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Abstract. Automatic segmentation and action recognition have been a
long-standing problem in sensorless sensing. In this paper, we propose
CHAR, a continuous human activity recognition system to solve these
problems in a different way. We’ve noticed that these challenges have
been solved in image processing field, so CHAR could effectively per-
form action segmentation and recognition after WiFi imaging. The key
idea behind Wi-Fi imaging is that different body part reflects transmit-
ted signal, the receiver receives the combination of them, and then we
separate the received signals from different directions and get the signal
intensity in each direction to get the heat map showing the shape of the
object. The imaging sequence contains multiple pictures records a con-
tinuous action at different time, and we can easily separate and recognize
the action based on IC2(image classification), a classification framework
we proposed. We implement CHAR using commodity WiFi devices to
evaluate its performance under different environment. The results show
that the imaging result is better than prior works, facilitating CHAR to
achieving an average recognition accuracy, i.e., >95%.

Keywords: Activity recognition · CSI · Wi-Fi imaging

1 Introduction

Human activity recognition is an importance technic in current applications, such
as the human-computer interaction, somatic game, and health-care. Recent solu-
tions fall into three categories: camera-based [1], sensor-based [2,3] and wireless-
based [4,5] approaches.

Camera based approaches are able to guarantee high resolution for activity
recognition. However, those approaches have fundamental limitations, including
the line-of-sight detection, good illumination, and potential privacy leakage. On
the other hand, sensor-based approaches usually require targets to carry on
sensors, which is inconvenient in daily usage. Different from above solutions,
leveraging wireless signals to achieve device-free activity recognition becomes
promising, such as WiSee [4], E-eyes [6], and WiHear [7].
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Those approaches are based on the observation that different human activities
introduce different multi-path distortions in wireless signals, which can be used
as the fingerprints of those activities. Nevertheless, there are still two drawbacks
on the wireless signal based approaches. First, they usually can only distinguish
activities in coarse granularity, e.g., [8,9]. Moreover, they often request specific
facilities (e.g.USRP [4], GPS clock [10] or RFID [11,12]) to eliminate the impacts
of ambient noises.

Recent advance in the research of WiFi networks proposes to utilize the
Channel State Information(CSI) to realize fine-grained fingerprinting for activ-
ity recognition. CSI is sensitive to channel variances and position changes, which
makes itself possible to capture the change as the experimenter performs action.
However, CSI fingerprint based device-free activity recognition remains challeng-
ing. First, to perform continuous activity segmentation using CSI is extremely
difficult. Second, CSI reflects the change of the channel, but its changes are
difficult to match the corresponding specific movements. So when the receiver
receives a continuous signal which contains two or more actions, it is difficult to
distinguish them.

Another challenge for fingerprint based activity recognition is the device
incompatibility. Due to the imperfect manufacturing process, different devices
exhibit different signal gains. The variant gains make different CSI values once
we change transmitting or receiving devices to detect the same activity. Hence,
if some devices are changed, it is necessary to retrain the model for updating
the fingerprint database.

The third challenge is to eliminate random disturbance caused by environmen-
tal noises and electromagnetic interferences. These two negative factors may result
in unpredictable errors. Since the errors do not follow specific distributions, it is
hard to eliminate or zero them by repeating trainings. In other words, even if a user
performs a standard action identical to the one operated in the training phase, the
CSI may still have a large difference from the fingerprint in the database.

In this paper, we propose a novel approach to solve the 3 aforementioned
challenges. We’ve noticed that these challenges have been solved in image pro-
cessing field, so is it applicable in our research? The answer is Yes and irrelevant
to the existing fingerprint approaches. Instead, we propose a novel approach to
perform Wi-Fi imaging first on which highly precise human activity recognition
is implemented afterwards. The difficulty is how to perform WiFi imaging. Our
basic idea is similar to optical imaging systems where images are typically formed
by measuring the incoming signal intensities from each azimuth and elevation
angle. Therefore, in our perception region, if we can get the signal strength from
every direction, then we will get a heat map shows the shape of the object.
After we obtain the imaging sequence using the phase shift across antennas, we
can easily split continuous action imaging sequence. In order to better classify
the heat map, we propose a new classification method called IC2. The final
classification result can be obtained from the IC2.

Our contributions are summarized as follows:

1. CHAR proposes a novel approach to perform imaging using Wi-Fi signals
and achieves preferable effect.
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2. CHAR solves the problem of continuous motion segmentation by Wi-Fi
imaging.

3. CHAR builds a bridge between wireless and pictures. Our extensive experi-
ments show that CHAR is highly accurate in action recognition and insensi-
tive to the diversity of individual users.

2 Related Work

In the literature, researches related to human activity recognition can be divided
into two categories: Received Signal Strength Indicator (RSSI) based and Chan-
nel State Information (CSI) based approaches. In classification region, SVM
(support vector machine) and CNN (convolutional neural networks) have been
widely used and proved to have good performance.

2.1 RSSI Based

RSSI is sensitive to ambient movements, allowing it to produce a set of patterns
for identifying locations [13] and human activities [14–16]. The work proposed
in [14] employs RSSI measurements to obtain images of moving objects. The
authors in [17] use kernel distance-based radio tomographic to locate a moving
or stationary person. The authors in [18] design an RSSI based recognition sys-
tem over mobile phones, identifying 7 different gestures. RSSI based recognition
systems usually fail to recognize delicate motions because RSSI is too coarse to
perform fine-grained detections [18].

2.2 CSI Based

CSI is also susceptible to human activities, such as walking, falling, presence and
movements of part of human body. Because of its fine-grained WiFi signature,
CSI is capable to support highly accurate activity recognition. Utilizing CSI,
WiHear [7] detects lip and mouth movements. E-eyes [6] recognizes a set of
human activities by leveraging CSI values as fingerprints. FCC [19] achieves
device-free crowd counting using CSI. WiFall [8] detects people falls using CSI.
The authors in [20] propose a stationary presence and mobile user detection
scheme. CARM [9] utilizes the amplitude of CSI to recognize activities. ARM
[10] uses both amplitude and phase of CSI to achieve gesture recognition.

2.3 Classification

Classification is one of the most active research and application areas of machine
learning. The literature is vast and growing [21]. Traditional classification
approaches, such as SVM (Support Vector Machine), DT (Decision Tree), have
been widely applied for classification tasks, and exhibit great performance [21].
With the advent of convolutional neural networks (CNN), many researchers use it
for classification problems. The work proposed in [22] employs CNN to Sentence



626 Y. Zi et al.

Fig. 1. Imaging system Fig. 2. Overview of imaging approach

Classification. The authors in [23] design a Classifier to Image Classification. In
recent years, researchers have tried to achieve better classification performance
by increasing the depth of CNN. The VGG [24] uses a 19-layer neural network
and the Resnet [25] uses more than one hundred layers of network structure.
Apart from the factor of depth, researchers have proposed other different aspect
of architecture design, such as STN [26] and CBAM [27]. These modules can be
inserted into existing convolutional architecture, and achieve better performance
(Fig. 2).

3 Preliminary

In IEEE 802.11n standard, wireless communication uses OFDM modulated sig-
nals, which are transmitted over multiple orthogonal subcarriers, and each sub-
carrier have different frequencies [28]. For one subcarrier of frequency, the trans-
mitted model in frequency domain can be expressed as:

Y (f) = H(f) × X(f) + N(f). (1)

Where X(f) is the signal transmitted on subscarrier f , Y (f) is the received
signal, N(f) is the additive white Gaussian noise vector and is the channel
estimated result. If we have P subcarriers, we can get channel matrix H =
H(f)f=1...p which is called the Channel State Information (CSI). CSI reflects
the environment influences to the signal includes amplitude attenuation and
phase shift. That is to say, the CSI phase measures the phase shift of the WiFi
link between the transmitter and the receiver. What’s more, the CSI can be
easily obtained by COTS Intel 5300 NIC [29].

4 Design

In this section, we describe the processing flow of CHAR and address the asso-
ciated challenges. CHAR includes the three main stages: WiFi imaging using
CSI information received by commercial NICs, continuous action segmentation
of image sequences, action recognition using IC2.
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4.1 CHAR’s Imaging Algorithm

In this paper, we propose a novel approach to perform imaging using Wi-Fi
signals. CHAR’s approach is similar to optical imaging systems where images are
typically formed by measuring the incoming signal intensities from each azimuth
and elevation angle [30]. That is the transmitted signal can effectively “light
up” reflective objects and the receiver uses the reflections to image the objects.
Hence there is no need for distance computation and it can be implemented
on commercial Wi-Fi APs. However this is not easy to accomplish in practice.
because the receiver receives a linear of combination of reflections from multiple
regions representing different body parts on each of its antennas. In an optical
system, a lens is used to physically separate the received signals from different
directions. CHAR, in contrast, uses multiple antennas and phase differences
analysis to separate signals. In the rest of this section, we first recommend our
image system which includes a two-dimensional antenna array as receiver and a
directional antenna as transmitter, and then describe our image algorithm.

System Construction. CHAR is a system that captures human figure at first
and then conduct activity recognition using these figures. The whole process
includes transmitting Wi-Fi OFDM signals, receiving the reflections from dif-
ferent body parts, and processing these reflections to capture the human figure.
CHAR’s prototype consists of a directional antenna as transmitter and a two-
dimensional antenna array as receiver as shown in Fig. 1. The antenna arrays
along the x-y plane, and the antenna is located at the origin. There are a total
of N and M antennas along the x-axis and y-axis respectively, of which the dis-
tance between two adjacent is d. To describe the direction of a reflected signal
which can be received by the antenna array, two parameters are necessary. First,
the angle between the signal and the X axis called azimuth angle. Second, the
angle between the signal and the x-z plane called elevation angle.

CHAR’s Imaging Algorithm. CHAR performs imaging using multiple anten-
nas as Wi-Fi receiver which receives a linear combination of the multiple reflec-
tions from different directions, in other words, from different body parts (i.e.,
azimuth and elevation angles). Therefore, our key idea is to separate the received
signals from different directions and get the signal intensity in each direction.

Consider a reflection signal S(Ψk, αk) from the kth propagation path which
represent a signal coming from a part of the body, arrives at the receiver from
the azimuthal angle and the elevation angle αk. The complex attenuation at
the antenna in the origin of the signal after traveling along kth propagation
path is denoted by γk. The attenuation at the second antenna in the array is the
same except for an additional phase shift accumulated due to additional distance
traveled by the signal which depends on d, Ψk and αk.

Take two antenna A00 and Anm of our antenna array as an example, we
compute the phase shift between them. From basic physics, a distance differ-
ence Δd will introduce a phase shift e−j 2πΔd

λ , where λ is the signal wavelength.
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Fig. 3. Calculate the phase shift between antenna A00 and Anm

Thus, as shown in Fig. 3, for signal S(ψk, αk), the phase shift between antenna
A00 and Anm is given by:

Φn,m(ψk, αk) = γke−j
2πΔdn,m(ψk,αk)

λ (2)

where Δdn,m(ψk, αk) is the distance difference traveled by the signal between
A00 and Anm, as shown in the Fig. 3. According to trigonometric identities, we
can derive the following equations:

Δdn,m(ψk, αk) =‖ Anm ‖ cos(θk) (3)

cos(θk) =
S(ψk, αk) · Anm

‖ S(ψk, αk) ‖‖ Anm ‖ (4)

Where θk is the angle between the signal and the x-y plane, Anm is the vector
from the origin to the antenna element Anm, S(ψk, αk) is the signal vector, and
the (·) operations is the dot product between two vectors. The coordinate of
Anm can be expressed as (nd, md, 0), where d is the distance between adjacent
antennas, therefore, Anm can be expressed as:

Anm = [nd,md, 0]T (5)

where (T ) is transpose operation of the vector. Similarly, the signal S(ψk, αk)
from the azimuthal angle ψk and the elevation angle αk can be expressed as:

S(ψk, αk)
||S(ψk, αk)|| = [cos(αk)cos(ψk), sin(αk), cos(αk)sin(ψk)]T (6)

Combining all the above formula into Eq. 1, we can get the phase shift between
antenna A00 and Anm:

Φn,m(ψk, αk) = γke−j
2π(ndcos(αk)cos(ψk))+mdsin(αk))

λ (7)
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That is, ψk and αk will introduce a specific phase shift at different antenna.
Suppose the size of antenna array is N × M , and take the antenna in the origin
as reference, the phase shift between each antenna and reference antenna can be
write as:

Φ(ψk, αk)=

⎡
⎢⎣

1 · · · Φ0,M−1(ψk, αk)
...

. . .
...

ΦN−1,0(ψk, αk) · · · ΦN−1,M−1(ψk, αk)

⎤
⎥⎦ (8)

the receiving signal due to kth path can be expressed as a(ψk, αk), where
denotes the complex attenuation at the antenna in the origin along the path
and a(ψk, αk) is a vector accumulated elements in the matrix by column, it can
be expressed as:

a(ψk, αk) = [1...ΦN−1,0(ψk, αk)Φ0,1(ψk, αk)...ΦN−1,1

(ψk, αk)...Φ0,M−1(ψk, αk)...ΦN−1,M−1(ψk, αk)]T
(9)

The vector a(ψk, αk) is called steering vector which represents the phase shift
between different antennas theoretically. Because there are multiple propaga-
tion paths, we have multiple steering vectors. The overall steering matrix A is
defined as:

A = [a(ψ1, α1),a(ψ2, α2),a(ψL, αL)] (10)

L represents the number of propagation path and the dimensions of A is (N ×
M) × L. The receiver receives a linear combination of the multiple reflections
from different path, so the received signal can be expressed as:

x = AΓ (11)

where A is the steering matrix and Γ = [γ1, γ1, ..., γL]T represents the complex
attenuations along L propagation paths. The standard MUSIC algorithm can be
used for one-dimensional angle estimation, but it still applies to two-dimensional
case.

In our scenario, when we get the vector X through experimental measure-
ments, we can use the MUSIC algorithm to get the steering matrix A, and then
we can easily derive the azimuth and elevation angle. The key idea behind the
MUSIC algorithm is that the eigenvector of xxH corresponds to the eigenvalue
zero represents noise subspace, If they exist, then they are orthogonal to the
steering vector A which represents signal subspace. For simplicity, we omitted
the formula deduction process, and if you are interested, you can refer to [].

However, directly using the above-mentioned measured vector x does not give
a good result. It is theoretically proved that in order to obtain an eigenvector
corresponding eigenvalue is zero of the matrix xxH , the measured vector should
be a matrix whose rows and columns are both larger than the number of multi-
paths [31]. A straightforward method is to use multiple measurements/packets
to form a measurement matrix X, of which each column represents the result of
a single measurement. However, in this paper, we want to observe the influence
of the human activity on multiple packets, so we proposed an idea to obtain
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Fig. 4. Reflection off human body Fig. 5. Body segmentation

an imaging picture using only one data packet. We can increase the number of
physical antennas to increase the accuracy. But building a physical array is very
expensive and not suitable for real situations.

OFDM uses multiple subcarriers to transmit information, and the frequency
of each subcarrier is different. Since the frequency interval of the subcarriers is
small, the phase shift generated between the subcarriers is negligible for signals in
a certain direction, which means that the steering matrix of different subcarriers
is the same. In order to distinguish the phases of different subcarriers, the Tof
(Time of Flight) is introduced and the phases of different subcarriers can be
expressed as formula 12 [31]:

Ω(τk) = e−j2×π×fδ×τk (12)

Finally, the steering vectors of different subcarriers of different antennas can
be expressed as the kron product of formula 8 and formula 6.

Then, we can follow the classic MUSIC algorithm to solve the problem.
In one packet transmission, we can get the phase shift across different sub-

carriers of different antennas, For example, we use a 5300 NIC that can report
the CSI of 30 subcarriers. We can get the following measurement matrix:

Xmatrix =

⎡
⎢⎣

csi0,0,1 · · · csi0,0,30

...
. . .

...
csiN−1,M−1,1 · · · csiN−1,M−1,30

⎤
⎥⎦ (13)

Finally, transform X0 into one-dimentional column vector X:

Xmatrix = [csi0,0,1 · · · csiN−1,M−1,30] (14)

With the above measurement matrix, the following algorithm can be used to
get the final imaging results.

Algorithm summary:

1. Construct sample covariance matrix R = 1
P

∑P
i=1 XXH , where P is the num-

ber of subcarriers.
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Fig. 6. The bounding box of human body changing as moving

2. Perform eigenvalue decomposition of the matrix R. Order eigenvectors of
R according to eigenvalues. Let eigenvectors corresponding to L largest
eigenvalues span signal subspace S, and remaining eigenvectors span noise
subspace G.

3. Construct spatial spectrum

Pmusic(ψ, α) = 1
a(ψ,α)HGGHa(ψ,α)

Through the above steps, we can get the spatial spectrum Pmusic, which
represents the possibility of the existence of a signal in each direction. Pmusic
can be understood as the intensity of the signal in each direction called heat
map.

4.2 Continuous Human Activity Segmentation

When human performs continuous activity, a set of image sequences can be
obtained according to the imaging algorithm mentioned above, and many exist-
ing image processing algorithms can be used for continuous action segmentation.
In this paper, a simple algorithm is proposed to verify the feasibility of contin-
uous activity segmentation based on our heat map.

CHAR uses the body’s reflection signal to measure the angle of each part.
However at some point, our receiving antenna can only receive reflection from
only some parts of the body. As the Fig. 4 shows, because the propagation of
the signal satisfies the law of reflection, most parts of body’s reflected signals
can’t be received by the receiver. However, because the chest is large and convex,
its reflection signal is always the strongest. As shown in Fig. 5, we confirm the
center of the image according to the strongest reflection position, and then divide
a picture into the following six parts. The upper part of the chest represents the
head, the left and right sides of the chest respectively represent the left and
right arms, and the lower part of chest are the effect of the left and right legs
respectively.
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4.3 Human Activity Segmentation

A set of image sequences p1, p2, ..., pN can be obtained by using the imaging
algorithm, and then we use the minimal area segmentation method to split
the action [32]. First, the area of the bounding box is calculated by using the
bounding box of the human body. The value of the area is used as an index to
measure the degree of limb extension. The smaller the value, the closer the limb
is to the body, and the larger the value, the greater the limb is stretching. The
minimal value point is used as the action segmentation point. The key of the
algorithm is to find the minimum value of the bounding box area function. In
order to improve the noise resistance of the method and effectively locate the
minimum value points, the smooth function is first executed. The result shows
as the Fig. 6.

Smooth Body Bounding Box Area Function. Assume that Bt(x, y, w, h) is
the minimum enclosing rectangle of the human body in the t-th frame, referred to
as the human bounding box, where (x, y) represents the coordinates of the upper
left corner of the human bounding box, and w and h respectively represent the
surrounding width and height of the box. S(t) = Bw

t × Bh
t denotes the area func-

tion of the bounding box. The area of the human bounding box changes as the
person moves.

In order to overcome the influence of the missing character extraction, find
the essential regularity of the area function, we apply the local weighted smooth-
ing method to smooth the are function, the steps are as follows:

1. Set the width of the local smoothing window to L. The smoothing target
point is in the middle of the window. There are two neighbors on the left
and right sides, and the localized weighted linear regression is performed on
the target point. The regression model is f(t) = α0 + α1t, where α0 and α1

are constant terms and primary coefficients, respectively. The performance
indicator function is J(α0, α1) = 1

L

∑L
i=1 wi(Si − f(ti))2, where Si is the

area value of the i-th point in the smoothing window, and the initial weight
function is wi = (1 − | t−ti

d(t) |3)3, t is the target position, ti is the i-th neighbor
position of the t point in the smoothing window, and d(t) is the farthest
distance from the neighboring data point in the window.

2. Calculate the residual ri = Si − f(ti) of each data point in the window based
on the weighted regression data.

3. Calculate the weight of each data point in the window, and define the
weight as

wi =
{

((1 − ( ri

6M )2)2 ri < 6M
0 ri � 6M

(15)

where ri is the residual of the i-th data point, and M is the median of the
absolute values of the L residuals, which is used to measure the degree of
dispersion of the residual. If ri < 6M , the corresponding weight is close to 1,
if ri � 6M , the weight is 0.
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4. Re-execute the weighted linear regression function of step 1 and setting iter-
ations being 5, using the regression model as the smoothing model.

After smoothing, most of the fluctuation points can be eliminated, making the
area function more regular.

Action Segmentation. Let S
′
(t) be the area function after smoothing. If t

′

satisfies the inequality

(S
′
(t

′
+ 1) − S

′
(t

′
)) × (S

′
(t

′
) − S

′
(t

′ − 1)) � 0 (16)

Then, S
′
(t

′
) is an extreme value of the function S

′
(t)

Considering the incompleteness of the action at the start and end point,
and in order to reduce the impact of insufficient smoothing, the extreme points
calculated by equation(16) are subjected to secondary filtering in the space-time
domain:

1. The area of the start frame and the end frame of the video is added to the
set of extreme points, and the maximum or minimum value is determined
according to the trend of change of S

′
(t).

2. Each extreme point Si is checked in turn. If the time interval between Si

and the adjacent extreme point Si−1 is less than the threshold Tt, and their
area difference is less than Ts, Then Si is regarded as the interference point.
According to multiple experiments, Tt is set to 0.2 s (that is, 25 frames/s, 5
frames apart), and Ts is set to 0.1 × min(Si−1, Si).

After filtering twice, the attribute value is judged by the extreme point, if
(S

′
(t

′
+ 1) − S

′
(t

′
)) > 0 is satisfied, it is a minimum value point. After obtain-

ing the minimum value point of the area function, the frame sequence between
the extracted minimum value points is sequentially divided into separate action
segments, thereby achieving action segmentation.

4.4 IC2-Based Activity Recognition

CHAR can obtain image sequences by using Wi-Fi imaging method. The frame-
work of our classifier is showed in Fig. 7. The above-mentioned continuous motion
segmentation algorithm can divide the sequence of pictures into several sequences
according to the actions performed. Each sequence represents a complete action
and we call it a sample. We process the input data through STN (Spatial Trans-
former Network) before the VGG19.

In traditional image classification, input data is a serials of samples which
each sample is a three channel colored picture. Our input data is a set of con-
secutive action sequences represented in heat map format. Each sample is a 51
* 61 * 16 pixel picture which 51 being width, 61 being height and the number
of each action being 16. In order to match the input channel of pictures, we
transform the dimensionality to 272 * 61 * 3 while holding the amount of pixels
unchanged.
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Fig. 7. Framework of IC2

Fig. 8. System overview Fig. 9. Imaging result (left: CHAR, right:
Wision)

5 Implementation

We implemented our system using off-the-shelf Intel 5300 Wi-Fi NICs. We
employed Linux CSI tool [68] to obtain the PHY layer CSI information for
each packet. Our transmitter is directional antenna on the NIC, whose model is
SCWL-2425-15D65VHPB-001. Its horizontal lobe width is 20◦ and the vertical
lobe width is 70◦. The object stands at a position two meters away from the
antenna, and the beam of the antenna can cover the whole body of the person.
Therefore, the use of directional antennas can effectively eliminate the effects of
other objects.

Our receiver is a two-dimensional antenna array, the size of which is 4 × 4
using eight NICs. Because we use the phase difference between antennas to
calculate the direction of arrival of the signal, different antennas should be syn-
chronized. However, due to hardware errors, the antenna between different NIC
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has CFO, SFO, PDD and so on. We use the method proposed in Phaser[d] to
calibrate the phase. Since the clock sources of different NIC are different, it is
difficult to be calibrated. We send the signal of one antenna of one NIC to the
other through the power splitter. We use the data of the sacrificed antenna to
calibrate the phase between different NIC. So if we use 4 network cards can form
a 3× 3 receiving antenna array as shown in Fig. 8. The phase difference between
different antennas of the same NIC can be calibrated by software. For more
detailed principles, please refer to Phaser. In the following evaluation, we use 8
network cards to form a 4 × 4 receiving antenna array, in which one antenna
data is not used.

6 Evaluation

We evaluate our prototype in an office building. First, CHAR uses a 2-D antenna
array to evaluate the ability to image objects. Next, CHAR demonstrates the
ability to identify different human activities using imaging results.

(a) Squat continuous motion imaging

(b) Left leg side lift continuous motion imaging

Fig. 10. Human figures obtained with CHAR

6.1 Imaging Using 2D Antenna Arrays

According to the analysis of 4.2, the reflected signal propagation conforms to the
law of reflection. So in order to obtain the reflection signal of more body parts,
we use two directional antennas as transmitting, which are placed at coordinates
(10, 70) and (10, 140) respectively. We use 4×4 antenna array as receiver whose
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coordinate is (0, 0) and the distance between every two adjacent antennas is half
wavelength. CHAR sends OFDM symbols which contain multiple subcarriers and
the central frequency is 2.4 G.

Experimenter stands at a location of two meters away from the receiving
antenna. In order to receive signal from different body part, experimenter should
make a slight movement in situ, collects the data of two seconds, and achieve
WiFi imaging using the algorithm proposed above in which multiple data packets
are used for better imaging results. We compared the imaging results of CHAR
and Wision [30]. In the specific implementation, the two systems sent the same
data, and the imaging results are shown in Fig. 9.

Result: Due to the movement of the experimenter, different body parts will
introduce a reflection signal, and the imaging result are shown in Fig. 10. We
can see that the strongest reflection area is located in the chest part, and the
reflection of the head and limbs is weak, but Wision’s resolution is very low and
in which different parts of the body can not be distinguished.

(a) Uniform L array (b) Homogeneous planar array

(c) Uniform cross array (d) Uniform circle array

Fig. 11. Comparison of different antenna arrays
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6.2 Imaging Human Activity

To evaluate the human activity imaging performance of CHAR, we design five
different actions namely left hand raising, right hand raising, left leg lifting, right
leg lifting and squating. We have 5 participants and everyone preforms the five
actions above for ten times.

In order to see the imaging results of continuous motion, we used the infor-
mation of the subcarriers shown in 4.1 for imaging. We can see that the imaging
result changes as object performs actions with different data packets. For each
motion, we choose the results of some representative packets. As shown in Fig. 10,
figures on the left shows the imaging results of our system and those on the right
shows the actual actions of the user. For the squatting action, we can see that
as experimenter moves down, the strongest reflection point keeps moving down;
for left leg lifting, we can see the change of a leg raised to the side. Different
changes can be observed for the five simple actions.

6.3 Comparison of Different Antenna Arrays

In Sect. 4.2.2, this article describes several arrays of different shapes that can be
used for 2D DOA estimation. In order to study the performance and effects of
various arrays, MATLAB was used in this section for simulation experiments. In
the experiment, the number of signals to be tested is D = 3, the signal-to-noise
ratio is SNR = 10 dB, the number of snapshots is N = 100, and the azimuth and
elevation angles of the three sources are: (−18◦., 18◦), (18◦)., 27◦), (46.8◦, 57.6◦).
The two-dimensional spectrum search is performed in the range of azimuth angle
−90◦ to 90◦ and pitch angle 0 to 90◦, and the angle search interval is 0.05◦.
Except for a uniform circular array, the distance between adjacent antennas is
λ/2, and the radius of the circular array is λ. Using this distance can effectively
resist the phase ambiguity problem, and the specific principle is beyond the scope
of this paper. The circular array has 8 array elements, and the plane array, cross
array and L array have 9 array elements. The 2D MUISC results for the four
different arrays are shown in Fig. 11.

The X axis represents the azimuth angle, the Y axis represents the pitch
angle, and the Z axis represents the magnitude of the MUSIC spectrum obtained.
It can be understood as the signal strength of the angle, and the circle represents
the estimated angle information. Comparing the four graphs, it can be found that
in the case where the number of antenna elements is similar, the spectrum of the
uniform circular array and the uniform cross array is sharper, and the plurality of
spectral peaks are relatively uniform, indicating that its angle measuring ability
is stronger. However, in reality, the uniform planar array has a smaller aperture
and a smaller footprint, and the theoretical model is closer to the real scene.
Therefore, a uniform planar array is used in the actual experiment.

Overall, we have sufficient resolution for our imaging systems to meet imaging
requirements. Although the uniform L-array performs well, the angular accuracy
and stability are very strong, but its array aperture is large, and the actual area
occupied is large. Therefore, it is quite different from the signal propagation
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Fig. 12. Confusion matrix of activity
classification with SVM

Fig. 13. Confusion matrix of activity
classification with IC2

model and is not suitable for the actual scene. Uniform planar arrays have poor
overall performance. Uniform circular arrays and uniform cross arrays have good
direction finding accuracy and stability, and can perform two-dimensional direc-
tion finding on multiple incoherent sources.

6.4 Activity Recognition

We test our data in five different actions and each action contains 500 samples.
80% are used as training sets and 20% test sets. The parameters for IC2 are set
as follows, learning rate 0.01, epoch 100 and batch 75.

Confused Matrix Comparison. The confused matrix shows both SVM and
IC2 can get at least 80% classification accuracy. As Figs. 12 and 13 show, espe-
cially in squat moving which can capture more representative features than other
moving actions. Accuracy can reach up to 1 and no misclassification. We analyze
the statistics through comparing the squat moving with other moving actions,
the previous action can track the reflected signal from chest up and down with
moving which can lead to strong representative features. The worst case is classi-
fying the right hand raising action which the accuracy is 80%. Because classifica-
tion is based on continues sequences partition, arm and leg can not reflect strong
signals due to their physical shapes.All CNN based classification approaches are
beyond 91%.

Classification Accuracy Comparison. Both SVM and IC2 can reach up to
very high accuracy when the number of classification is small. Figure 14 shows
that as the number increases, IC2 begins to show more advantages than SVM.
The average accuracy of IC2 still maintains in high level even the difficulty
increased. During our test, We observe that IC2 network is much more robust
than SVM. For different test samples, once the loss is converged in training data
set, the evaluation accuracy will always maintain in very high level rather than
SVM that has very fluctuation.
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Fig. 14. Accuracy comparison between SVM, VGG19 and IC2

7 Conclusion

Indoor wireless sensing has spawned numerous applications in a wide range of
living, production, commerce, and public services. The increase of mobile and
pervasive computing has sharpened the need for accurate, robust, and off-the-
shelf indoor continuous action recognition schemes. CHAR can easily solve auto-
matic segmentation and action recognition problem using WiFi imaging which
is achieved using the transmitted signals reflected from different body parts. We
propose a novel approach using these reflections to realize Wi-Fi imaging. The
evaluations demonstrate that CHAR can reach an average 95% high matching
accuracy under a wide variety of environment.
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