)

Check for
updates

A Decentralized and Anonymous Data
Transaction Scheme Based on Blockchain
and Zero-Knowledge Proof
in Vehicle Networking
(Workshop Paper)

Wei Ou®™?, Mingwei Deng, and Entao Luo

Hunan University of Science and Engineering, Yongzhou, China
ouweil978430@163. com

Abstract. Data transaction in internet of vehicles is a transaction occurs
between vehicle owner and data buyer. Blockchain is a new technology that
brings decentralized ledger system for user, which means users could make
payment without the third party. There are several projects combined internet of
vehicles and Blockchain, however, none of them realize a trustworthy anony-
mous data transaction. In this paper, we first propose the concept of Super
Nodes to guarantee data authenticity, then we construct the anonymity for the
transaction base on zero-knowledge Succinct Non-interactive Argument of
knowledge (zk-SNARKSs) and DAP from Zerocash. Moreover, a smart contract
is deployed for mutual benefits. Simulation experiment shows this scheme is
practical.

Keywords: Internet of vehicles - Blockchain - Zero knowledge -
Smart contract

1 Introduction

In recent years, with continuous growth of car ownership, road carrying capacity has
reached saturation in many cities, and traffic safety, travel efficiency, and environmental
protection have become increasingly prominent. As an important field of in-depth
integration of informatization and industrialization, internet of vehicles (IoV) is of great
significance to promote integration and upgrade of the automobile, transportation,
information and communication industries, and reshape of relevant industrial ecology
and value chain systems.

Blockchain is a new technology that first proposed by bitcoin [1]. It describes a
decentralized ledger without participation of the third party. In such ledger, it cannot be
tampered once data is confirmed. That is achieved by a novel consensus mechanism,
called Proof of Work (PoW), and timestamp server. PoW describes a safe accounting

Supported by the construct program of applied characteristic discipline in Hunan University of
Science and Engineering.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 712-726, 2019.
https://doi.org/10.1007/978-3-030-30146-0_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_48&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_48&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_48

A Decentralized and Anonymous Data Transaction Scheme 713

system that solves the Byzantine Problem by introducing a computing power competition
of distributed nodes to ensure data consistency and ledger consensus. The node who wins
the competition will broadcast a “block” in whole network, which contains all transac-
tions he collects and a timestamp to avoid double spending. After more than 10 years of
development, consensus mechanisms in Blockchain has from the beginning of a single
POW into Proof of gaining (PoS), Delegated Proof of Stack (DPoS), Practical Byzantine
Fault Tolerance (PBFT), and other common mechanism occurring together. Moreover,
Ethereum introduced smart contracts for Blockchain in 2014, which are Blockchain-
based programs that directly control digital assets [2]. Concretely, a smart contract is a
computer program that automatically enforces contract terms, is deployed on a shared,
replicated ledger. It could maintain its status, control its assets and respond to incoming
external information or assets. The digital form means that the contract has to be written
into computer-readable code. As long as the participations agree, the rights and obli-
gations established by the smart contract are performed by a computer or computer
network. And all these agreements and its realization would be recorded in Blockchain.

There are several projects that combined IoV and Blockchain, such as Smartcar-
chain and Carblock. They expect that Blockchain and its decentralized characteristic
could return the data ownership to data producer, general speaking, the vehicle owners,
which means they can freely dispose those data that collected by their vehicles. It gives
users an incentive to collect more data. And the more data users collect, the more
valuable data are. Automotive and transportation companies are all interested in these
data, because they can be analyzed to build better, more targeted products and services,
thus earning more profits. This kind of demand for data makes data transaction
important. Carblock proposed a data transaction method through smart contract,
eliminating the participation of the third party [3]. However, such a method requires
buyer to deploy two smart contracts for verifying data and transaction. That may not
convenient to a buyer.

Moreover, the anonymity is a feature that users care about. In 2014, based on
Bitcoin system, Zcash [4] proposes a new scheme to make an anonymous payment in
blockchain system by using zero knowledge proof. This scheme realizes strong
anonymity for a payment in Blockchain. It brings us to do research in anonymity of
data transaction in IoV, however, there has been no relevant research so far.

In this paper we propose a decentralized anonymous data transaction scheme for
vehicle networking based on Blockchain. This scheme allows a data buyer to buy the
data that collected by vehicle sensors from a seller. Concretely, it achieves two goals:
(i) decentralization: there is no third party in our transaction; (ii) anonymity: transaction
participants and relevant information (including transfer amount) are invisible to oth-
ers; To do this, we provide a construction of the scheme and design a simulation
experiment to test its performance.

The rest of this paper is organized as follow. Section 2 is an overview of our
scheme, we describe the concept of Super Nodes and main steps of our scheme; Sect. 3
provides technical background including zk-SNARKs and DAP scheme; Sect. 4 gives
the formal construction of our scheme; Sect. 5 shows the result of simulation experi-
ment; last, we summarize our contribution and discuss the future work.

714 W. Ou et al.

2 Overview

Our scheme is an extension based on Zerocash, which is a blockchain that supports
anonymous payment. It describes such a system: every node in the system could
deposit their base currency (e.g., bitcoin) in an escrow to mint a coin in Zerocash
ledger, this new coin is bound to the address public key of the node. The minting
process will generate some secret values, only someone who knows the corresponding
address private key and some secret values can use it; to use the coin, the node who
owns the address private key and the secret values will broadcast a transaction: |
“destroy” my old coin to mint two new coins that one of them or both of them are
bound to the target address public key, which is bound to the receiver, and the total
value of two new coins is equal to the value of the old coin; besides, in order to avoid
additional infrastructure and assumption, the transaction contains a ciphertext of the
secret values of new coin, which is encrypted by receiver’s encryption public key;
lastly, the coin receiver scans the transaction in the ledger and use his encryption
private key to decrypt the ciphertext until he finds the transaction for him. Then, he can
use the coin with his address private key and the secret values he gets from the ledger.
This system achieve anonymity by introducing zk-SNARKSs, which is a cryptology that
allows anyone check a proof of a statement in a short time (we show details in
Sect. 3.1).

We realize such a system could use for the data transaction in vehicle networking.
Every buyer and seller can join such a system by deposit any digital currency to an
escrow, thus achieving the goal of anonymous transaction. However, this transaction is
just a currency transfer, it only meets the requirement for sellers rather than mutual
benefit. Namely, this system cannot guarantee that a buyer obtains the data he wants.
To solve the problems, we construct the concept of Super Nodes.

2.1 Super Nodes

Super Nodes are some nodes that run by some trusted third party, they have all function
of normal nodes such as transaction broadcasting, transaction check and consensus
reaching, meanwhile they also have some special functions.

e Data checking and storage. A vehicle owner could upload data to the Super Nodes
through networking protocol interface from corresponding vehicle sensor, note that
these data are encrypted by data encryption public key that the hardware generated,
which guarantee that the Super nodes can’t “see” these data. When a Super Node
receive the data, it will verify its authenticity by checking if they come from vehicle
sensors, then storages and compresses them if verify success. This function enables
Super Node to become a de-centralized server, and data in server are authentic.

e datalD generating. After the process of data check and storage, every Super Node
will generate a datalD for the data and a cyphertext of data uploader’s address
public key (encrypted by an encryption public key). datalD is a hash of corre-
sponding data and encrypted by the uploader’s encryption public key (note this is a
key pair different from data encryption key), due to that every Super Node processes
the same procedures, different Super Node will generate same datalD if they

A Decentralized and Anonymous Data Transaction Scheme 715

received same row data. Consequently, they can make a consensus through Prac-
tical Byzantine fault tolerance [5] among all Super Nodes. After that, the datalD is
broadcasted to whole Blockchain system, to make the consensus that append it in
the public ledger. In this way, every buyer could verify the dataID for confirming
the authenticity of data by simply checking the public ledger.

e Data retrieval. Anyone in the system can get the encryption of data by the cor-
responding datalD from Super Nodes. However, only the one who owns data
encryption private key could get the origin data. Note that there is no constructed of
private communication channel such as that a seller sends the data to a buyer
individually, therefore we don’t have to add additional infrastructures or worry
about being eavesdropped.

2.2 Steps

With Super Nodes, which we show function component in Fig. 1, a seller could upload
his data, and a buyer could confirm the authenticity and get the data. However, this is
still not enough to make an anonymous data transaction, because the data is encrypted
by the seller’s data encryption public key, the buyer must to know the data encryption
private key for getting the data.

Super Nodes

Data Verity and

datalD Generating Data Retrieval
Storage

Fig. 1. Function of Super Nodes

So far, we have converted the issue that money to data to the issue that money to
private key. So how can we make the money-to-key transaction in Blockchain? We
find a solution: Hashed-Timelock Contract (HLTC) [6]. HLTC is a technology used for
cross-chain payment. It requires the payer to set a smart contract about a cryptographic
puzzle (usually is a hash value of sha256 function), anyone trigger the contract and
solve the puzzle (e.g., support the preimage of a hash value) could get the money that
the payer deposit to an escrow. The key point of HLTC is make sure only the recipient
knows the answer of the puzzle.

With Super Nodes and HLTC, we can finally extend Zerocash system to make an
anonymous data transaction. Here, we show main steps of data transaction; algorithms
construction is in Sect. 4.

716 W. Ou et al.

Stepl: Info Sending. If a buyer wants to buy a seller’s data, the seller should firstly
send some information to the buyer. Which including (i) datalD; (ii) hash of data
decryption private key. The buyer checks datalID in the ledger. If it does exist in the
ledger, the buyer confirms the authenticity of data. But he cannot get the data imme-
diately, because the data is encrypted and he don’t know the decryption key. The hash
is a required item for smart contract deployment after coin transfer.

Step2: Anonymous Payment. The buyer now needs deposit corresponding amount of
digital currency for data in escrow to mint a coin A. After that, he mints another coin B
that is bound to the receiver’s address public key and transfer the value of coin A to
coin B. Next, we modify the origin scheme of Zerocash: we broadcast the transfer of
coin value but we don’t broadcast the ciphertext of the secret values of coin B.

Step3: Smart Contract. So far, the seller still doesn’t get the coin because he doesn’t
know the secret value and the buyer doesn’t get the data because he doesn’t know the
data encryption private key. So, the buyer first encrypts the secret value of coin B by
the receiver’s encryption public key. Then, the buyer creates such a hash lock smart
contract using hash that he obtains in Stepl: if someone can support the pre-image of
the hash, which is the data encryption private key, he will get the ciphertext of the
secret values.

This is an overview of our construction, we show sketch in Fig. 2. If the smart
contract is trigged and completed, the buyer gets the encryption private key to decrypt
the data and the seller get the secret values to use the coin. So that, the data transaction
completed.

beginning
of

transaction

Key info sending

Anonymous payment

Smart contract

close of
transaction

Fig. 2. Steps of our data transaction

A Decentralized and Anonymous Data Transaction Scheme 717

3 Background

3.1 zKk-SNARKSs

We used the zero-knowledge Succinct Non-interactive Argument of Knowledge (zk-
SNARK) as our main cryptographic technology to make an anonymous data transac-
tion in this paper. In this section, we will give three components of zk-SNARKSs and we
refer the reader to [7, 8] for concrete protocol and implementation.

Arithmetic Circuit

An arithmetic circuit is consisted of wires with specific values and bilinear gate with
only addition and multiplication. Given a finite field F, an F-arithmetic circuit takes
input that are element in [F, and its gates output elements in [F. Considering we have an
input x € F" and an auxiliary input a € F", we have the definition of arithmetic circuit
satisfiability that analogous to the boolean case as follows:

Definition 3.1. The circuit satisfaction problem of a circuit C: F" x F" — F' with
bilinear gate is defined by the relation R¢ = {(x,a) € F* x F" : C(x,a) = 0'}; and its
language is Lc = {x € F" : 3a € F",C(x,a) = 0'}.

Note that a is what we want to obtain in zk-SNARKSs, which we called witness.

Quadratic Arithmetic Program

zk-SNARKSs leverages quadratic arithmetic programs (QAPs) [9] to converted any
arithmetic circuit to corresponding sets of polynomials. The main idea of QAPs is that
converting circuit to three basic sets of polynomials and a target polynomial, these
polynomials must meet such a fact: there is a product of three basic polynomials sets
and some coefficients could divide the target polynomial. We give the formal definition
of a QAPs below:

Definition 3.2. A quadratic arithmetic program of size m and degree d over T is a
tuple (K, B, C ,Z), where X, B, C are three vectors, each of them is m + 1 polynomials
in F=9"'[z], and Z € F[z] has degree exactly d.

And as we mentioned above, a QAPs induces a satisfaction problem:

Definition 3.3. The satisfaction problem of a size-m QAP (K, B,C, Z) is the relation
R(X.B,C,Z) of pairs (x,s) such that (i) x € F", s € F", and n<m; (ii) x; = s; for
i € [n|(i.e., x extends s); (iii) the polynomial Z(z) divided the following one:

(Ao(z) + 321y iAAi(2)) - (Bo(2) + o7 siBi(z)) — (Co(z) + Yo7 5iCilz)). We denote
by 5(1375,’@12) the language of R(A,E.é,z)'

So far, we have the definition of arithmetic circuit and QAPs. Due to that the QAPs
is a result of encoding arithmetic circuit, we can combine the Definitions 3.1, 3.2 and
3.3 to obtain a complete definition of QAP:

Definition 3.4. A QAP Q over field F consist of three sets of m + 1 polynomials A=
{ar(x)}, B = {bx(x)}, C = {cx(x)}, for k € {0...m}, and a target polynomials 1(x).
Suppose F is a function that takes as input n elements of F and output n’ elements, for a
total of N = n+n' I/O elements. Then we say that Q computes F if: (s, . ..,sy) € FV is

718 W. Ou et al.

valid assignment of F’s inputs and outputs, if and only if there exist coefficients
(SN415---,8m) sSuch that 1(x) divides p(x), where:

p(x) = (ao(x)+ ésk ~ak(x)> - (bo(x)+ ésk~bk(x)) - (co(x)—l- késk - ck(x)).

In other words, there must exist some polynomial h(x) such that h(x) - t(x) = p(x).
The size of Q is m, and the degree is the degree of t(x).

Verifiable Computation (VC)

A verifiable computation (VC) [10] for F-arithmetic circuit C: F* x F* — F' allows a
prover to generate a non-interactive proofs for the language L. using the public
parameters that generated by VC, and anyone can use another generated public
parameter to verify these proofs. Moreover, the verification process only requires a
short time. Concretely, a VC contains three set of polynomial-time algorithms:
KeyGen(), Compute() and Verify(). Below we defined the three algorithms:

e (EKr,VKr) — KeyGen (F , 1;*): The public key generation algorithm takes the
function F, which is exact F-arithmetic circuit C, and a security parameter /. as
inputs; Then it output a public evaluation key EKr and a public verification key VK.

e (y,m) < Compute(EKF,x): The proof computation algorithm takes evaluation key
EKp and x to output y «— F(x) and a non-interactive proof n for y’s correctness.

o b — Verify(VKp,x,n,y): The proof verification algorithm takes verification key
VKF, x and a proof &t as input. It outputs b =1 if y — F(x).

The three algorithms defined above are main part of VC scheme. Note that this
system that we defined is actually not public verifiable, the verification key VK should
be hidden in some designated verifier otherwise the scheme is vulnerable to attack. To
avoid such issue, we introduce the concept of Zero-knowledge Verifiable compu-
tation, which required the verifier learns nothing about the prover’s input beyond the
output of computation. Concretely, we change the proof computation algorithm
Compute() and the proof verification algorithm Verify().

e (n) « Compute(EKF,x,a) The proof computation algorithm takes evaluation key
EKp and (x,a) € Rc (see Definition 3.1) as input to output a non-interactive proof
7 for the statement x € L.

o 1« Verify(VKr, x, n) The proof verification algorithm takes verification key VKF,
x and a proof m as input to outputs b =1 if it is convinced that x € L.

With this change, evaluation key EKr and verification key VK could be public in
system, thus allowing anyone to check the proof ©. That is a very applicable scheme for
blockchain system, because it allows every node in the system to check a transaction
and thus making consensus in the chain. Such a scheme also referred to as a non-
interactive zero-knowledge proof. From these definitions, we give the properties that
zk-VC scheme should satisfy:

e Correctness. For any function F, and any input u to F, a honest prover could
always convince the verifier that he knows the witness a. Namely, if we run
(EKp,VKr) < KeyGen(F, 1*) and (n) < Compute(EKF, x,a), we will always get
1 — Verify(VKF, x, 7).

A Decentralized and Anonymous Data Transaction Scheme 719

Security. For any function F and any probabilistic polynomial-time adversary A,
Pr((it, 1) «— A(EFx,VKr) : x € Lc and 1 = Verify(VKr, t,)] < negl(1)".
Efficiency. KeyGen() is assumed to be a one-time operation whose cost is amor-
tized over many calculations, however, we required a cheaper Verify() than eval-
uating F.

3.2 Dap

The main payment scheme used in this paper is Decentralized Anonymous Payment
(DAP) scheme, which is proposed by Zerocash. As we described in Sect. 2, this is a
scheme making anonymity in a payment. Here, we provide basic components of
DAP. We refer the interested reader to [4] for complete scheme.

DAP scheme is consisted of a tuple of polynomial-time algorithms: Setup, Cre-

ateAddress, Mint, Pour, Receive.

1

2

3

Setup. This algorithm is executed by a trusted third party. It requires to input a
security parameter, then it will output a public parameter pp, which includes the
public knowledge of zk-SNARKSs (see Sect. 3.1).

CreateAddress. This algorithm is executed by users in the system. Each user can
generate at least one pair (apk, as), where ap = (addrp, pkey), and ag = (addrg,
skenc). Concretely, addrg, is a random number, and addry := PRF2(0)?, they are
an address key pair bound to the user; Encryption key pair (pk,,,., Skenc) is generated
based on a key-private encryption scheme [11], it is used for encryption. Note a user
may generate any number of key pairs.

Mint. This algorithm is executed by a payer. It requiresto input public parameter pp,
a coin value v, and a destination address public key addry, then it will outputs a
coin ¢ and a TX,,,. Here, we give concrete steps to mint a coin (i) the algorithm
generates three random value p,r,s; (i) the algorithm compute sn := PRF; (p),
k := COMM, (addry||p)” and cm := COMM;(v|[k). (iii) the algorithm outputs the
minting result: a coin ¢ := (addrpk7 v, P, 1,8, cm) and a mint transaction TX i, =
(v,k, s, cm). Note that anyone could verify if cm is a coin commitment of a coin
with value v by checking that cm := COMM;(v||k) is equal to cm and no one can
discern the coin owner or a serial number sn, because they don’t know the address
key addrpc and the secret value p. As before, TXmin, = (v, k,5,cm) is added in
ledger only by the payer deposits the correct amount of basecoin to escrow.
Pour. This algorithm is executed by a payer to spend a coin. This is an operation to
transfer the values of a set of input coins to another set of new output coins, the total
value of input coins is equal to the total values of the output coins. Suppose a payer

Negligible function.

PRF() is a pseudorandom function.

COMMY() is a statistically-hiding non-interactive commitment scheme, which satisfy the
verifiability: given ¢ := COMM,(s), one who knows r and s can verify that COMM,(s) is equal
to c.

720 W. Ou et al.

with address key pair (addr"’d addr”ld) wants to pay the coin ¢c?¢ = (addr”ld yold

pk ? pk)
pold pold sold cm@ld) to a recipient. To do this, the payer produces two new coins

ci” and c’ww targeted at two address public key addr"} and addr;"; with the value
meet V" + 3 =1° (note one of them is recipient’s address public key and
another may give value of O for hiding the concrete transfer amount); Take inputs as
public parameter pp, the Merkle-tree root rt, an old coin ¢, an old addresses secret
key addr%“, a authentication path path,,;, from cm®? to root rt, two new values V"
and V5", two new addresses public key addrgﬂv1 and addrgffl, and some transaction
information. For each i € {1,2}, the algorithm proceeds as follows: (i) the algo-

rithm generates three random value p7¢%, r" s7"; (ii) the algorithm computes

new ._ new new new new new new new f'l w new
k¥ := COMM sen (addrpk’, | pf) (addrpk,,, L PIEY Y sV em!)

(iii) the algorithm computes a zk—SNARKs proof 7 for the following NP statement:

old new

“Given a Merkle-tree root tt, serial number sn

new
cmy,

s and coin commitment cmy

old .new old

, I know coins ¢, cf new

, 5%, and secret key addry” meet:

a. The coins satisfy: for c@ it holds that k°“ = COMM,u (addr”ld [l p"]d> and

m?? = COMM,u (v || k%); Similarly for ¢t and 5"

b. The address secret key matches the public key: addr”ld PRF:gj;,,,d (0).

. old — sn old
c. The serial number is computed correctly: sn PRFa ddre (p)

d. The coin commitment cm®* appears as a leaf of a Merkle-tree with root tt.
e. The values added up: V!¢ + Vi = 4.

old

With all these processes, the algorithm outputs a transaction TXpe, = (rt sn°,

cm(?, cm4®”, info, n, Cy, C,), where C; is a ciphertext that is the encryption of the
plaintext (L P, e,) under pk

As before, TX,,, is rejected by the ledger if the serial number sn”“ appears in a
previous TX,,,,,, therefore avoiding double spending. Note to use a coin c;, the payer
must know following required items: value v;, three rand p;, r;, s; and the corresponding
address secret key addr.

new sJ‘IFW new new
1 .

(similar to C,); two new coins ¢, ¢}
old

enc

e Receive. This algorithm is executed by the recipient. Take a public parameter pp, a
pair of recipient key (apk,ask), and the current ledger, the algorithm scan the
transaction TX,,, in the ledger to find and decrypt the ciphertext C; (using his
skenc), thus obtaining the required secret values to use the coin.

Anonymity of DAP is mainly reflected in pour transaction, because of zk-SNARKS,
the payer doesn’t have to reveal the identity of both sides, transaction amount and
account balance in public. Moreover, the buyer can not trace the coin flow of the coin
he mints in pour transaction, because he doesn’t know the serial number of the coin.

A Decentralized and Anonymous Data Transaction Scheme 721

4 Construction of Decentralized and Anonymous Data
Transaction Scheme

In this section, we show how to construct a decentralized and anonymous data trans-
action scheme using DAP and smart contract. First, we define some basic notion and
notation for what we will use in the construction. Then, we will use them to construct
our algorithms.

4.1 Basic Notion and Notation

Payer. A payer is a node in Blockchain. We use payer to denote a data buyer. Namely,
the side that pays in payment. In construction, we sometimes use he or him for
convenience.

Recipient. A recipient is a node in Blockchain. We use recipient to denote a data
seller. Namely, the side that receives in payment. In construction, we sometimes use
she or her for convenience.

datalD. A datalD is generated by Super Nodes from data. Concretely, a datalD is
obtained by hashing the data and encrypt the result with uploader’s encryption public key.

ID. It contains a datalD and a cyphertext of uploader’s address public key.

Address. A user may join the system whenever they generate an address key pair
(addrp, addrg) and publishes the public key addry, in the system. The private key
addr is keep by the user to receive the coins sent to him. Note that a user can generate
any number of address key pairs.

Coins. A coin ¢ contains a coin commitment cm, a coin value v, a serial number s, and
a coin address addrp,. cm is a string generated by some cryptographic function (see
Sect. 3.2) and it will be appended to the ledger if coin ¢ is minted; v is the denomi-
nation of ¢, namely, the amount of the basecoins (e.g., bitcoin); s is a unique string
binding with the ¢ to avoid double spending; addryy is the address public key of coin
owner, representing who owns c.

Ledger. Our scheme is based on a digital currency system such as Bitcoin. Here, we
refer to basecoin as Basecoin. Our ledger L is a sequence of transaction and it’s append-
only. Moreover, it contains transaction of Basecoin and two types of new transaction.

A. It represents an adjustable security parameter to produce a set of global public
parameter pp.

Data Encryption Key. It contains (Epk7 Esk), where Epy is data encryption public key
used for encrypting the data, and E is data encryption secret key used for decrypting
the data.

Encryption Key. It is a key pair generated by key-private encryption scheme. It
consists of encryption public key pk,,. and encryption private key skey.

enc

Hash. We use hash to denote the hash function Hash256.

722 W. Ou et al.

New Transaction

e Mint. A mint transaction TX,,;,; is a statement: a coin with commitment cm and
value v is minted. It contains a coin commitment cm, a coin value v and two value k
and s. Namely, TX,; =: (cm, v, k,).

e Pour. A pour transaction TX,,, is a statement: an old coin is be “destroyed”, two
new coins is be minted and the value of old coin is transferred to the two new coins.
It contains a Merkle tree root rt, the serial number of old coin sn®?, two new coin
commitment cm{®” and cmj®”, and a proof 7 that prove the transaction initiator
owns the old coin, a public value. Note that at least one of cm|*” and cmj®” is
bound to the recipient’s address public key and the total value of the two coins
should equal to old coin. Namely, TX, =: (rt, sn”?, cm}®", cmj*", 7, info).

List. For given time T, there are three lists beyond the ledger as public knowledge:

e [DListy. This is a list for all ID generated by Super Nodes.

e cmListy. This is a list for all coin commitments appearing in mint and pour
transactions in Ly

e snListy. This is a list for all serial numbers appearing in pour transaction in L.

Note that ID contained in IDList; are not only required to make consensus in the
Super Nodes, but also in whole blockchain system.

Merkle Tree Overs Coin Commitment and datalD. For given time 7, there is an
Treer over cmlListyr and rty is its root. Besides, we use Path; to denote a valid
authentication path for leaf cm; with respect to rty.

4.2 Algorithms Construction

Our scheme is a tuple of polynomial-time algorithms (GenerateID, GetID,VerifyID,
Setup, CreateAddress, Mint, Pour, VerifyTransaction, Recieve) and a smart contract.
The algorithm details of DAP have showed in Sect. 3.2, here we only briefly
summarize.

e (datalD,Cy) < GenerateID (data, addrp, pk,,.). On input a data set, a addry and
a pk,,.. the algorithm computes the result of hash(data) and then outputs datalD,
which is a ciphertext that is encrypted with pk,,. on the result, and Cy is a
ciphertext that addry, encrypted using pk,,,..

¢ (dataID) «— GetID (IDListT,addrpk,skem.). On input an IDListy, a addry and a
Skene, this algorithm will decrypt every Cpi in IDListy using sk, to outputting
datalD that corresponding to his addrpy.

o (bl) « VerifylD(datalD, IDList7). On input a dataID and a IDListr, the algorithm
will scan IDListy, and outputs b1 = 1 if the datalD appears in the IDListr.

e (pp) < Setup(4). On input a security parameter A, the algorithm outputs a public
parameter pp, which contains public parameter for zk-SNARKS and some pseu-
dorandom values.

enc

A Decentralized and Anonymous Data Transaction Scheme 723

e (addry,addrg) — CreateAddress(pp). On input the public parameter pp, algo-
rithm outputs an address key pair addry, and addrg.

o (¢, TXmins) — Mint(pp7 v, addrpk). On input the public parameter pp, coin value v
and destination address public key addrpy, the algorithm outputs a new coin ¢ and a
mint transaction TX pnin;.

o (I, i TXpour) < Pour(pp, rt, ¢, addr%?, path,,,, cm®? Vi, Vo, addri",

addr3" , info). On input a public parameter pp, a Merkle tree root 1t, a coin co,

address public key addrf¢, a authentication path path,;; from commitment cm* to

an

root rt, two coin values Vi and 3", two new address pubic key addrj"| and

addr;ﬁg, and some transaction string info, the algorithm outputs two new coin c|*",
c5® and a pour transaction TX,s,.

e (b2) « VerifyTransaction (pp, TXumin/ TXpour, L). On input a public parameter pp,
a TXmin; or a TX,,0,- and a ledger Ly in time T, the algorithm outputs 52 = 1 if the
transaction is valid.

e (coinsSet) < Recieve (pp, addrpy, addrsk,LT). On input a public parameter pp, an
address key pair (addrpy, addrg) and a ledger Ly in time 7, the algorithm outputs a
set of coins coinsSet.

4.3 Smart Contract Construction

Our smart contract is a HLTC. In Pour, four random values (vf“”w7 pre, e, sf“?w) are
generated for a new coin c/*”, they are required items to use the coin (another required
item is addry, see algorithm Pour). However, in our algorithm, we didn’t reveal them
to recipient or public. Which means even if a TX,,, was broadcast by payer and
verified, the recipient still can’t get the coin that payer mints for her, because the payer
didn’t get data. Therefore, after a TX,,,, was broadcast, payer deploys a smart contract

in blockchain to get data. Here, we give the steps of the smart contract deployment.

1. Payer input two initial values: hash(Ey), C,, addrp. Where hash(Eq) is a hash
value of the data’s data encryption private key Eg, payer obtains it before the
payment (see Sect.2); C, is a ciphertext of the four random value
(vlf‘ew,plf‘ew,r?ew7s;’ew) that generated by payer in Pour and encrypt by pk,,. of
recipient.

2. Payer deploys such a contract: if someone could provide a preimage of hash(Eg),
the provider will be return C,; the preimage (i.e., Eg) will be encrypted by pk,,. of

payer, and be sent to payer.

enc

enc

This smart contract be triggered when someone input a preimage of hash(Eg),
namely, Eg. Obviously, because of the property of hash function, only recipient can
give the preimage, which means only recipient could get C,, and only recipient could
decrypt C,, because she is the only one who owns the decryption key sk,,.. Meanwhile,
E is sent to payer after encryption. So far, payer gets data encryption private key Eg,
he can download the encryption data from Super Nodes, and uses Eg to decrypt it, thus
obtaining the row data; As for recipient, with C,, she can get the secret values by

724 W. Ou et al.

decrypt C, using her sk,,., in this way, recipient finally get the coin that payer mints for
her, because she has all required items: four random values and addrg targeted at the
coin. We show the flow of smart contract in Fig. 3.

Fig. 3. Smart contract

We use asymmetric encryption in our smart contract to ensure safety. As we
describe above, all message be returned and sent are encrypt by the receiver’
encryption public key, which means even if the message is eavesdropped by a prob-
abilistic polynomial-time adversary, this adversary has probability Pr[successful
decryption] < negl.

5 Experiment

To test validity of our scheme, we design several experiments. First, we test the basic
algorithm of our scheme, including CreateAddress, Mint, Pour, smart contract and
GenerateID. Second, we give three different size of data to test the performance of
GeneratelD algorithm, because this algorithm’s performance with respect to the size of
data. Our code is written in java, and all of our experiments were conducted on same
machine (Inter Core i5-6300 @ 2.30 GHz with 12 GB of RAM).

Table 1 shows performance of specific algorithms in our scheme, and Table 2
shows performance of correspondent algorithms in Zcash. Similar to Zerocash, we
didn’t maintain the Merkle tree in our experiment, because that is not responsibility to
our algorithm. And note we generate a big result in every basic algorithm of Zerocash,
which brings big latency. In reality, the time consumption could be lower. Our smart
contract is self-triggered, concretely, we automatically input the preimage of data
encryption secret key’s hash.

A Decentralized and Anonymous Data Transaction Scheme

Table 1. Performance of our algorithm

Create address | Time | 360 ms
addry,, | 816B
addry | 947B

Mint Time |1.5 ms
Coin ¢ | 1068B
TX mine | 196B

Pour Time |6 min 1.2 s
TXpour | 2856B

SmartContract | Time |0.3 ms
Eq 846B

GenerallD Time |5.6s
data M

Table 2. Performance of

Zcash algorithm

Create address

Mint

Time
addrp
addrg,
Time
Coin ¢
Xinine

326.0 ms
343B
319B

23 us
463B
72B

Pour

time
t)(pour

2 min 2.01 s
996B6

725

Figure 4 shows performance of GenerateID with different size of data inputting. As
it shows, latency of our algorithm grows with the data size grows. Property of hash
function results in this performance, the latency will get lower if we change the way to

generate datalD.

performance of GeneratelD

350
300
250

@ 200

£

£ 150
100

50

oz

10mMB 50MB

dataSize

Fig. 4. Performance of algorithm GenerateID

726 W. Ou et al.

6 Conclusion

We propose a new data transaction scheme that brings decentralization and anonymity
for data sellers and data buyers. Concretely, our scheme enables the data transaction be
completed only with an information sending by seller and a smart contract deployment
by buyer, which is simple and convenient to both sides. Moreover, we introduce the
DAP scheme to provide anonymity for transaction, experiment shows that our scheme
has almost same performance as Zerocash, which means this is a practical scheme in
data transaction.

In the future, we want to improve the performance of our scheme. The first aspect is
simplifying transaction process such as eliminating the information sending step for
sellers. The second aspect is zk-SNARKS, it takes a long time to compute a proof for
each pour transaction, if we can shorten time of this part, we can give a more practical
scheme for users among IoV. Moreover, our scheme builds a verification relationship
(using zk-SNARKS) rather than trust relationship, which means we can’t avoid a failed
transaction caused by human behavior. The establishment of trust relationship in
system is our important research direction in future.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

2. Buterin, V.: A next-generation smart contract and decentralized application platform. white
paper (2014)

3. CarBlock: A global transportation data protocol with decentralized applications. white paper
(2018)

4. Sasson, E.B., Chiesa, A., Garman, C., et al.: Zerocash: decentralized anonymous payments
from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459—474. IEEE (2014)

5. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. OSDI, vol. 99 (1999)

6. https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949

7. Parno, B., Howell, J., Gentry, C., et al.: Pinocchio: nearly practical verifiable computation.
In: 2013 IEEE Symposium on Security and Privacy, pp. 238-252. IEEE (2013)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., et al.: Succinct non-interactive zero knowledge for a
von Neumann architecture. In: 23rd USENIX Security Symposium (USENIX Security 14),
pp. 781-796 (2014)

9. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct
NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 626-645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9_37

10. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable
computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 422-439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9.24

11. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566-582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

https://bitcointalk.org/index.php%3ftopic%3d193281.msg2224949#msg2224949
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-28914-9_24
http://dx.doi.org/10.1007/978-3-642-28914-9_24
http://dx.doi.org/10.1007/3-540-45682-1_33

	A Decentralized and Anonymous Data Transaction Scheme Based on Blockchain and Zero-Knowledge Proof in Vehicle Networking (Workshop Paper)
	Abstract
	1 Introduction
	2 Overview
	2.1 Super Nodes
	2.2 Steps

	3 Background
	3.1 zk-SNARKs
	3.2 Dap

	4 Construction of Decentralized and Anonymous Data Transaction Scheme
	4.1 Basic Notion and Notation
	4.2 Algorithms Construction
	4.3 Smart Contract Construction

	5 Experiment
	6 Conclusion
	References

