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Abstract. Safety-risk estimation aims to provide guidance of the train’s
safe operation for communication-based train control system (CBTC)
system, which is vital for hazards avoiding. In this paper, we present
a novel intelligent-prediction model of safety-risk for CBTC system to
predict which kind of risk state will happen under a certain operation
condition. This model takes advantages of popular deep learning mod-
els, which is Deep Belief Networks (DBN). Some risk prediction factors is
selected at first, and a critical function factor in CBTC system is gener-
ated by statistical model checking. Afterwards, for each input of samples,
the model utilizes DBN to extract more condensed features, followed by
a softmax layer to decouple the features further into different risk state.
Through experiments on real-world dataset, we prove that our new pro-
posed intelligent-prediction model outperforms traditional methods and
demonstrate the effectiveness of the model in the safety-risk estimation
for CBTC system.
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1 Introduction

Communications-based train control (CBTC) system is the latest generation
automatic train control system in the world, which is widely used in urban rail
transit transportation [1]. There is no denying that CBTC system is a safety-
critical system, whose failure could result in loss of life, significant property
damage, or damage to the environment [15]. Safety risk estimation not only is a
necessary requirement of CBTC system, but also is effective means to identify
the hazardous operation conditions that may lead to a risk state. Risk estimation
is a technique for identifying the operational safety of a system using either a
qualitative or quantitative method, which have been utilized in safety manage-
ment system. Generally, multiple system parameter factors need to be considered
to explore the nonlinear relationship between them and the safety-risk state.
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One of the main challenges for safety-risk assessment for CBTC system is
uncertainty in system operation. The difference of running environment and the
unreliability of system components would lead to the large deviation of pre-
determined running state, which cannot be avoided or estimated in the system.
However, traditional risk assessment models suffer from several limitations. Fault
tree analysis [17], Failure mode and effects analysis (FMEA) [21] and Bayesian
network analysis [14], all belong to static modeling analysis, would not have
satisfactory results due to the uncertainty cannot be considered in the process.
A second challenge stems from the need to effectively capture the correlations
between multiple CBTC system safety-risk states. Considering that the different
safety-risk states are parameter change of system operation, analyzing safety-risk
states as independent of one another will lead to suboptimal models.

Recently, with the development of artificial neural networks, deep learning
is currently the most popular method for data representation learning, time
series data prediction, and image recognition, etc. Deep Neural Networks (DNNs)
can be very effective in learning features from data in an unsupervised fashion
without prior knowledge [7,16]. In addition, DNNs are also a well-established
approach in traffic flow prediction [13], automatic driving fault prediction [4], and
track circuit fault prediction [24]. These applications show that DNN has a good
prospect in fault or risk prediction. The data record in CBTC system contains
uncertainty information, which is another representation of the random behavior
of the system. DNN can learn system features from these data to effectively solve
the uncertainty problem. Meanwhile, DNN can capture the correlation between
different safety-risk states.

In this paper, we proposed a deep intelligent-predictive model for hazard risk
assessment in CBTC system. The model is implemented by deep neural network
(DNN), considering a variety of influential factors. More specifically, a Deep
Belief Network (DBN) is trained to predict which kind of risk state will happen
from some safety-related factors. As a result, the proposed intelligent-predictive
model has the advantage of simultaneously achieving two important desiderata:
consideration of uncertainty and Capture of risk state correlation. A selection
and generation method of risk factors is proposed, where one of risk factors about
safety critical function, movement authority (MA), is obtained from Statistical
Model Checking (SMC) [5]. Compared with traditional methods like numerical
methods [3], as a kind of formal method, SMC samples behaviors of the system
model and resolves the safety critical problem more efficiently.

The rest of this paper is structured as follows: Sect. 2 reviews related studies
on risk assessment. Section 3 defines safety risk prediction problem and give
the model framework. Our intelligent-predictive model is described in Sect. 4.
Section 5 presents the experiment and result. Finally, we conclude this study
with future work in Sect. 6.

2 Related Work

Safety risk analysis and evaluation has been long considered as key functional
component in urban rail transit operation.
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Huang et al. proposed to employ FTA in railway traffic system safety. In this
model, they mainly considered traffic accidents caused by human errors and hard-
ware failure, and proposed the fuzzy fault-tree model, which simulated the fail-
ure probability of each unit of the system by defining fuzzy sets in probability
space [12]. Zhang et al. illustrate and analyze Interval Signal Control Function for
Train Control Center case using Fuzzy-FMECA method, where in this method,
FMECA is used to abstract the potential failure modes in such function and FAHP
is to determine risk weight [23]. The formal method is mainly used for system
safety verification, and focus on safety-critical applications. Mathieu Comptier et
al. analyzed the safety of the Octys CBTC system interlocking infrastructure using
formal proofs, Event B. They modeled verified it with Atelier B tool [6]. Hybrid
I/O Automaton (HIOA) framework is very effective for hybrid system verification.
Mitra et al. designed a supervisory pitch controller for a model helicopter system
and verified some safety property based on HIOA [18].

In addition, some artificial intelligence methods are also applied to solve
the collision prediction problem. Nefti and Oussalah proposed using Artificial
Neural Networks (ANNs) architecture to deal with the prediction problem of
the system fault. By taking irregularities in the positioning of rails as input
and using a wavelet transformation technique to reduce the dimensionality, the
ANN can predict the safety ratio of the rails. Moreover, they found out the best
structure of ANN for predicting railway safety and evaluated performances [19].

Deep learning algorithms was proposed in 2006 [9,10], and so many researches
are published on the basis of it. Huang et al. [13] proposed a deep architecture
to predict traffic flow, which is a multi-task regression DBN to incorporate mul-
titask learning (MTL). In addition, to make MTL more effective, the weights
in the top layer were grouped to make the experimental results better. Jiny-
ong Wang and Ce Zhang utilized a deep learning model in software reliability
and faults prediction problem. This model is made up of recurrent NN (RNN)
encoder–decoder. The comparison among exist models shows that their model
has better prediction performance [22].

3 Problem Definition

Our overall research goal is to build an effective intelligent-prediction model to
predict the safety-risk state classification, taking as input some risk-influencing
factors.

Safety-Risk Estimation. We define the four safety-risk states in line with common
hazards listed in IEEE standard 1474.1-2004 [1]:

– Normal (H0)
– Collision between two trains (H1)
– Derailment of train (H2)
– Train-to-structure collisions (H3)
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Fig. 1. Procedures for forecasting CBTC hazard risk

Figure 1 shows the implementation procedures for safety-risk prediction of
CBTC system based on deep learning. First, we should have a feature selection
process. After extensive investigations in published research [8,11], we built a
set of risk-influencing factors. Eight factors that are most correlated with risk
state are chosen. Meanwhile, for the MA calculation failure probability, we used
the statistic model checking (SMC) method to calculate. Second, we generate
and pre-processing a dataset, included normalizing them and dividing them into
training and test datasets, the former to train DNN and the latter to participate
in prediction. Afterward, we build DNN and train it with dataset. Once the
training is over, the test dataset was fed to the trained DNN to forecast the
safety-risk state at current situation.

4 An Intelligent-Prediction Model to Safety-Risk for
CBTC System

In this section, our proposed safety-risk intelligent-prediction model is given in
detail. We present a deep neural network model using DBN in this model.

4.1 Selecting Risk Factors

The prediction factor should include four kinds, such as equipment, facilities,
procedures, people [1]. For the above four risk states, we selected eight factors
that have the most closely related influence on them. They are listed in Table 1,
with category and range value.

For the factor G, MA is the authority for a train to enter and travel through
a specific section of track, in a given travel direction. It is the most influential
factor associated with collision events. The Zone Controller (ZC) is the core
subsystem of the CBTC system and is responsible for calculating the MA of the
train on the track. Generally, taking the train head as the starting point and
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Table 1. List of safety risk prediction factors that influence hazard

Category Factor variable Range

Facilities Communication delay (A) 0.5 s ∼ 2 s

Maximum number of trains (B) 10 ∼ 40 trains

Equipment Train speed (C) ±0.5 km/h ∼ ±60 km/h

Train location accuracy (D) ±5 m ∼ ±0 m

People Working time (E) 0 h ∼ 10 h

Passenger flow (F) 3 ∼ 4 w/h

Procedures MA calculation failure rate (G) <10−8

MA calculation time (H) 0.07 s ∼ 1 s

considering current state of relevant equipment on track, ZC calculates MA, and
calculation results will be transmitted to the train to adjust its driving behavior.
This end point is called end of authority (EOA), which is determined by the MA.
The most likely cause of train collision is that the train has wrong information
about the end of the current travel range, and results in an incorrect speed
control command. Therefore, in each sampling point, once the MA calculation
error, the train in this state must have an accident. However, it is not easy to
judge whether the current MA is wrong, and a better method is to use MA
calculation failure rate at current system parameters.

4.2 Calculating MA Failure Rate

For the purpose of obtaining MA calculation failure probability by SMC, MA
calculation scenario simulation samples need to be realized by establishing a
CAL EOA module. Generation of the wrong MA is a rare event in ZC system.
In order to obtain its failure probability, we convert it into a formal verification
problem about safety requirements. Now, we use Statistical Model Checking
(SMC) method estimates MA failure rate [5]. Statistical model checking is a
simulation-based model checking approach to verify properties specified in a
temporal logic [2]. In this paper, we estimated the MA failure probability by
establishing a CAL EOA model and defining a temporal logic formula for safety
requirements.

Before estimation, we should give the formal definition of this problem in the
system.

Definition 1. Given a CAL EOA model M , and a safety requirement property
φ, statistical model checking estimation is to verify whether M satisfy φ with
greater than or equal to a probability θ, that is M |= P≥θ(φ).

And the safety requirement we considered is : MA calculation failure does not
occur.

Considering the simple case, five key sensors are involved in the calculation
of the MA. As long as the value of each sensor is guaranteed to be correct at
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each moment, the MA calculation will not failure. We described the requirement
utilizing BLTL. That is described as:

ψ = F 100G1(φ0(t) ∧ φ1(t) ∧ φ2(t) ∧ φ3(t) ∧ φ4(t)) (1)

where φi(t) is:
φi(t) = InvalidV alueDetected(t) (2)

Section 4.2 states that within 100 cycles, at any moment, five sensors would
not produce invalid values and wrong MA would not be generated, where
InvalidV alueDetected(t) follows the Bernoulli distribution.

SMC method use random sampling of system execution paths. Unlikely the
classical statistical model checking, the improved SMC is merged with impor-
tance sampling and cross-entropy method to reduce sample state space. The
basic idea is based on Monte Carlo method, which generate N random simula-
tions sequence χ1, . . . , χN , followed Bernoulli distribution. Importance sampling
is an effective technique to reduce samples space in the application of SMC [20].
Importance sampling starts by introducing a weighting function W (χi) on the
observed random variables, without changing their expectancy E(χi) and reduc-
ing their variance. Therefore, finding a good weighting function distribution is
a crucial problem. Suppose we have a weighting function and random variables
χi with optimal density f∗, the general idea can be written as:

E(χi) =
1
N

N∑

i=1

B(χi |= ψ)W (χi) (3)

The weighting function and optimal density are:

W (χi) =
f(χi)
f∗(χi)

(4)

f∗(χi) =
B(χi)f(χi)

E(χi)
(5)

The cross-entropy method can select the appropriate members that minimize
Kullback-Leibler divergence from the optimally biasing, through sampling from
the original unbiased distribution. We got the appropriate distributions using
the cross-entropy method. Once the density distributions had been decided, the
probability was calculated. MATLAB/Simulink is used for model implementa-
tion platform.

4.3 Network Architecture

Our proposed DNN model is constructed by DBN. More specifically, stacking
RBMs to form a DBN and using a softmax regression layer at the output layer,
and we can perform supervised fine-tuning on the whole network.
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RBM and DBN. Deep Learning is a class of machine learning algorithms,
which proposed by Hinton et al. in recently year [9]. DBN model is a probabilistic
generative module and composed of stochastic variables. It is a combination
of a number of Restricted Boltzmann Machines (RBMs). An RBM consists of
two layers, that is, one layer of binary stochastic hidden units and one layer of
binary stochastic visible units, where each sub-network’s hidden layer serves as
the visible layer for the next. Generally, they obey a Bernoulli distribution or
a Gaussian distribution. All visible layer units are full-connected to all hidden
layer units and no connection within the layer. Corresponding energy function
E(v,h; θ) and conditional probability distributions p(hj |v; θ), p(vi|h; θ) are given
as following:

E(v,h; θ) =
|V |∑

i=1

(vi − bi)2

2σ2
i

−
|H|∑

j=1

ajhj −
|V |∑

i=1

|H|∑

j=1

vi

σi
wijhj (6)

p(hj |v; θ) = sigm(
|V |∑

i=1

wijvi + aj) (7)

p(vi|h; θ) = N(σi

|H|∑

j=1

wijhj + bi, σ
2
i ) (8)

where σ is the standard deviation vector of normal distribution visible units,
and N(μ, σ2) is the normal distribution with mean μ and variance σ.

Our network has three hidden layers containing 256 units each. Between each
adjacent layer is an RBM, which is stacked to form a DBN. In our network, we
have three RBMs. This configuration was obtained after many experiments and
produced the best results for the current problem. The complexity of the research
problem and dataset determined the size of our neural network altogether. The
network structure that is too large or too small can not effectively improve the
experimental performance.

Input and Output. Corresponding to the Table 1, the dimension of a sample
in our dataset is eight, which corresponds to the eight safety-related factors we
selected. Suppose I is the input sample vector of DBN, and the input layer unit
is eight:

I = (A,B,C,D,E, F,G,H) (9)

Each unit refers to one of sample data features.
For output, we used softmax unit in the output layer to implement the task

of hazard classification. The softmax layer contains 4 units, one for the normal
state and three for each hazard. Suppose vector O is the output vector, O is
composed of the likelihood of safety risk hazard ok occurred. The greater the
value, the greater the likelihood that this hazard will occur.

The O could be denoted as

O = {o0, o1, o2, o3} (10)
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Fig. 2. The structure of intelligent-prediction model for safety-risk. The model is built
by a DBN with three RBMs.

where o0 refers to no collision occurred and system as a normal state, o1 refers
to collision between two trains, o2 means derailment of train and y3 is train to
structure collision. The outputs of last hidden layer are the inputs to the softmax
output layer. They give the probability of each category ok as

P (Y = ok) =
esigm(wkv+ak)

∑3
k=0 esigm(wkv+ak)

(11)

This DBN architecture is illustrated in Fig. 2.

5 Experiment and Results

In this section, we present the details of experiments on our intelligent-estimation
model. We first introduce the dataset and evaluation metrics in experiments, and
show the results of the model as well as compared models.

5.1 Dataset

We gathered datasets from a resourceful train control signal system company we
cooperated, CASCO Ltd., and divided it into two parts, consisting of training
and test. datasets. The total dataset has 15000 samples. The training dataset
has 12500 samples and the test dataset has 500 samples. Our dataset is an
unbalanced dataset. There are 12960 samples in H0, 682 samples in H1, 705
samples in H2 and 653 samples in H3. 86.4% of samples are in the normal state,
while only 13.6% are in the risk states.
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The dataset we received needs some extra preparation steps specific to our
problem. The first step is to make the data comparable in the model. Data
comparable preparation works by proper data normalization. We use

x =
xi − xmin

xmax − xmin
(12)

to have a mean of zero, or to be centered, with a standard deviation of one. It
can ensure that all data values obeys normal distribution.

5.2 Evaluation Metrics

In our experiments, the evaluation metrics include Accuracy, Precision, Recall.
They are computed as

Accuracy =
1
n

m∑

k=1

I(f(xk) = yk), (13)

where I is Indicator function, yk is the real value and y′
k is a prediction value.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

Precision and Recall were based on the results of the confusion matrix, in which
TP is true positive, FP is false positive, TN is true negative, and FN is false
negative.

5.3 Results and Discussion

In our experiment, a group of 500 samples from dataset are used to estimate
the hazard risk prediction performance of our intelligent model. Table 2 shows
the confusion matrix for the safety-risk prediction task on test dataset with 500
samples, and Table 3 shows evaluation metrics results on five groups.

Table 2. Confusion Matrix for the safety-risk prediction task on test dataset with 500
samples.

True Predicted

H0 H1 H2 H3

H0 430 1 2 1

H1 2 19 - 1

H2 1 1 15 2

H3 1 - 1 23
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Table 3. Model evaluation metrics results in five group experiments

Group Accuracy Precision Recall

1 0.976 0.948 0.947

2 0.972 0.937 0.939

3 0.972 0.937 0.937

4 0.968 0.929 0.925

5 0.973 0.946 0.936

Mean 0.972 0.947 0.930

The test dataset was divided into 4 kinds of state, of which 485 samples were
identified successfully, and the confusion matrix is shown in Table 2. The row
means the true category and the columns delegate the prediction category. For all
classification, the accuracy is 0.972 for five times. In the test dataset, most of the
samples belong to the normal state data that were accurately classified, a total
of 430 groups. However, for the collision between two trains and train-structure
collision, there are some misclassification. The misclassification of H1 as H3 and
the misclassification of H3 as H1 may be due to the judgment of the end point
type is different in the EOA calculation, the former is the end of the train, and
the latter is the turnout, the end of the railway or buffers. The communication
delay could lead to the misclassification of H2 as H1. The most likely cause is
the interlocking system in the two cases cannot receive the control command in
time and cannot be interlocked. Table 3 is the evaluation metrics results in five
group of test datasets. As we can see in Table 3, the mean of accuracy is 0.972
and it is stable in such experiments. Recall in these experiments is 0.930, which
means that the intelligent prediction model can handle unbalanced datasets.

To a large extent, the most likely cause is that we consider multiple influ-
ential factors and utilized a multilayer neural network, where made our model
more precise. This result shows that using our predictive model can make for
the decline of occurrence of a hazard and the deep neural network is very effec-
tive in train collision classification. Taken together, these results suggest that
our intelligent-prediction model is effective in system hazard risk prediction by
considering multiple influential factors and using deep learning.

6 Conclusion

In this paper, we proposed a novel intelligent-prediction model, in which the
model was learned from historical operation parameter samples in CBTC sys-
tem, to predict which kind of risk state will occur. The design of intelligent-
prediction model takes advantage of popular DBN. More importantly, we use a
formal method, statistical model checking, to calculate one of prediction factors,
the MA failure rate. Finally, experiments on real-world dataset validated the
performance of our new proposed intelligent-prediction model and demonstrated
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the effectiveness of the deep learning framework in the safety-risk estimation for
CBTC system. Without relevant domain knowledge, the dependence with the
considered hazards can be learned by DNN from the dataset. It is shown that
the proposed novel can significantly predict the hazard risk in the CBTC system.

In future work, more prediction factors and types of hazards will be taken
into account, which can potentially improve prediction performance. We are also
interested in exploring the relationship between a hazard and spatial-temporal
data, and other deep learning algorithms may help solve it.
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