proposed HWREC with the following baseline algorithms.

– HUFF. It is the basic intensity of HWREC, which uses the distance and
popularity information of POIs to obtain the long-term static preferences of
users.

– AMC. It is the time-influencing part of HWREC, which uses additive Markov
process to calculate the time-varying preferences of users.

– ASVD++ [12]. It is a combined model which improves the accuracy of top-k
recommendation by utilizing the advantages of latent factor and neighbor-
hood method. In this experiment, the number of user check-ins is normalized
as implicit scores of <user, POI> pairs when calculating.
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– AOBPR [13]. It is an advanced Learning-to-Rank based algorithm for top-k
recommendation, which studies the preferences of users from implicit feed-
back.

– LORE [4]. This algorithm integrates several contextual information, such as
social relationships, spatial distance, POI popularity, and time information;
it achieves better results compared with many other advanced methods, such
as CoRe [14] and USG [15]. The Foursquare dataset does not contain social
relationship information, so the similar users calculated in Sect. 3.1 are used
instead in the experiment.

4.4 Parameter Settings

In the experiment, the radius of neighborhood and density threshold of DBSCAN
clustering algorithm are set to 100 and 2, respectively.

The improved Huff model has two parameters: distance attenuation coef-
ficient γ and elastic coefficient β of POI popularity. Parameter γ is set to 2
according to the modified Huff model in [9]. Parameter β is set to 3.5 in the
Gowalla dataset and 5 in the Foursquare dataset.

The excited degree αlilk of historical check-in <u, li> is calculated according
to the method presented in Sect. 3.4. The time decay coefficient δ is set to −0.5 in
the Gowalla dataset and −0.001 in the Foursquare dataset. A smaller δ indicates
a lower decay rate. The time differences between historical events and current
events are calculated in scale of hours.

For the two free parameters, β and δ, we search for the optimal values by
tuning the parameters alternately. First, β is fixed, and δ is tuned to obtain the
best recommendation accuracy. Next, δ is fixed, and β is tuned to obtain the
best recommendation accuracy. In general, this process is repeated 3 to 5 times
to achieve the best results.

4.5 Parameter Discussion

Two free parameters are used in our proposed algorithm: elastic coefficient β of
POI popularity and time decay coefficient δ. Figures 1 and 2 show the effect of
these parameters on the Gowalla and Foursquare datasets in terms of precision
and recall, respectively. The experiment compares the average accuracy and
recall of top-k (k = 1, 2, 3, 4, 5) recommendations when the parameters are
varied.

The performance is poor in the both datasets when parameter β ≤ 2 because
the distance coefficient γ is fixed to 2. The best performance for the Gowalla
dataset is obtained when 2.5 ≤ β ≤ 4, after which the average accuracy and recall
decrease slightly. On the Foursquare dataset, the best performance is achieved
when 5 ≤ β ≤ 6, and the performance changes are imperceptible thereafter.
Therefore, the value of β can be generally selected from 3 to 5, which indicates
that user check-in probability has an exponential relationship with the popularity
of a POI. It also reflects actual phenomena, for example, the number of visitors
who travel to famous attractions is usually dozens of times that of ordinary ones.
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(a) Precision (b) Recall

Fig. 1. Influence of β and δ on recommendation of Gowalla dataset

(a) Precision (b) Recall

Fig. 2. Influence of β and δ on recommendation of Foursquare dataset

Parameter δ differs significantly between the two datasets. On the Gowalla
dataset, the recommendation performance drops significantly when δ > −0.1.
When δ = 0 (no decay), the result is the worst. When δ ≤ −0.3, not much
difference is observed between the performances. On the Foursquare dataset,
the best performance is obtained when δ = −0.001. When δ = 0 (no decay), the
performance is slightly lower than the best value. When the value of δ decreases,
the performance changes are minor because the time decays of historical check-
ins on the Foursquare dataset are considerably lower than those on the Gowalla
dataset. Therefore, the value of |δ| should be smaller on the datasets with lower
time decays.

4.6 Performance Comparison

Figures 3 and 4 compare the proposed algorithm HWREC and other baseline
methods on the Gowalla and Foursquare datasets, respectively. The results indi-
cate that the accuracy decreases as the value of k increases, whereas the recall
increases as the value of k increases. This is because the visit probability of
recommended POIs decreases as the value of k increases.

Figures 3 and 4 demonstrate that the proposed HWREC is far superior
to matrix factorization based ASVD++ and Learning-to-Rank based AOBPR.
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These algorithms consider only the check-in counts of users and do not use spa-
tial and temporal information. Although the top-1 recommendation performance
of the proposed HWREC is slightly lower than HUFF in the Gowalla dataset,
the overall performance of HWREC is significantly better than the HUFF, which
considers only static preferences of users, and the AMC, which considers only
time-varying preferences of users. The LORE uses distance, popularity, time, and
social relationship information, but HWREC achieves better results, particularly
on the Gowalla dataset.

(a) Precision (b) Recall

Fig. 3. Recommendation performance with respect to top-k values on Gowalla dataset

(a) Precision (b) Recall

Fig. 4. Recommendation performance with respect to top-k values on Foursquare
dataset

4.7 Interpretability

Different from existing methods, the proposed HWREC algorithm considers both
static preferences and time-varying preferences, so it can easily explain the rec-
ommendation results.

First, let’s consider the long-term static preferences. In the location-based
mobile applications, such as Meituan, when you search for POIs according to
the keywords, it will show you a list of POIs sorted by popularity or distance. In
our proposed method, the popularity and distance of POIs are reflected in the
static preferences part. We can tell users that “we recommend the POI to you
according to its distance (e.g., 2 km from you) and popularity (e.g., 1000).”
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Second, we consider the time-varying preferences. The influence of histori-
cal check-ins is related with multiple factors, including check-in count, check-in
time and transition probability. For each POI that is recommended to users, an
explicit score of every historical check-in can be calculated by the time-varying
preferences part of the proposed method. Then we can tell users that “we recom-
mend the POI to you because you have visited POIs a, b, and c (a, b, and c, are
sorted by their scores in descending order).” Furthermore, we can provide the
information, such as check-in count, check-in time, and transition probability,
related with the score, which can enhance the explanation.

5 Related Work

POI recommendation has attracted lots of attention from academics and
industry, and related works include collaborative filtering (CF) approaches
[16], matrix factorization-based algorithms, geographical distance-based mod-
els, social relationships-based methods, and context-based method, etc. Differ-
ent methods are suitable for different check-in datasets. For example, the CF
method, which recommends POI by calculating similarity of users or POIs, is
widely applicable. The geographical distance-based method, which is applicable
for datasets with precise geographic locations, leverages the distance between
users and POIs to characterize user behaviors. The social relationship-based
methods can be applied to datasets that contain friend information of users.
The recommendation is performed by mining the similarity between users and
their friends. We summarize the related works as follows.

(1) Collaborative filtering (CF) methods. Most existing POI recommendations
are based on CF algorithms [16,17], which assume that similar users usually
visit similar POIs. There are two types of CF algorithms, user-based CF [17]
and item-based CF (a POI is considered as an item) [16]. The former com-
pares the similarity among users, whereas the latter compares the similarity
among POIs.

(2) Geographical distance-based methods. Geographic location is an important
factor for POI recommendation. POIs that are closer to the users tend to be
visited. A study [18] analyzes the distance distribution of the users’ check-
in locations, and the results reveal that the distances of adjacent check-in
locations present a power-law distribution. In [7], data sparsity is alleviated
by modeling user activity areas and POI impact areas. The literature [14]
uses kernel density estimation to analyze the influence of the 2D geographical
coordinates of POIs to improve recommendation performance.

(3) Social relationship-based methods. The social relationship (e.g., friendship)
between users is an important factor in the location based social networks.
Friends tend to share common preferences. In [19], a friend-based CF method
using the common check-in records of friends to recommend POIs is pro-
posed. However, given that few users share information about check-in POIs,
the improvement of recommendation performance is limited by only using
social relationships [20].
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(4) Time-aware methods. Time is an important factor for POI recommendations
because the places users tend to visit vary with the time of the day. The
literature [21] proposes a time-aware POI recommendation by considering
the temporal influence of user activities.

(5) Content-based methods. Users can rate and comment on POIs in LBSNs.
Modeling users’ comments on the POIs [3] is useful to understand the pref-
erences of users accurately and improve the recommendation performance.

(6) Methods integrated with multi-factors. The visit preferences of users are
influenced by many factors, single-factor based recommendation algorithm
can not archive good performance. Most studies have attempted to integrate
geospatial information, time effects, social relationships, content informa-
tion, popularity, and other factors to improve the recommendation perfor-
mance [22].

In this study, we propose a new approach to model interests of users from
both long-term static preferences and time-varying preferences. Unlike existing
methods, our approach can provide satisfactory explanations for recommended
POIs.

6 Conclusion

In this study, we propose a context-aware POI recommendation approach
with interpretability based on improved Hawkes process. The proposed method
exploits users’ long-term static and time-varying preferences by using multi-
ple context information to alleviate the problem of data sparsity and provide
explanations to users for recommendation results in several aspects. Context
information include spatial clustering, spatial distance, spatial sequence trans-
formation, temporal, and POI popularity information. We conduct experiments
over two real-world LBSNs datasets and compare our model with several base-
lines. The experimental results demonstrate that the proposed solution achieves
better performance than other advanced POI recommendation algorithms.

In the future work, we intent to improve the performance and interpretability
of POI recommendation by integrate more auxiliary information, such as POI
category, comments of POI, etc. to the static and time-varying preferences of our
model. Moreover, the recurrent neural network which is excellent at sequence
modeling can be explored to mine the check-in sequences of users to study the
time-varying preferences. Further, the time-varying part of our proposed model
can be improved to do online POI recommendation based on deep reinforcement
learning.
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