q

Check for
updates

A Platform Service for Passenger Volume
Analysis on Massive Smart Card Data
in Public Transportation Domain

Weilong Dingl’z(m) , Zhe Wang'~, and Zhuofeng Zhao'~

! School of Computer Science and Technology,
North China University of Technology, Beijing 100144, China
dingweilong@ncut. edu. cn
2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream
Data, Beijing 100144, China

Abstract. In current public transportation of modern cities, the passenger
volume analysis counts the bus passengers in multiple perspectives, and it is
significant to optimize the bus scheduling and evaluate transportation capacity.
On the smart card data of passengers taking buses, traditional solutions have
inherent limitations about long processing delay, inaccuracy result and poor
scalability. In this paper, the spatio-temporal correlation with business restric-
tions is considered, and an effective platform service for passenger volumes
analyses are proposed on massive smart card. Our service has been applied in
practical usage for three types of passenger volume, and holds minute-level
latencies on weekly data with nearly linear scalability in extensive conditions.

Keywords: Spatio-temporal data - Smart card data - Behavior analysis -
Passenger volume - Platform service

1 Introduction

Nowadays, smart cards solutions have been adopted extensively in urban environment,
and generate massive offline historical data [1]. The large data makes it possible for
official governors to achieve intelligent analysis [2]. In public transportation domain,
the passenger volume analysis counts the bus passengers in multiple perspectives. It is
a significant indicator to find hot spots in a city, optimize the bus scheduling, and
evaluate transportation capacity in the intelligent transportation system (ITS) [3].
Traditionally, the smart card data with typical spatio-temporal attributes are stored
in data warehouse or relational database after necessary data cleaning [4, 5], and the
passenger volume is achieved through statistic linear models. Most of those methods
are done by interactive SQL (structural query language) or predefined store procedure
on small data samples [4, 6]. However, it faces inherent limitations on massive spatio-
temporal data. (1) First, the executive latency is intolerable when the involved data size
is huge. With the simplified assumptions, traditional methods on small samples [7] only
achieve short-term predictive values for limited locations [8] (e.g., prediction for given
stations in a periodic five minutes). It suffers long time through database that large

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 681-697, 2019.
https://doi.org/10.1007/978-3-030-30146-0_46

http://orcid.org/0000-0002-9982-5488
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_46&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_46&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_46

682 W. Ding et al.

volume of data has to be centralized loaded and scanned many times during the query
execution. The I/O of such analyses even cost more time than that of computation itself
[9]. As a result, the release of the routine report for passenger volumes is always
delayed in metropolises. (2) Second, the analytical accuracy is low in practice because
the business spatio-temporal correlation has not been fully considered. Traditional
methods always focus on the holistic statistic characteristics to fit the historical
observations, and neglect specific passenger behaviors in temporal or spatial per-
spective. In fact, how to describe those behaviors restricts the accuracy essentially [10].
(3) Third, the analytical scalability during calculation is extremely poor when the data
size increases or the infrastructure updates. In either case, traditional methods have to
pursue higher-level hardware or software in “scale-up” to redeploy the applications
accordingly. It also implies a great deal of financial and man-power expenses.

In this paper, we propose a novel platform service for passenger volume analyses
on massive smart card data. The contributions can be summarized as follows. (1) Three
types of bus passenger volume, getting-on, getting-off and transfer, are defined by
business spatio-temporal characteristics. It is the necessary condition for the accurate
analyses. (2) On massive smart card data, each type of bus passenger volume is
efficiently achieved with horizontal scalability. Modeled as Hadoop MapReduce jobs,
the analyses procedure holds minute-level latencies on weekly data in extensive con-
ditions. (3) Available in a practical project of public transportation domain, our work
has brought benefits due to the visualization of the bus passenger volume.

This paper is organized as follows. Section 2 shows the background including
motivation and related works. Section 3 elaborates the platform service and the volume
analyses for multiple passenger behaviors. Section 4 quantitatively demonstrates
effects from the experiment and case studies in various conditions. Section 5 sum-
marizes the conclusion.

2 Background

2.1 Motivation and Assumption

Our work was initiated by Passenger Big Data Analysis Platform in Beijing. We
cooperated with E-hualu, one of the leader Chinese companies in intelligent traffic
domain, to deploy a bus scheduling system for more than 30 new night-bus lines in late
2014. The goal of this project is to optimize public transits through Big Data tech-
nologies to alleviate traffic jams, improve air quality, and bring regional integration
with peripheral Tianjin city and Hebei province.

In Beijing until the end of 2015, more than 30 thousand buses of nearly one thousand
lines adopted smart card readers and 44 million cards had been released to citizens,
which would generate 15 thousand records with about tens of gigabyte data daily. Such
data from buses has been accumulated day by day as massive historical data. As the data
unit, a record of smart card data is typical spatio-temporal union, and contains 13
attributes in Table 1 including entities, timestamps and spatial attribute-groups.

The regular business reports for bus service are released from our system to
evaluate the traffic management and passenger guidance in a macroscopic viewpoint.

A Platform Service for Passenger Volume Analysis 683

Table 1. The record structure of smart card data.

Attribute Notation Type
card_ID Identity of smart card Entity
line_ID Identity of bus line

bus_ID Identity of bus

begin_time Timestamp of getting-on Time
end_time Timestamp of getting-off
from_station_ID Identity of getting-on station Space
[from_station_name Identity of getting-on station

[from_station_longitude | Longitude of getting-on station
from_station_latitude | Latitude of getting-on station
to_station_ID Identity of getting-off station
to_station_name Name of getting-off station
to_station_longitude Longitude of getting-off station

to_station_latitude Latitude of getting-off station

For example, in rush hours the early warnings and vehicle dispatching could be made
for certain busy lines due to their too long departure frequency. Traditionally, such
historical data was processed periodically through data warehouse and statistic models
after its capture and storage, but the delay during the analysis is too long to endure. For
instance, such a monthly report of Beijing usually requires more than half a month to
complete. Accordingly, it is required to pursue efficient analyses solution, not only for
optimizing bus departure intervals or passenger on-board time, but also for the better
data management. That is the just motivation of our work.

In this paper, there are two assumptions.

First, a record must contain the timestamps of both getting-on and getting-off. If one
is excluded, it should be inferred by the other one before further processing [11, 12]. In
Beijing, there are two charge kinds due to the smart card readers on buses. One is charged
by travel counts and a card is read once in a trip at the getting-on time of passengers; the
other is charged by travel distances and a card is read twice in a trip at both getting-on and
getting-off times of passengers. All the data in this work was generated from the readers
of the latter type. It is a sound assumption because such charging is popular progres-
sively. For example, according to the official policies, all the buses in Beijing had
updated their readers for distance charging since December 12" 2014.

Second, the fallacious records have been eliminated in advance. Due to the
uncertain conditions of devices or storage, the raw data has two main defects. (1) The
temporal attributes among the records are inconsistent. For example, we do not know
whether 2001-01-01 or 2015-05-31 is the factual date if both values appear in the same
record. (2) The missing or illegal records bring business confusion. For example, a bus
may seem run too much time without any rest if the records in certain time are lost.
Therefore, low data quality is the inevitable obstruct for data analysis [13]. Here, we
employ dedicated data cleaning method [14] on massive spatio-temporal data to
guarantee temporal consistency and semantic legality.

684 W. Ding et al.

2.2 Related Work

As a hot topic in public transportation domain, the research about bus passenger
volume can be classified in three categories according to the involved technology.

Database is the widely used technology for bus passenger volume analysis. The
smart card data is maintained in the persistent storage, and the passenger volume is
calculated by interactive SQL or predefined store procedure [4]. Through geographical
database, Long et al. [6] uncovered the passengers’ commuting pattern in Beijing, and
compared their trips with the expensed time and geographical distance in different
perspectives. On GTFS (General Transit Feed Specification) data in database, Tao et al.
[10] demonstrated a multi-step method to examine the spatio-temporal dynamics of
travel behaviors among bus passengers. But those works only concern the limited data
instead of the holistic ones in wider time ranges. It would suffer long processing latency
due to the heavy IO of loading and scan during analytical processing [9].

Statistic model is also adopted for bus passenger volume prediction. In some time
intensive conditions, it can reduce the executive delay dramatically. During the short-
time prediction for passenger volume, such models rely on the characteristic of sam-
ples. On smart card data, Ma et al. [4] built trip probability models of involved stations,
and proposed DBSCAN joint algorithm to identify historical travel patterns and reg-
ularities. Zhou et al. [11] proposed OD (origin-destination) matrix to estimate public
passenger volume in probability view. Zhang et al. [7] proposed a Kalman filter model
to forecast short-term passenger volume on smart card data, vehicle location data and
station video data. The accuracy can hold well, but benefits on limited data samples in
practice. Moreover, as typical time series approaches, all these works above only
exploit time characteristics without spatial consideration. It makes it impossible to
exhaustively evaluate bus passengers’ behaviors.

Big Data technology is popular nowadays especially on large volume data in
scalable Cloud environment [15]. Hadoop ecology has been applied in the trans-
portation domain, with the help of highly utilized virtual resources. Through Hadoop
distributed file system, UrbanCPS [16] and coMobile [17] store data from heteroge-
neous sensors, and predict traffic speeds with human mobility in urban areas. More-
over, in a private Cloud, Xiong’s work [3] integrates the transportation data in multiple
perspectives. Through Hadoop MapReduce on smart card data and bus GPS data,
Zhang et al. [1, 12] analyzed the passenger density to infer crowdedness and evaluate
the vehicle scheduling. With analogous solutions, Wang et al. [18] estimated boarding
stop time and bus arrival time. Moreover, SMARTBUS [19] shows a composite
solution in multiple Hadoop layers. All those works prove their effectiveness in specific
business, but none of them considers bus passenger volume analysis yet.

In brief, on massive data of smart card data, challenges still remain to analyze
passenger volume efficiently. Therefore, we introduce platform service via Big Data
technologies.

A Platform Service for Passenger Volume Analysis 685

3 Bus Passenger Volume Analyses in the Platform Service

3.1 Methodology

We designed a platform service whose architecture is illustrated as Fig. 1.

Application layer ;o
DAY
Map Web % D
app/ication console 3 network 5
=
=
Processing layer o
=
Getting-on volume analysis Transfer volume analysis E,'_
c
Getting-off volume analysis Other jobs °
o
3
> Data layer o
- Basic Business
data data storage

Fig. 1. The service architecture.

The data layer maintains the required data. The basic data is the essential auxiliary
for analyses in the relational database, including locations of station, profile of bus lines
and vehicle id, etc. The business data is the spatio-temporal records captured from the
smart card readers, which would regularly load into the distributed file system after data
cleaning. Compared with the basic data, the business data has much larger size (i.e.,
terabyte vs. megabyte level) with higher updates frequency (i.e., daily vs. monthly).

The processing layer provides run-time environment to calculate business analyses
like bus passenger volumes. Such analyses are built and submitted by domain experts
as calculative jobs, and run as parallel tasks.

The application layer shows the results of business analyses with pre-defined
configurations. The map application visualizes the results in online maps of multiple
perspectives. For bus passenger volumes, the results could be demonstrated in a map as
the granularity of stations, bus lines, and road network. The web console sets the
configurations of the whole service, manages the business analyses, and monitors the
status of each layer.

The infrastructure layer supplies the virtualized resources from a private Cloud.
The resources like computation, storage, and network are accommodated elastically on
demand.

In fact, it is a typical architecture for Big Data analysis in the public transportation
domain, where we focus on the bus passenger volume analyses in this following part.

From Table 1, the smart card data is formally defined first.

Definition 1: Smart card data. The smart card data is generated when a passenger’s
card is read by reader on the bus. A record as the unit can be represented as r = (p, b,
Su» tas S5, tp). Here, p is a passenger’s card, b is the taking bus, s, (sy) is the getting-on
(getting-off) station, and #, (#) is the getting-on (getting-off) timestamp at s,, (sy).

686 W. Ding et al.

For any station s € S, its passenger volume analyses counts the number of pas-
sengers in any time slot ¢;, where S is the station set. Divided by the fixed interval
length 0, &, is the i™ time slot of a day. For example, when 0 =1 h, |i| = 24,
dp = [0:00-1:00), 6, = [1:00-2:00), ..., 03 = [23:00-24:00); the passenger volume
would be a 24-dimensional vector, whose element is the count in a J; at s. In fact, a
passenger must own one of three behaviors at a station: getting-on, getting-off and
transfer. Accordingly, the bus passenger volume can be discussed accordingly.

3.2 Getting-On/Off Behavior and Its Passenger Volume Analysis

The getting-on and getting-off analyses are similar due to the symmetrical behaviors, so
that only the former one would be fully discussed here.

Definition 2. Getting-on (getting-off) passenger volume. The getting-on (getting-off)
passenger volume presented as nPF;,S (}‘PF;S) counts passengers P who get on (off) any
bus at station s in a time slot (7, ¢,). Here, time ¢, > f;, 3 a record r of smart card data, r.
p EP rs,=s (rsg=5), rt, €0 (rty € 6). It is achieved periodically with a fixed
interval length 0 = |0| = ¢, - ;. Usually, 6 is set as 30 min, 1 h or 2 h in practice.

Referring certain location (i.e., station) at given time interval (i.e., time slot), those
volumes as an aggregation evaluation reflect the hot degree of that station. The spatio-
temporal continuity of individual passengers is kept in the records, but the moving of
buses is required in the analysis. A certain bus always runs more than one round-trip in
a day, and it is would stop and start at any station in each trip. The time when the bus
started (stopped) brings the passengers’ getting-on (getting-off) behaviors. However,
only some passenger’s times instead of that of buses are kept in the records. Therefore,
the first difficulty comes from the gap of different temporal semantics. As Fig. 2, there
are two trips of a certain bus at a station in a day. The getting-on timestamps of
passengers would be gathered in clusters according to the time of bus start in each trip
(i.e., t;; and t,, here).

Statio

l.l.l.lll.l.lllllllll.l.I;

0:00:00 rity, fatn, r7.t,, 23:59:59
T106.Tn, F109-Tn
ro.tn, ria.ty

Fig. 2. The moving of a bus at a station.

Therefore, it remains three problems for getting-on (getting-off) passenger volume
analysis: how to discriminate each trip of any bus; how to infer a bus’s stop and start
time at any station; how to sensibly build nPF? (fPF?) if waiting period of bus at a
station overlaps two adjacent time slots (e.g., if a bus stopped when 7, = 8:58 and
started when z; = 9:01, the ridership during [z, £.) overlaps the time slots J; = [7:00—
8:00) and dg = [8:00-9:00)).

A Platform Service for Passenger Volume Analysis 687

To solve those problems, we observe the characteristics of data, and propose the
following Algorithm 1 with the symbols in definition 1. The algorithm is based the
observations below. For a bus b at station s, a passenger’s getting-on time must be earlier
than b’s start time in a probability larger than 50%; that time of all getting-on passengers
in the same trip must cluster according to b’s start time; in the same trip of b, all those
times must be statistically positive-skewed because the median of those timestamps is
smaller than their mean value. In the line 3—7, getting-on timestamps of different trips are
clustered under auxiliary business conditions. In practice, we employ the empirical
v = 420 (i.e., 7 min), because we have learned from the official documents, a bus of
Beijing spends at least 14 min for a round-trip. In the line 9-13, to infer the start time of
bus b at station s, we have to alleviate the skewness of getting-on timestamps by
logarithm transformation (i.e., function In()), where EXP(x) = ¢". For those positive-
skewed timestamps, their logarithmic values roughly conform to the normal distribution.
Due to the normality knowledge, we know 68% of g; would not larger than m, + sd,.
Therefore, #; defined in line 12 is a sound approximation, because the start time of bus is
larger getting-on timestamps of passengers in a probability more than a half.

Algorithm 1. Bus trips recognition
Input: records of smart card data in a bus ordered by the getting-on timestamp
Qutput: trips of the bus b at station s and the bus start time ¢ in each trip
1 for a record r;

2 b=r.b; s= 1.8,

3 if (rit,-rig.) <y

4 put r; to the same trip with r;.;
5 else

6 put 7; to a new trip;

7 end if

8 end for

9

for a trip of b at s

10 for any r;, g=In(r:.t,);

11 on those g;, get their mean m, and standard deviation sd;
12 b’s start time £, = EXP (mg + s5d,)

13 end for

Through the Algorithm 1 above, the getting-on passenger volume analysis can be
modeled as a two-step procedure in Fig. 3. Each step can be implemented as a Hadoop
MapReduce job. Here, the vertical left part of either step works as a map task and the
right one is a reduce task; each step requires only one-pass processing on the data.

The first step as the upper part of the Fig. 3 is to achieve the getting-on passenger
volume of every single bus. Here, each record would be extracted by its attributes. The
timestamp of getting-on is divided to date and time. After grouping by the composition
of station id, bus id and date, Algorithm 1 is invoked. As a result, the passenger volume
of each bus are achieved and ordered by the station id. For example, when 0 is set as
1 h, and a output could be <3, 00028294, 20151208, 0, 0, 0, 0, 0, 0, 13, 0, 0, 25, 0, 0, O,
18,0, 0,0, 0, 0, 0, 0, 0, 0, O>. It means the bus 0028294 at station 3 on Dec.8™ 2015
had three trips when the counts were 13 in [6:00, 7:00), 25 in [9:00, 10:00) and 18 in
[13:00, 14:00).

688 W. Ding et al.

The second step as the lower part of Fig. 3 is to achieve the getting-on passenger
volume of all the buses. In this step, the inputs are achieved from the first step. After
grouping by the composition of station id, bus id and date, the final result is the vector
addition in respective time slot. For example, when 6 is set as 1 h, and an output could
be <3, 20151208, 0, 0, 0, 0, 0, 64, 85, 105, 128, 256, 204, 230, 242, 189, 205, 143,
145, 252, 286, 259, 235, 102, 82, 35>. It means the count for station 3 at each time slot
of one hour on Dec.8" 2015.

Map Reduce
task

Group by

<from_station_id+bus_id+date>

Get a group to calculate through
bus trip recognition

v
Output intermediate result

Output intermediat It
utputintermediate resu <K: from_station_id+bus_id+date,

<K: from_station_id+bus_id+date,

V: passenger volume in any time slot>

|
|
|
|
|
‘ Get and extract a record ‘ |
|
|
|
|
V:time> |

First step 4

Group by

<from_station_id+bus_id+date>

Get a group, sum in each time
slot, and output final result
<K: from_station_id+date,

Output intermediate result
<K: from_station_id+bus_id+date,

V: passenger volume in any time slot>

Fig. 3. Getting-on passenger volume analysis.

V: passenger volume in any time slot>

Here, considering some waiting periods of bus at a station overlap two adjacent time
slots d;, 9;,1, we regard the ridership belongs to either 0, if #, € 9; or to 9, if t;, € 94y It
is sound because the getting-on behaviors of passengers depend on the start of a bus.

Therefore, all three problems mentioned have been solved. Analogously, the
getting-off passenger volume could be achieved, where the getting-off timestamp (i.e.,
7.ty of passengers and the stop time of buses are focused instead. With the similar
logarithm transformation, the inferred bus stop time z, = EXP (m, + sd,) with the same
confidence 68%. It is sound because the getting-off timestamps are also positive
skewed and smaller than stop time in a probability more than a half.

A Platform Service for Passenger Volume Analysis 689

3.3 Transfer Behavior and Its Passenger Volume Analysis
Then, the third type of passenger volume is discussed.

Definition 3. Transfer passenger volume. The transfer passenger volume presented
as xPFS‘s in any time slot 6(#;, #,) counts passengers P who gets off any bus b; at s,and gets
on another bus b, at s, within a time duration no more than ¢. Here, time z, > t;,, 3 two
records ry, r,, of smart card data, r.p = 7,,.p € P, .Sy = Sp ISy = Sy, ity € 6,y € 0.1t
is achieved periodically with a fixed interval length 6 = |J| = ¢, — #,. Usually, 0 is set as
30 min, 1 h or 2 h in practice, and the threshold 0 < ¢ < 6. The station s, and s,, are
either geographical neighbors or the same one.

Referring a location pair (i.e., getting-off and getting-on stations) at given time
duration (i.e., time slots), the transfer passenger volume faces analogous condition as
that of getting-on passenger volume. Because transfer behavior consists of a getting-off
behavior and a successive getting-on one like Fig. 4, it could be achieved directly from
the method in Sect. 3.2. However, it would be inefficient to merge two independent
analyses for integral results. Accordingly, we focus on the dedicated method in this
section.

[Passenger 2 .m
. ﬂ

Station,

\Station c
A
Getting-off % Getting-off

Passenger 1 /
Getting-on
Station,
B

Getting-on

Fig. 4. The transfer behaviors of passengers.

Algorithm 2. Transfer behaviors recognition and counting

Input: records of smart card data group by passenger
Output: the transfer behavior of each passenger

1 for two successive records 7.1, r; of passenger p

2 Pitp = 1D = P; by=101.b; by = 1,.b; Sp= 11 Sf 8y = iSus 4= Vil Uy = Tty
3 if(b#b,)

4 if (distance (s5 5,) <n) and (4, - ;<=1

5 a transfer behavior of p appears at station s, and at the time #,;

6 end if

7 end if

8 end for

Besides the same problems with the getting-on volume analysis, the transfer pas-
senger volume analysis remains other two ones. One is how to define the spatial
neighborhood of any station. The transfer behavior only makes sense at the getting-on
station. The other is how to depict temporal closeness of any passenger for a transfer
between his getting-off behavior and the successive getting-on one. Too long delay
would not appropriately reflect the passengers’ real intention.

690 W. Ding et al.

To solve those problems, we propose the Algorithm 2 with the symbols in definition
1. The algorithm to find a transfer behavior is based the definition of spatial neigh-
borhood and temporal closeness in the line 3-5. For a transfer behavior of a passenger,
the getting-off bus must be different with the getting-on one; while the getting-off station
could be same with the getting-on one. Threshold # of spatial neighborhood restricts the
max cartographic distance between two stations, and threshold /" of temporal closeness
implies the longest period duration two behaviors. Here, we regard the count of transfer
behavior as the result at the time 7, with the station s,,.

Map Reduce
task tasi Group by
<card_id+date>

Another group o
intermediate result?
N

Get a group to calculate through
transfer behavior recognition

‘ Get and extract a record ‘

Output intermediate result
<K:card_id+date,
V:begin/end_time+_from/to_stati
on_id+from/to_station_longitude+

Output intermediate result
<K: card_id+date,

V: stop_id+tranfer_time>

from/to_station_latitude+bus_id>
Firststep_ _ _ _ _ _ _ _ _
Second step

Group by
Another record © <stop_id+date>

intermediate res

Get and extract a record ‘

Get a group, count by group,
Output final result
<K: stop_id+date,

Output intermediate result
<K: stop_id+date,

V: transfer_time>

V: passenger volume in any time slot>

e e e - Y e ——— — =

Fig. 5. Transfer passenger volume analysis.

Through the Algorithm 2, the transfer passenger volume analysis can be modeled as
two-step procedure in Fig. 5. Each step can be implemented as a Hadoop MapReduce
job. Here, the vertical left part of either step works as a map task and the right one is a
reduce task; each of which requires only one-pass processing on the data.

The first step as the upper part of the Fig. 5 is to find the transfer behaviors of
passengers. Here, each record would be extracted by its attributes. The timestamp of
either getting-on and or getting-off is divided to date and time. The date of getting-on
and getting-off are identical. After grouping by the composition of card id and date, the
algorithm 2 is i. The thresholds could be set empirically: # = 1000 m and /" = 20 min.
It comes from the facts in the official documents: in Beijing for a bus transfer, 95%
passengers expect to wait less than 20 min; only 16% passengers would endure to walk

A Platform Service for Passenger Volume Analysis 691

more than 1000 m to the next getting-on station. As a result, if 6 is 1 h, an output could
be <3, 00000370A80456014EBE774FE6D150C1, 20151208, 8, 1>. It means a pas-
senger using that card had a transfer behavior at station 3 at the 8™ time slot, i.e., [7:00,
8:00) on Dec.8" 2015.

The second step as the lower part of Fig. 5 is to achieve the transfer passenger
volumes of all the passengers. In this step, the inputs are achieved from the first
step. After grouping by the composition of station id and date, the final result is the
vector addition in respective time slots. For example, if 0 is set as 1 h, a output could be
<3, 20151208, 0, 0, 0, 0, 0, 26, 52, 75, 82, 126, 124, 123, 130, 98, 105, 93, 75, 82, 96,
89, 75, 82, 68, 23>. It shows the transfer passenger volume at station 3 in 24 time slots
on Dec.8™ 2015.

4 Evaluations

4.1 Settings

The executive performance and practical effects are evaluated respectively by extensive
experiments and case studies in this section.

In our private Cloud as the service infrastructure layer, four Acer AR580 F2 rack
servers via Citrix XenServer 6.2 are utilized in the infrastructure layer, each of which
own 8 processors (Intel Xeon E5-4607 2.20 GHz), 64 GB RAM and 80 TB storage.
Six virtual machines are used to build our platform service, each of which owns 4 cores
CPU, 4 GB RAM and 1.2 TB storage with CentOS 6.6 x86_64 operating system. As
the Fig. 1, the data layer consists of MySQL 5.1 and HDFS; the processing layer is the
customized Hadoop MapReduce 2.6.0; the application layer would be further exploited
in the Sect. 4.3.

We employ the smart card data of Beijing on eight days in 2013, which contains
24263142 records on 7349 buses of 233 lines involving 3581 stations. All the data was
generated from the readers charging by travel distance, and each record contains 13
attributes as Table 1. The data has been cleaned in advance through dedicated method
[14], and has been divided into eight parts by the original dates as the experiment
inputs.

To analyze the passenger volume, two different methods have been implemented in
our platform service for comparison. One is our method termed as BD (Big Data). The
counterpart is a statistic estimation [11] termed as ODE (Origin-destination Estimation)
in the current productive environment.

4.2 Experiments

We evaluate the performance of two methods to analyze passenger volume in the
experiments below.

Experiment 1. The data of different size is used as the input. The getting-on and
transfer passenger volume are executed through both BD and ODE, and note their
average executive times in each condition. The result is showed as Fig. 6 where the left
is the getting-on passenger volume analysis and the right is the transfer one.

692

W. Ding et al.

400

(a) Getting-on

300

(b) Transfer

350 | [0 0D B0 0D
@ —— ED @ @ 250 ——— BD 5 o
- 300 6 2 -] £
2 250 £ 4 &
g g g tE
& 200 5§ & 150 3
b 150 B o100 i3
S 100 4 2 5 < 2 2

50

0 = 3 0 = 1

1 3 5 1 3 5

Input datasdays Input datasdays

Fig. 6. The passenger volume analyses through two methods

When the input size increases, the executive time of both methods rises, but ODE
has much longer time than BD in two orders of magnitude for either analysis. In
average, the input record size of one day is about 1 million. The executive time through
ODE grows sharply when the input is more than 5 million, while that of BD rises
almost linearly. On the input of 3-day data, BD costs minute-level time, while the ODE
requires more than 5 h. The lower latency of BD comes from the parallel execution of
two-step procedure in either passenger volume analysis. But through ODE, the analysis
requires multiple passes to sort data, and has to run on a single machine without
parallelism. As a result, ODE only suits small size data, while BD has much lower
latencies on massive data.

In the following parts, only BD is evaluated for its efficiency and scalability.

Experiment 2. The data of one day is appended to the input in each test, and the
executive times for getting-on passenger volume analysis through BD are noted. For
the comparison on each input size, the interval length 0 is set as 10-min, 1-h and 4-h
respectively. The result is presented in Fig. 7(a). The average executive time on fixed
one million records in each test can be deduced as Fig. 7(b).

100

6=10 minutsg
6=1 hour|

80T\ 6=4 hour|

60 \

40 I

20

Executive time/minute
= S N
Average time/second/million
7

Input data/days Input datasdays

Fig. 7. The getting-on passenger volume analyses at 3 intervals on 8 inputs.

The getting-on analysis through BD method is proved scalable on the increasing
data. On the one hand, when input scales at any interval length, the increment of
executive time surpasses the linearity. In Fig. 7(a), the time is kept minute-level and not

A Platform Service for Passenger Volume Analysis 693

doubled even when the input size grows eight folds. That trend can be demonstrated
clearly in another perspective of Fig. 7(b), where the average executive time on fixed
input size declines to the steadiness about 10 s. It shows that the processing capacity of
BD method is stable and horizontally scalable. On the other hand, on the input of the
same size, the executive time varies by interval lengths. The longer interval length
implies lower latencies, because our analysis relies on the interval length: shorter
interval length implies more dimensions in result vector due to definition 2, and
requires more calculation delay. It is interesting that when input scales, the capacity on
fixed size converges at any interval length like Fig. 7(b), which also proves its hori-
zontal scalability.
In a similar way, the transfer passenger volume analysis is evaluated next.

Experiment 3. The data of one day is appended to the input in each test, and the
executive times for transfer passenger volume analysis through BD method are noted.
For the comparison on each input size, the interval length 0 is set as 10-min, 1-h and 4-
h respectively. The result is presented in Fig. 8(a). The average executive time on fixed
one million records in each test can be deduced as Fig. 8(b).

Average time/second/million

Executive time/minute
Ok, N W oe > N @

Input datasdays Input datasdays

Fig. 8. The transfer passenger volume analyses at 3 intervals on 8 inputs.

The transfer analysis through BD method is also proved scalable on the increasing
data. On the one hand, when input scales at any interval length setting, the executive
time of the analysis keeps steadily. In Fig. 8(a), that time fluctuates between one and
four minutes even when the input grows eight folds. Compared with that of getting-on
analysis, the execution here is relatively faster, because transfer behavior appears much
fewer than getting-on and requires lesser time. As Fig. 8(b), the executive time on fixed
input size declines to a steadiness about less than 10 s. The same value with that of
getting-on analysis shows the scalable capacity of BD method again. On the other
hand, on the input of the same size, the executive time has little difference at three
interval lengths setting because the intermediate results in the experiment are too small
to manifest their variance. The capacity on fixed input size also converges at any
interval length when input scales as Fig. 8(b), which proves its scalability either.

With the three experiments above, our analysis in platform service proves minute-
level latencies on weekly historical data with horizontal scalability.

694 W. Ding et al.

4.3 Case Studies

We evaluate the practical effects in the application layer of service by case studies next.
The getting-on passenger volume is exhibited first.

Case 1. The jobs of getting-on passenger volume are submitted successively to web
console to execute. After their completion, the visual results are available in map
application. As an example, when a station named Beijing West Railway Station is
selected in the map, the profile emerges including id, name and GPS location, and the
hyperlink of getting-on passenger volume is also enabled in a pop-up window.

The analysis jobs are governed full life-cycle in our service via the web console. In
this case as the Fig. 9(a), the second job of the getting-on passenger volume analysis is
being submitted to the console. After the code package has been uploaded, the console
would check source code to assist the job configuration (e.g., the executive entrance
from the candidate Java main classes is auto-prompting), and then assigns to the
processing layer. For any station, the passenger volume would be visualized in the map
application. As In this case as the Fig. 9(b), the station Beijing West Railway Station is
a transportation hub and close to a railway station. Some buses are in 7 * 24 h service
around there, and most bus passengers go there to take trains. The getting-on passenger
volume of this station would display in the map at all the time slots in a given day at
one hour interval by default.

(a) ()

DeCloud Console dex | Job submition B x N\
Station Details
Job name: getting-on analysis StationID: 646]
=4 Console . StationName: JL3IFRk s2mii— /
33 environment Job type: batch job = GPS: 116.3283,39.9026 [
(=] Cluster monitor | Master IP: 10.61.8.51 v - - i I
[E Machine monitor|
=] Service monitor
SE3job Main class: | 2
2] Job monitor shangche shangchelh
=] Job submition Submit

(©

Upload package: |Package...| shangchelh jar |Check

Getting-on passenger flow

123 456 7 8 91011121314151617 18 19 2021222324
Hour of a day

Fig. 9. The getting-on passenger volume of station Beijing West Railway Station.

Moreover, the synthetic views can be generated in our platform service. In this case,
such a view as the Fig. 9(c) demonstrates the comparison of getting-on passenger
volume on three successive days. We found the result on any of three days keeps
steadily high since 8:00 to 19:00 just when the trains are usually busy. All those exactly
match the real situations from the local official statistics.

Next, the effects of transfer passenger volume are evaluated in another case.

A Platform Service for Passenger Volume Analysis 695

Case 2. The jobs of transfer passenger volume analysis are submitted successively to
web console. After their completion, the visual results are available in map application.
As an example, when a station named Chinese Academy of Agricultural Science is
selected in the map, the profile emerges, and the hyperlink of transfer passenger volume
is also enabled in a pop-up window.

The jobs’ status is available in JSON (JavaScript Object Notation) format in our
service and also visualized in web console. In this case as Fig. 10(a), the newly sub-
mitted jobs are noted as successfully completed in a history table. Even during the jobs’
run-time, the console provides graphical interface to suspend or kill them. In this case
as the Fig. 10(b), the station Chinese Academy of Agricultural Science lies in a junction
of three trunk roads where more than 12 bus lines pass-by around two adjacent stations.
It also can reach to two subway stations within 800 m. Therefore, many bus passengers
go there for a transfer. The transfer passenger volume would display in the map at all
the time slots in a day at one hour interval by default.

Hadooy (a) (b) .

ia | cluster | master Job num Nodes | M.. R.. M. |R Job monitor Station Details
0 Hadoop 1061851 0 40 0 6 0 0 12 0 0 jobs StationID: 246 o

StationName: MERIFFZER
me | st Stant I GPS: 116 9.9665 —

Jobid Priori

job_20161206102.. NO.)6 SUCCEEDED 1431022338818

SUCCEEDED 1. 3625

)_20161206102.
job_20161206102... NO.

NO. SUCCEEDED 1481023046517 AR
) 7 SUCCEEDED 1431023411451 .

B I

&
o CE

(c)

—_— Getting-ol
1000 1) Transfel

Passenger flow

123456 7 8 9101112131415161718192021222324
Hour of a day

Fig. 10. Two kinds of passenger volume of station Chinese Academy of Agricultural Science.

Moreover, a synthetic view as the Fig. 10(c) is generated in the platform service to
compare two kinds of passenger volume on a given date March 4. We found the value
of transfer volume is about 1/8-1/5 than that of getting-on and owns the same rush
hours. It reflects the fact that transfer behavior is much smaller than getting-on one but
shares the similar temporal trends. In either type of passenger volume in this workday,
we can find the morning rush hours are from 7:00 to 9:00 and evening ones are from
17:00 to 20:00. All those exactly match the traffic report published by Beijing Traffic
Commission.

With the two case studies above, our method achieves convenient effects and
effective results in practical situations.

696 W. Ding et al.

5 Conclusion

In public transportation domain, we propose a novel platform service to analyze
multiple passenger volumes on massive smart card data. For any analysis, our service
can hold minute-level latency on historical weekly data and keep nearly linear scala-
bility in extensive conditions. It also shows practical effects and exact results in
authentic cases. In the future, we would introduce more domain analyses in our service,
such as bus arrive time prediction at given station and bus transit speeds prediction
between two directly adjacent stations.

Acknowledgements. This work was supported by the Youth Program of National Natural
Science Foundation of China under Grant 61702014, the General Program of Beijing Natural
Science Foundation under Grant 4192020, and Top Young Innovative Talents of North China
University of Technology under Grant XN018022.

References

1. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., Li, T.: Predicting citywide crowd flows using
deep spatio-temporal residual networks. Artif. Intell. 259, 147-166 (2018)

2. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19, 171-209 (2014)

3. Xiong, G., et al.: A kind of novel ITS based on space-air-ground big-data. IEEE Intell.
Transp. Syst. Mag. 8, 10-22 (2016)

4. Ma, X., Wu, Y.-J., Wang, Y., Chen, F., Liu, J.: Mining smart card data for transit riders’
travel patterns. Transp. Res. Part C: Emerg. Technol. 36, 1-12 (2013)

5. Tang, N.: Big data cleaning. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) APWeb 2014.
LNCS, vol. 8709, pp. 13-24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11116-2_2

6. Long, Y., Zhang, Y., Cui, C.: Identifying commuting pattern of Beijing using bus smart card
data (in Chinese). Acta Geogr. Sin. 67, 1339-1352 (2012)

7. Zhang, C., Song, R., Sun, Y.: Kalman filter-based short-term passenger flow forecasting on
bus stop (in Chinese). J. Transp. Syst. Eng. Inf. Technol. 11, 154-159 (2011)

8. Zhou, J., Sun, Y., He, L.: Multi-model hybrid traffic flow forecast algorithm based on
multivariate data. In: Sun, Y., Lu, T., Xie, X., Gao, L., Fan, H. (eds.) ChineseCSCW 2018.
CCIS, vol. 917, pp. 188-200. Springer, Singapore (2019). https://doi.org/10.1007/978-981-
13-3044-5_14

9. Dugane, R.A., Raut, A.: A survey on big data in real time. Int. J. Recent Innov. Trends
Comput. Commun. 2, 794-797 (2014)

10. Tao, S., Rohde, D., Corcoran, J.: Examining the spatial-temporal dynamics of bus passenger
travel behaviour using smart card data and the flow-comap. J. Transp. Geogr. 41, 21-36
(2014)

11. Zhou, X., Yang, X., Wu, X.: Origin-destination matrix estimation method of public
transportation flow based on data from bus integrated-circuit cards (in Chinese). J. Tongji
Univ. (Nat. Sci.) 40, 1027-1030 (2012)

12. Zhang, J., Yu, X., Tian, C., Zhang, F., Tu, L., Xu, C.: Analyzing passenger density for
public bus: inference of crowdedness and evaluation of scheduling choices. In: 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC 2014),
pp. 2015-2022. IEEE, (Year)

http://dx.doi.org/10.1007/978-3-319-11116-2_2
http://dx.doi.org/10.1007/978-3-319-11116-2_2
http://dx.doi.org/10.1007/978-981-13-3044-5_14
http://dx.doi.org/10.1007/978-981-13-3044-5_14

13.

14.

15.

16.

17.

18.

19.

A Platform Service for Passenger Volume Analysis 697

Carey, M.J., Jacobs, S., Tsotras, V.J.: Breaking BAD: a data serving vision for big active
data. In: Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems, pp. 181-186. ACM, Irvine (2016)

Ding, W., Cao, Y.: A data cleaning method on massive spatio-temporal data. In: Wang, G.,
Han, Y., Martinez Pérez, G. (eds.) Advances in Services Computing: 10th Asia-Pacific
Services Computing Conference, APSCC 2016, Proceedings, pp. 173-182. Springer
International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-49178-3_13
Pelletier, M.-P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature
review. Transp. Res. Part C: Emerg. Technol. 19, 557-568 (2011)

Zhang, D., Zhao, J., Zhang, F., He, T.: UrbanCPS: a cyber-physical system based on multi-
source big infrastructure data for heterogeneous model integration. In: Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 238-247. ACM,
Seattle (2015)

Zhang, D., Zhao, J., Zhang, F., He, T.: coMobile: real-time human mobility modeling at
urban scale using multi-view learning. In: Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pp. 1-10.
ACM, Bellevue (2015)

Wang, Y., Ram, S., Currim, F., Dantas, E., Saboia, L.A.: A big data approach for smart
transportation management on bus network. In: 2016 IEEE International Smart Cities
Conference (ISC2), pp. 1-6. IEEE (2016)

Ram, S., Wang, Y., Currim, F., Dong, F., Dantas, E., Saboia, L.A.: SMARTBUS: a web
application for smart urban mobility and transportation. In: Proceedings of the 25th
International Conference Companion on World Wide Web, pp. 363-368. International
World Wide Web Conferences Steering Committee, Montreal (2016)

http://dx.doi.org/10.1007/978-3-319-49178-3_13

	A Platform Service for Passenger Volume Analysis on Massive Smart Card Data in Public Transportation Domain
	Abstract
	1 Introduction
	2 Background
	2.1 Motivation and Assumption
	2.2 Related Work

	3 Bus Passenger Volume Analyses in the Platform Service
	3.1 Methodology
	3.2 Getting-On/Off Behavior and Its Passenger Volume Analysis
	3.3 Transfer Behavior and Its Passenger Volume Analysis

	4 Evaluations
	4.1 Settings
	4.2 Experiments
	4.3 Case Studies

	5 Conclusion
	Acknowledgements
	References

