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Abstract. Recently, mobile crowdsensing has become a promising
paradigm to collect rich spatial sensing data, by taking advantage of widely
distributed sensing devices like smartphones. Based on sensing data, event
detection can be conducted in urban areas, to monitor abnormal incidents
like traffic jam. However, how to guarantee the detection accuracy is still
an open issue, especially when unreliable users who may report wrong
observations are considered. In this work, we focus on the problem of user
recruitment in collaborative mobile crowdsensing, aiming to optimize the
fine-grained detection accuracy in a large urban area. Unfortunately, the
problem is proved to be NP-hard, which means there is no polynomial-
time algorithm to achieve the optimal solution unless P = NP. To meet the
challenge, we first employ a probabilistic model to characterize the unreli-
ability of users, and measure the uncertainty of inferring event occurrences
given collected observations by Shannon entropy. Then, by leveraging the
properties of adaptive monotonicity and adaptive submodularity, we pro-
pose an adaptive greedy algorithm for user recruitment, which is theoreti-
cally proved to achieve a constant approximation ratio guarantee. Exten-
sive simulations are conducted, which show our proposed algorithm out-
performs baselines under different settings.

Keywords: Collaborative mobile crowdsensing · Event detection ·
User recruitment · Adaptive greedy algorithm

1 Introduction

With the popularization of mobile devices equipped with rich embedded sensors
and wireless communication modules, mobile crowdsensing [7,8,15] has emerged
as a promising data sensing and collecting paradigm. Taking advantage of widely
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distributed mobile devices, fine-grained event detection over an urban area can be
conducted via collaborative sensing, which can support services such as traffic
jam monitoring [18]. In this work, we consider a typical mobile crowdsensing
system, consisting of a central platform built in cloud and a set of collaborative
users equipped with sensing devices. The platform is responsible for recruiting
some users to participate in event detecting, within a given budget. Then, the
recruited users perform detecting during their movement. Finally, the platform
infers all event occurrences in the monitored area, based on the observations
reported by recruited users.

It is still an open issue that how to guarantee the detection accuracy, in
terms of considering the unreliability of users and the budget constraint. Here,
detection accuracy measures the deviation between ground truth and inference
of event occurrences. On one hand, certain costs are incurred on users for detect-
ing, such as energy consumption, bandwidth usage and interaction time. Thus,
given a fixed budget, the number of recruited users is significantly limited. On
the other hand, observations reported by different users have different accuracy
levels, which may be influenced by device hardware or user experience. Which
users are recruited and what observations are collected make a big difference
on the fine-grained detection accuracy could be achieved. Considering these two
aspects, users should be carefully selected by the platform, to satisfy the budget
constraint and optimize the detection accuracy at the same time.

Recently, some works have paid efforts to figure out the problem of quality-
aware data collection in mobile crowdsensing, which are the most related with
our work. Different metrics are considered to measure data quality. A certain
attained value of each user is considered to measure the quality of informa-
tion in [13]. Data utility is measured by data granularity and quantity in [23]
and prediction uncertainty and data density in [29], respectively. Yang et al.
[30] consider the distance between measurements and true values estimated as
the centroid of the measurements, to measure the quality of each user. Most
other works [10,11,26–28,31] focus on designing truthful incentive mechanisms
for quality-aware users, which model the quality of each user as a constant real
value. Moreover, a few works [21,31] have noticed the unreliability of users.
Zheng et al. [31] assume qualities of users follow certain multinomial distribu-
tions. A discrete probabilistic effort matrix is used in [21] to model the deviation
between measurements and ground truth. Moreover, expectation maximization
(EM) based algorithms are proposed to estimate the qualities of users. However,
these works ignore digging how the unreliability of users influences the quality of
data collection, e.g., fine-grained detection accuracy in our work, and accordingly
proposing efficient user recruitment approaches.

In this work, we study the problem of user recruitment in collaborative mobile
crowdsensing to provide event detection services, with the objective to optimize
the detection accuracy under a fixed budget constraint. In addition, we con-
sider unreliable users, whose observations may variously deviate from ground
truth. Thus, multiple users should be recruited to detect one event, which can
collaboratively improve the detection accuracy. Different from previous works,
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we aim to propose an optimal user recruitment approach, by formally analyzing
the relationship between the unreliability of recruited users and the fine-grained
accuracy achieved given the observations collected from users.

However, the problem is particularly difficult due to the following challenges.
Firstly, the more users are recruited, the higher detection accuracy could be
achieved in intuition. However, the number of recruited users is significantly
limited by the budget constraint. Secondly, observations of an unreliable user
are nondeterministic before the user is recruited, which makes the platform hard
to estimate the value of each user in terms of improving the overall detection
accuracy. Thirdly, the improvement of detection accuracy made by the observa-
tions collected from a user is varying, which is also related with the observations
have been collected from others. Finally, as the problem is formally proved to
be NP-hard, there does not exist a polynomial-time algorithm to achieve the
optimal solution if P �= NP.

To meet the challenges, we propose an adaptive greedy algorithm for user
recruitment in a budgeted mobile crowdsensing system in this paper. We first
employ a probabilistic matrix to model the unreliability of each user, which
consists of true-positive, false-positive, true-negative, and false-negative detec-
tion probabilities. Then, the probability of an event occurrence is estimated
given the collected observations based on the Bayesian rule. Moreover, Shan-
non entropy is employed to measure the uncertainty of the estimation, which
represents the detection accuracy. Next, by taking advantage of the properties
of adaptive monotonicity and adaptive submodularity, we put forward an adap-
tive greedy algorithm, in which users are sequentially recruited according to
the expectation of accumulated entropy reduction obtained by their observa-
tions. Our proposed algorithm is theoretically proved to achieve near-optimal
performance with a constant approximation ratio guarantee. Extensive simu-
lations are conducted to evaluate the performance of our proposed algorithm,
compared with baselines. The comparative results show that our algorithm can
achieve high detection accuracy under different settings.

The main contributions of this paper are summarized as follows:

– First, we employ a probabilistic model to characterize the unreliability of
users, and Shannon entropy to measure the uncertainty of estimations on
event occurrences. Moreover, the relationship between the detection accuracy
achieved by collected observations and the unreliability of recruited users is
formally established.

– Second, we propose an adaptive greedy user recruitment algorithm, which is
proved to achieve approximately optimal performance with a constant approx-
imation ratio guarantee.

– Third, we perform comprehensive simulations to evaluate our proposed algo-
rithm, compared with baselines. The results show that our algorithm can
achieve better performance under different settings.

The rest of the paper is organized as follows. Section 2 reviews related work.
The system model, formal problem formulation and preliminary definitions are
presented in Sect. 3. In Sect. 4, we illustrate the design details of our proposed
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user recruitment algorithm, and its optimization analysis. Section 5 evaluates the
performance of our algorithm compared with baselines via extensive simulations.
Finally, we conclude our work in Sect. 6.

2 Related Work

With the proliferation of mobile sensing devices like smartphones, mobile crowd-
sensing has attracted a lot of attention from industry and academia. Many useful
applications have been developed to collect various sensing data from crowds
for environment monitoring [16,17,22], smart transportation [18,25], health-
care [5,9,20], and social interaction [1,3,4]. How to collect high-quality sensing
data and extract accurate information is a fundamental issue for the success of
mobile crowdsensing. Recently, quality-aware data collection has attracted some
research efforts. In this section, we briefly review related works and point out
the difference and contributions of our work.

The concept of Quality-of-Information (QoI) is first introduced into query-
based mobile crowdsensing by [13]. QoI is formally formulated as a function of
the required value of each query and the attained value of each user. An energy-
efficient algorithm and a dynamic pricing scheme are proposed for deciding par-
ticipants and allocating credits to participants respectively. Followed by [23],
Song et al. propose a QoI-aware energy-efficient participant selection method,
where QoI is measured by data granularity and quantity. Different from these
two works, we use a probabilistic matrix to model the unreliability of users,
and the data quality, i.e., fine-grained detection accuracy, is measured by the
uncertainty of the estimations inferred based on observations of users.

Given the QoI of each user, reverse combinatorial auction-based incentive
mechanisms are proposed for both single-minded and multi-minded users in [10],
to maximize the profit defined on the accumulated QoI of selected users. Sim-
ilarly, a few other works [11,26–28,31] have proposed quality-aware incentive
mechanisms to encourage users to contribute high-quality data. Most of these
works model qualities of users as known, certain and additive real values. They
focus on how to guarantee the truthfulness of strategic users. In our work, we
consider unreliable users who may contribute incorrect observations, and focus
on discovering the truth with high certainty based on unreliable observations.
We also propose an adaptive algorithm for greedily recruiting valuable users,
while providing proper incentives to users is beyond the scope of our work.

Both Yang et al. [30] and Peng et al. [21] propose approaches to estimate
qualities of users according to their measurements and then provide incentives
based on their qualities. In [30], the quality of users is measured by the deviation
of their measurements and ground truth, which is estimated as the centroid of
the measurements. This truth discovery method is also employed in [11]. In [21],
a probabilistic effort matrix is used for modeling the quality of each user, and an
EM algorithm is proposed to estimate effort matrixes of users as well as ground
truth. Developed by [14], data qualities of users, which are assumed following
multinomial distributions, can also be estimated by an EM algorithm. Moreover,
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a context-quality classifier is trained to discover the truth and a greedy-based
algorithm is proposed for user selection. In [29], Xu et al. consider the platform
can actively orchestrate queries for collecting annotation data, and data utility
is measured by both prediction uncertainty and data density. A threshold-based
method is proposed for online participant selection.

Similar with [21], we model the unreliability of users by a discrete proba-
bilistic matrix. Different from the previous works, we focus on how to accurately
discover ground truth with high certainty, given the observations collected from
unreliable users under a fixed budget constraint.

3 Preliminaries and Problem Formulation

3.1 System Model

A typical mobile crowdsensing system is consisted of a central platform located
in cloud and a universal set of mobile users equipped with smart devices, i.e., U =
{u1, u2, · · · , uK}, where K is the number of users. The platform is responsible
to recruit some users to collect observations of event occurrences. For sake of
describing the locations of events and users, we partition the whole detected area
into fine-grained grids with equal size (e.g., a square of 200 m× 200 m). The set
of all grids is denoted by G = {g1, g2, · · · , gN}, where N is the number of grids.
We use a Boolean variable Xn to denote whether there is an event occurring in
grid gn. Thus, the ground truth of event occurrences in the whole area can be
expressed as X = {Xn ∈ {0, 1},∀1 ≤ n ≤ N}.

As users are mobile, we consider the trajectory of each user during the period
of event detection is reported to the platform at the beginning. The trajectory
of user uk,∀1 ≤ k ≤ K can be denoted by a set of grids, i.e., Gk ⊆ G, as shown
in Fig. 1. If user uk is selected as a participant by the platform, all the grids
in Gk will be detected by uk. The set of observations collected by uk can be
represented by Dk = {Dk,n ∈ {0, 1},∀gn ∈ Gk}, where Dk,n = 1 means an event
is detected by uk in grid gn. In addition, some costs are paid by participants,
like power consumption and human-device interaction. We denote the cost of
user uk participating in event detection is ck.

Unreliable Users. In our work, we consider unreliable users, who may report
wrong observations to the platform, caused by device hardware, sensing contexts,
or user experience. Thus, the observations of users are uncertain, even given
the ground truth of event occurrences. To characterize the stochastic nature of
detection results collected by users, we model each user is associated with a
certain level of detection accuracy, denoted by a matrix of probabilities, i.e.,

Pk =
[
pTk 1 − pTk
pFk 1 − pFk

]
. (1)
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Here, pTk and pFk respectively represent the true-positive and false-positive detec-
tion probabilities, i.e.,

pTk = Pr(Dk,n = 1|In = 1),∀1 ≤ n ≤ N,

pFk = Pr(Dk,n = 1|In = 0),∀1 ≤ n ≤ N.

The detection probability matrix of each user is different and can be effectively
estimated from the historical detecting records by the EM algorithm proposed
in [21,31]. As it is not the focus of our work, we assume that the detection
probabilities of all users are known by the platform for simplicity.

Fig. 1. Illustration of our collaborative mobile crowdsensing system model. Some users
are recruited to collect observations along their trajectories for event detection. Differ-
ent users have different accuracies represented by detection probabilities, while each
grid is associated with a random variable to characterize the uncertainty of event
occurring inference based on collected observations.

User Recruitment. In this work, we consider the platform sequentially recruits
users, unless the total costs of recruited users exceed a given budget. Note that
observations are collected once a user is recruited, and then the platform con-
tinues recruiting the next one. We use Ik ∈ {0, 1} to indicate whether user
uk is recruited or not, and denote I = {Ik ∈ {0, 1}, 1 ≤ k ≤ K}. Moreover,
we denote Dn as the set of observations collected in grid gn by all recruited
users, i.e., Dn = {Dk,n|Ik = 1 and gn ∈ Gk,∀1 ≤ k ≤ K}, and we denote
D = {Dn,∀1 ≤ n ≤ N}.

Given the set of recruited users indicated by I and their observations D, we
define a realization φ � {(uk,Dk)}, indicating to what extent various users are
recruited and their observations are collected. In addition, we use Φ to denote
a random realization, in which the value of I is not determined. Then, the
probability distribution over realization φ can be calculated as Pr(Φ = φ) =∏

Ik=1 Pr(Φ(uk) = φ(uk)), where φ(uk) � Dk. After a user is recruited by the
platform, the set of observations collected so far is updated, which is repre-
sented by a partial realization ψ. We define dom(ψ) representing the recruited
users given a partial realization ψ, i.e., dom(ψ) = {uk|∃(uk,Dk) ∈ ψ}. A partial
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realization ψ is consistent with a full realization φ (denoted by φ ∼ ψ), if Dk is
the same for all uk ∈ dom(ψ). Moreover, ψ is called a subrealization of ψ

′
, if ψ

and ψ
′
are both consistent with φ and dom(ψ) ⊆ dom(ψ

′
).

Detection Accuracy. Given the observations collected by participants in grid
gn, whether there is an event occurring in gn can be estimated. We use a random
variable X̂n to denote the estimation, which is associated with a probability
distribution P (X̂n|Dn) = Pr(X̂n = 1|Dn). When a new observation Dk,n in
grid gn is reported by user uk, the probability can be updated according to the
Bayesian rule [24] as

P (X̂n|Dn ∪ Dk,n) = Pr(X̂n = 1|Dn ∪ Dk,n) (2)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pTk · P (X̂n|Dn)
pTk · P (X̂n|Dn) + pFk · (1 − P (X̂n|Dn))

, if Dk,n = 1,

(1 − pTk) · P (X̂n|Dn)
(1 − pTk) · P (X̂n|Dn) + (1 − pFk) · (1 − P (X̂n|Dn))

, if Dk,n = 0.

Note that the Bayesian rule can be applied here because we assume the detection
probabilities of users are independent from each other.

We denote the joint probability distribution over the discrete-valued random
vector X̂ = [X̂1, X̂2, · · · , X̂N ] as P (X̂). With the observations collected in all
grids, there exists

P (x|D) = Pr(X̂ = x|D) =
N∏

n=1

Pr(X̂n = xn|Dn), (3)

where x = {x1, x2, · · · , xN} and xn ∈ {0, 1},∀1 ≤ n ≤ N .
The fine-grained detection accuracy of the whole area can be measured by the

reduction of the uncertainty of estimations X̂ in all grids, given all observations
D collected by recruited users. Specially, Shannon entropy [21] is a commonly
used criterion to measure the uncertainty of random variables. Given the joint
probability distribution of X̂, its entropy can be calculated as

H(X̂|D) = −
∑
x

(P (x|D) · log P (x|D))

= −
∑
x

[
N∏

n=1

Pr(X̂n = xn|Dn) ·
N∑

n=1

log Pr(X̂n = xn|Dn)

]

=
N∑

n=1

⎡
⎣−

∑
xn∈{0,1}

Pr(X̂n = xn|Dn) · log Pr(X̂n = xn|Dn)

⎤
⎦

=
N∑

n=1

H(X̂n|Dn). (4)

Then, the entropy reduction obtained by the observations D is H(X̂)−H(X̂|D).
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3.2 Problem Formulation

In this work, we consider the problem that how the platform recruits a proper
subset of unreliable users given a fixed budget constraint, aiming to optimize
the fine-grained detection accuracy of the whole area. Given the system model
built in the last subsection, the problem can be formally formulated as follows,

max
I

f(I, Φ) (5)

s.t.
∑

uk∈U
ck · Ik ≤ η,

Ik ∈ {0, 1},∀1 ≤ k ≤ K,

where f(I, Φ) � E[H(X̂)−H(X̂|D)], representing the expectation of the entropy
reduction obtained by recruiting users indicated by I, and η is the budget on the
total costs of recruited users.

This problem is a stochastic 0-1 integer programming problem. We prove its
NP-hardness in Theorem 1.

Theorem 1. The user recruitment problem with a fixed budget is NP-hard.

Proof. The decision version of this problem is that given a set of users and their
trajectories, whether a subset of users can be found to achieve a given detection
accuracy requirement, and the total costs of the users are no larger than η.

Then, we prove the NP-hardness of our problem by reducing a classical NP-
hard problem, vertex cover problem [2], to our problem in polynomial time.
An instance of the decision version of the vertex cover problem is, given an
undirected graph G = (V,E), whether a subset of n vertexes V

′ ⊆ V can be
found, such that for ∀uv ∈ E, u ∈ V

′ ∨ v ∈ V
′
exists.

Next, we construct an instance of our problem, and show that the instance
of the vertex cover problem can be transformed to the instance of our problem.
We transform vertex set V and edge set E into the set of users U and grids G,
respectively. For ∀uv ∈ E, the corresponding grid is included in the trajectories of
the users corresponding to u and v. For each user uk ∈ U , we set pTk = 1, pFk = 0,
and ck = 1. The detection accuracy requirement is set as

∑
gn∈G H(X̂n|Dn) = 0.

Thus, as long as grid gn is included in the trajectory of a recruited user, there
exists H(X̂n|Dn) = 0. Also, we set η = n. Then, the instance of our problem is
equal to select n users, the union of whose trajectories cover all grids.

Now, a solution of the instance of the vertex cover problem can be trans-
formed to the solution of the instance of our problem. Specially, if the corre-
sponding users in U for each u ∈ V

′
are recruited (denoted by U ′

), the detection
accuracy requirement can be achieved, as any grid is included in the trajectories
of at least one user in U ′

.
Thus, any instance of vertex cover problem is polynomial-time reducible to

an instance of our problem. As vertex cover problem is NP-hard, we prove that
our problem is NP-hard as well.
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Unfortunately, there does not exist a polynomial-time algorithm to solve
the user recruitment problem, unless P = NP. In the following, we design an
adaptive greedy algorithm, which is proved to achieve a constant approximation
ratio guarantee.

3.3 Preliminaries

In this subsection, we present the definitions of two important properties:
adaptive monotonicity and adaptive submodularity, which are generalizations of
monotonicity and submodularity [19] to adapt random realization. If the objec-
tive function of a stochastic 0-1 integer optimization satisfies these two proper-
ties, a good performance with a constant approximation ratio can be achieved
by conducting an adaptive greedy algorithm.

Definition 1 (Conditional Expected Marginal Benefit [6]). Given a par-
tial realization ψ and an item e, the conditional expected marginal benefit of e
conditioned on ψ is

Δ(e|ψ) = E [F (dom(ψ) ∪ {e}, Φ) − F (dom(ψ), Φ)|Φ ∼ ψ] ,

where the expectation is computed with respect to p(φ|ψ) = Pr(Φ = φ|Φ ∼ ψ).

Definition 2 (Adaptive Monotonicity [6]). A function F : 2E × OE → R is
adaptive monotone with respect to distribution p(φ) if, for any partial realization
ψ and for any e ∈ E, we have

Δ(e|ψ) ≥ 0.

Definition 3 (Adaptive Submodularity [6]). A function F : 2E × OE →
R is adaptive submodular with respect to distribution p(φ) if, for any partial
realization ψ and ψ

′
, where ψ is a subrealization of ψ

′
(i.e., dom(ψ) ⊆ dom(ψ

′
)),

and for any e ∈ E \ dom(ψ
′
), we have

Δ(e|ψ) ≥ Δ(e|ψ′
).

4 Adaptive Greedy Algorithm

In this section, we first propose an adaptive greedy algorithm for the user recruit-
ment problem, and then theoretically prove that the performance of our algo-
rithm achieves a constant approximation ratio guarantee.

4.1 Algorithm Design

The basic idea of designing the algorithm is to greedily select the user, who
achieves the most entropy reduction and has the least cost at the same time.
Specially, users are sequentially recruited according to the following rule,

uk∗ = arg max
uk

Δ(uk|ψ)
ck

, (6)
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where Δ(uk|ψ) = E[H(X̂|D) − H(X̂|D ∪ Dk)], denoting the expectation of the
entropy reduction obtained by observations collected from uk, given partial real-
ization ψ. As observations Dk are unknown before uk is recruited, the expecta-
tion can be computed by considering any possible value of Dk and its probability
respectively, i.e.,

Δ(uk|ψ) = E

⎡
⎣ ∑

gn∈Gk

(H(X̂n|Dn) − H(X̂n|Dn ∪ {Dk,n}))

⎤
⎦

=
∑

gn∈Gk

E[H(X̂n|Dn) − H(X̂n|Dn ∪ {Dk,n})]

=
∑

gn∈Gk

[Pr(Dk,n = 1) · ΔH(X̂n|Dk,n = 1)

+ Pr(Dk,n = 0) · ΔH(X̂n|Dk,n = 0)]. (7)

Here, Pr(Dk,n = 1) = Pn · pTk + (1 − Pn) · pFk, and Pr(Dk,n = 0) = Pn · (1 − pTk) +
(1 − Pn) · (1 − pFk).

The details of our proposed adaptive greedy algorithm for user recruitment
are illustrated in Algorithm1. We first initialize the probability distribution of
each grid as uniform distribution without any priori information in line 1. Line 3
to 15 are repeatedly executed to sequentially recruit users, according to the rule
in (6). Observations are collected once a user is recruited as shown in line 9, and
then the probability distribution of each grid within the trajectory is updated
according to (2). If the budget constraint cannot be satisfied by recruiting any
user left, the algorithm ends. The time complexity of our algorithm is O(K2N).

4.2 Optimization Analysis

Theorem 2. Let Io indicate the set of recruited users returned by Algorithm1,
and I∗ indicate the set of recruited users which achieves the maximal entropy
reduction. Then, for any budget η, we have

f(Io, Φ) ≥ (1 − 1/e)f(I∗, Φ) (8)

Proof. First, we define function f̂({(uk,Dk)}) = H(X) − H(X̂|D), which is
monotone submodular as shown by Krause and Guestrin [12]. Obviously, there
is f(I, φ) = f̂({(uk,Dk)|Ik = 1, φ(uk) = Dk}) under realization φ.

Then, we prove this theorem, by proving f is adaptive monotone and adaptive
submodular. Adaptive monotonicity is readily proved as f(·, φ) is monotone for
each φ. To prove adaptive submodularity, we aim to show Δ(uk|ψ′ ≤ Δ(uk|ψ)
for any ψ,ψ

′
such that ψ ⊆ ψ

′
and any uk /∈ dom(ψ

′
). We define a coupled

distribution p over pairs of realizations φ ∼ ψ and φ
′ ∼ ψ

′
such that φ(uk) =

φ
′
(uk) for all uk /∈ dom(ψ

′
). Formally, p(φ, φ

′
) =

∏
uk∈U\dom(ψ) Pr[Φ(uk) =

φ(uk)] if φ ∼ ψ, φ
′ ∼ ψ

′
, and φ(uk) = φ

′
(uk); otherwise, p(φ, φ

′
) = 0. Next, we

calculate Δ(uk|ψ′
and Δ(uk|ψ) using p as follows,
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Algorithm 1. Adaptive Greedy User Recruitment Algorithm
Input: A set of users U , detection probabilities of each user Pk, cost of each user ck,

budget η.
Output: A set of recruited users indicated by I.
1: Ik = 0, V ← ∅, ψ ← ∅, P (X̂n) = 0.5;
2: while

∑
uk

ck · Ik < η and U \ V �= ∅ do
3: for each uk ∈ U \ V do
4: Calculate Δ(uk|ψ) according to (7);
5: end for
6: Select uk∗ = arg maxuk∈U\V

Δ(uk|ψ)
ck

;

7: if
∑

uk
ck · Ik + ck∗ ≤ η then

8: Ik∗ = 1;
9: Collect observations Dk∗ ;

10: ψ ← ψ ∪ {(uk∗ , Dk∗)};
11: for each gn ∈ Gk∗ do
12: Update P (X̂n) according to (2);
13: end for
14: end if
15: V ← V ∪ {uk∗};
16: end while
17: return I;

f(dom(ψ
′
) ∪ {uk}, φ

′
) − f(dom(ψ

′
), φ

′
) = f̂(ψ

′ ∪ {(uk,Dk)}) − f̂(ψ
′
)

≤ f̂(ψ ∪ {(uk,Dk)}) − f̂(ψ)
= f(dom(ψ) ∪ {uk}, φ) − f(dom(ψ), φ),

where the inequality holds due to the submodularity of f̂ . Thus, we have

Δ(uk|ψ′
) =

∑
(φ,φ′ )

[
p(φ, φ

′
) · (f(dom(ψ

′
) ∪ {uk}, φ

′
) − f(dom(ψ

′
), φ

′
))

]

≤
∑

(φ,φ′ )

[
p(φ, φ

′
) · (f(dom(ψ) ∪ {uk}, φ) − f(dom(ψ), φ))

]

= Δ(uk|ψ).

According to Theorem 5.2 in [6], if a function f is adaptive monotone and
adaptive submodular, and π is a greedy policy, then for any policy π∗, there
exists f(π) ≥ (1 − 1/e)f(π∗). Thus, we can conclude that

f(Io, Φ) ≥ (1 − 1/e)f(I∗, Φ).

5 Performance Evaluation

In this section, we evaluate the performance of our proposed adaptive greedy
algorithm (marked as AG in figures) by conducting comprehensive simulations.
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5.1 Methodology and Setups

In our simulations, we compare our algorithm with three greedy-based baseline
algorithms, which are illustrated in the following:

1. Random Algorithm (RD). Users are randomly selected by the platform, until
the budget could not be satisfied if any one more user is recruited.

2. User-Greedy Algorithm (UG). This algorithm sequentially selects users with
the most observations per cost, i.e., |Gk|/ck, under the budget constraint.

3. Grid-Greedy Algorithm (GG). This algorithm sequentially selects users
with the highest accumulated entropy of all grids past through, i.e.,∑

gn∈Gk
H(X̂n).

Three metrics are employed to measure the performance achieved by our
proposed algorithm and these three baselines. First, we compare the entropy
achieved given the observations of recruited users selected by different algo-
rithms, i.e., H(X̂|D). Then, we employ two criterions, precision and recall, to
measure the accuracy of event inference achieved by different algorithms. We
infer there is an event occurring in grid gn if P (X̂n|Dn) ≥ 0.8. If ground truth
Xn = 1, then we consider the event is accurately inferred. Otherwise, an event
is detected by mistake, or it is not found. Specifically, precision is calculated as
the ratio between the number of accurately detected events and the number of
estimations with P (X̂n|Dn) ≥ 0.8, while recall is calculated as the ratio between
the number of accurately detected events and the number of events.

The default setting of all parameters in our simulations is illustrated as fol-
lows. All simulations are performed on a square area divided into 20 ∗ 20 grids
(i.e., N = 400). Events randomly occur in 40 grids of them. There are 500 collab-
orative users in the system. For each user uk, the true-positive and false-positive
detection probabilities are randomly generated within [0.5, 1] and [0, 0.5] respec-
tively, and cost ck is uniformly distributed between $0 and $5. We limit the upper
bound of the number of grids past by a user as 10. To generate the trajectory
of a user, we first randomly choose a grid as the starting point. Next, the user
may stay in the grid or move towards any direction1. For each grid, P (X̂n) is
initialized as 0.5. The default value of budget is set as 400. All simulation results
are the average of 20 runs.

5.2 Performance Comparison

In this subsection, we evaluate the performance achieved by our adaptive greedy
algorithm and the three baselines, by varying the number of users, the budget,
and the number of events.

The performance achieved by different algorithms, when the number of users
varies from 400 to 800, is plotted in Figs. 2, 3, and 4, respectively. We can find
that generally the more users available in the system, the better performance
1 We consider there are eight directions: northward, southward, westward, eastward,

northwestward, northeastward, southwestward, southeastward.
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Fig. 2. Entropy vs. num-
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Fig. 5. Entropy vs. bud-
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Fig. 6. Precision vs. bud-
get.
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Fig. 7. Recall vs. budget.

achieved by each algorithm. Apparently, our algorithm outperforms the base-
lines in terms of the three metrics, no matter how many users there are. The
user-greedy algorithm performs secondly, better than the other two baselines,
because users with more observations per cost are recruited. When there are 700
users, entropy achieved by our algorithm is 15% lower than the user-greedy algo-
rithm, and precision and recall are 5.2% and 8.3% higher than the user-greedy
algorithm, respectively.

In Figs. 5, 6, and 7, we evaluate the performance achieved when the budget
varies from 200 to 1000. Intuitively, the more budget is provided to recruited
users, the higher detection accuracy can be achieved, while the marginal incre-
ment is reduced. We can find that our algorithm outperforms the baselines,
except achieves a little lower precision than the user-greedy algorithm when the
budget is less than 800. It may be caused by recruiting users with low detec-
tion accuracy, who report wrong observations in grids without events occurring.
Specially, when budget is 200, our algorithm obtains 12% and 27% higher recall
than the user-greedy algorithm and the grid-greedy algorithm, respectively.

We also vary the number of events from 10 to 50, to compare its impact on
the performance of different algorithms, as shown in Figs. 8, 9, and 10. It can be
found that precision achieved by the four algorithms increases when there are
more events occurring, as the number of events detected by mistake deceases.
On the other hand, entropy and recall have no obvious variation trend with
the increase of number of events. Specially, when there are 40 events, entropy
achieved by our algorithm is 12.5% and 17.3% lower than the user-greedy algo-
rithm and the grid-greedy algorithm.
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Fig. 8. Entropy vs. num-
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Fig. 10. Recall vs. num-
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6 Conclusions

In this work, we have proposed a new approach for accuracy-guaranteed event
detection via collaborative mobile crowdsensing with unreliable users. We first
bridge the relationship between the uncertainty of event detection given observa-
tions of recruited users and the unreliability of recruited users, by building prob-
abilistic models and applying the Bayesian rule. Then, leveraging the adaptive
monotonicity and the adaptive submodularity, we propose an adaptive greedy
algorithm for user recruitment, which is rigorously proved to achieve (1 − 1/e)-
approximated performance. Extensive simulations are performed, whose results
show that our algorithm outperforms the baselines in terms of achieving low
entropy and high detection accuracy under different settings. When the budget
is very limited, e.g., 200, our algorithm achieves at least 12% higher detection
accuracy than the baselines.
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