
Predicting Traffic Flow Based
on Encoder-Decoder Framework

Xiaosen Zheng, Zikun Yang, Liwen Liu, and Li Kuang(&)

School of Computer Science and Engineering,
Central South University, Changsha 410075, China

kuangli@csu.edu.cn

Abstract. Predicting traffic flow is of great importance to traffic management
and public safety, and it has high requirements on accuracy and efficiency.
However, the problem is very challenging because of high-dimensional features,
spatial levels, and sequence dependencies. On the one hand, we propose an
effective end-to-end model, called FedNet, to predict traffic flow of each region
in a city. First, for the temporal trend, period, closeness properties, we obtain
low-dimensional features by downsampling high-dimensional input features.
Then we perform temporal fusion to get temporal aggregations of different
spatial levels. Next, we generate traffic flow by upsampling the fused features
which are obtained by combining the corresponding temporal aggregation and
the output of the previous upsample block. Finally, the traffic flow is adjusted by
external factors like weather and date. On the other hand, we transfer the original
task into a sequence task and then use teacher forcing to train our model, which
make it learn the sequence dependencies. We conduct extensive experiments on
two types of traffic flow (new-flow/end-flow and inflow/outflow) in New York
City and Beijing to demonstrate that the FedNet outperforms five well-known
methods.

Keywords: Traffic flow prediction � Encoder-Decoder framework �
Skip connection � Teacher forcing

1 Introduction

Predicting traffic flow in a city is of great importance to traffic management and public
safety. For example, massive crowds of people streamed into a strip region by different
vehicles like the bike, taxi, bus, subway etc. at the 2015 New Year’s Eve celebrations
in Shanghai, resulting in a catastrophic stampede. If we can predict the traffic flow with
high accuracy and efficiency, then adopt emergency measures, such tragedies can be
mitigated even prevented.

New-flow is the transportation flow originating from a region at a given time
interval. End-flow is the transportation flow terminated in region. Intuitively, new-flow
and end-flow track the origins and final destinations of the transportation. These thus
summarize the movements of transportations and are enough for traffic management
and risk assessment, as shown in Fig. 1.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 518–533, 2019.
https://doi.org/10.1007/978-3-030-30146-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_36&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_36

Although recently published works consider spatial dependencies, temporal
dependencies and external influence, model them properly and get the state-of-the-art
accuracy, simultaneously predicting the traffic flow in each region of a city is still
challenging, affected by the following aspects:

1. High-Dimensional Features. A city usually has a very large size, containing many
regions, so the dimension of the input matrix will be high. And for citywide traffic
prediction, the output matrix will have the same size with the input matrix. So,
previous mentioned state-of-the-art models, which are based on deep neural net-
works, usually obtain high-dimensional features in hidden layers. First, from the
perspective of auto-encoder, if the dimension of feature is too high, it will be
difficult for the model to learn useful information from the input and get more
general representations [2]. Second, using these high-dimensional features usually
requires more parameters and computation.

2. Spatial Levels. To capture the city-wide spatial dependencies, we stack some
convolution layers because one convolution layer only accounts for near spatial
dependencies. However, if we only consider the output of the final convolution
layer which contains coarse semantic information of city-wide spatial dependencies,
we will lose too much detail information from low-level spatial dependencies like
distinct-wide spatial dependencies, especially when we use stride-2 convolution.

3. Sequence Dependencies. Some external factors like events may tremendously
change the traffic flow in continuous time steps. Although we employ external
component, we cannot collect all the information due to many realistic limitations.
If we train the model by one-time-step predicting, then the model will focus on the
next time step and is not robust enough to tackle some unexpected continuous
volume change. For this issue, we consider the relationship among multiple future
time steps as sequence dependencies.

To tackle these challenges, we propose an effective model, called FedNet, to col-
lectively predict traffic flow in every region more accurately and more efficiently. The
primary contributes of this paper can be summarized as follows:

1. FedNet adopts the encoder-decoder framework to obtain the low-dimensional fea-
tures by downsampling the high-dimensional features for each temporal property,
which leads it to learn more general representations and reach higher accuracy while
needs fewer parameters and computation.

2. Not only consider temporal properties, but we also take the influence of spatial
properties into account. Inspired by Skip Architecture [3], we add some skip

Fig. 1. Traffic flow in a region [1].

Predicting Traffic Flow Based on Encoder-Decoder Framework 519

connections between corresponding temporal fusion blocks and upsample blocks to
model different level spatial properties respectively. Especially, we make use of the
detail information from lower spatial level.

3. We model the sequence dependencies, which means the relationship among mul-
tiple future time steps, by forcing the model to predict multi-time-step at the training
stage. Instead of using recursive multi-step forecast which is hard to train because of
slow convergence, model instability and poor skill, we adopt teacher forcing [4],
which works by using the actual output from the training dataset at the current time
step y(t) as input in the next time step X(t + 1) rather than the output generated by
the network.

2 Related Work

Traffic Flow Prediction. For individual-scale traffic flow prediction, some previous
work mainly predicts massive individuals’ traces based on people’s location history [5,
6], which requires massive computation. For road-scale, some researchers focus on
predicting travel speed and traffic volume on the road [7–9]. For region-scale, there are
previously published works like FCCF [1], which naturally focus on the individual
region instead of the city and need a complex method to find irregular regions.
However, such tasks that focus on part of the city are not always necessary for
applications like traffic management which needs the information of the overall situ-
ation. Recently, researchers have started to focus on city-scale traffic flow prediction,
tried to adopt deep learning methods and proposed some effective models like DeepST
and ST-ResNet [10, 11]. These DNN-based models firstly partition the city using a
grid-based method. However, all these methods are different from ours where they did
not tackle the challenges of high-dimensional features, spatial levels, and sequence
dependencies.

Deep Learning. To capture spatial dependencies, the convolution neural network has
been successfully applied to various problems like image classification [12]. For
capturing temporal dependencies, recurrent neural networks based on the long short-
team memory unit has been successfully used to various sequence learning task [13].
To capture spatial-temporal dependencies, researchers recently proposed a convolu-
tional LSTM network [14]. However, this network exists gradient vanishing problem,
so it cannot model very long-range temporal dependencies. Also, training becomes
more difficult as depth increases. Instead, ST-ResNet employs residual learning that
enables networks to have a deep structure and a parametric-matrix-based fusion
mechanism to model the spatial-temporal dependencies of traffic flow [15]. Though it
shows state-of-the-art results, it has massive parameters and requires huge computation,
which limits its application. Also, it did not consider modeling different spatial level
properties and explore the sequence dependencies of traffic flow predicting task.

Encoder-Decoder Framework. The idea of the encoder-decoder framework is sim-
ple: An encoder processes the input and emits a fixed-dimension context. Then a
decoder generates the output based on the context. For machine translation, researchers

520 X. Zheng et al.

proposed the encoder-decoder or sequence to sequence architecture to map a variable-
length sequence to another variable-length sequence for machine translation which
obtained state-of-the-art translation [13]. In computer vision field, the convolution
encoder-decoder framework is widely applied, especially for some problems that must
generate an image output but not a label such image segmentation, style transfer and
super-resolution [3, 16, 17]. To the best of our knowledge, no prior work studies
predicting traffic flow based on the encoder-decoder framework.

3 Preliminary

In this section, we first present several preliminaries and define our problem formally.

Definition 1 (Region [11]). There are many definitions of a location in terms of
different granularities and semantic meanings. In this study, we partition a city into an
H �W grid map based on the longitude and latitude where a grid denotes a region.

Definition 2 (New-Flow/End-Flow [1]). The movement of a transportation can be
recorded as a trajectory T , which is a sequence of time-ordered points,
T : p1 ! p2 ! . . . ! p Tj j, where each point pi ¼ ai; bi; tið Þ has a geospatial coordi-
nate position ai; bið Þ and a timestamp ti, and Tj j is the number of point in T . Likewise,
the movement of crowds can be represented by a collection of trajectories P. Specif-
ically, for a region g i; jð Þ, the two types of flow at timestamp t, namely new-flow and
end-flow, are defined respectively as

xnew;i;jt ¼ T 2 P : a1; b1ð Þ 2 g i; jð Þ; t1 ¼ tf gj j
xend;i;jt ¼ T 2 P : a Tj j; b Tj j

� �
2 g i; jð Þ; t Tj j ¼ t

� ��� ��
where ai; bið Þ 2 g i; jð Þ means that point pi lies within region g i; jð Þ. A simple example
of new-flow and end-flow in every region is as shown in Fig. 2. At the tth time interval,
new-flow and end-flow in all I � J regions can be denoted as tensor Xt 2 R

2�I�J where
ðXtÞ0;i;j ¼ xnew;i;jt ; ðXtÞ1;i;j ¼ xend;i;jt :

Fig. 2. The taxi new-flow and end-flow example of New York City. (The deeper red means
higher traffic volume) (Color figure online)

Predicting Traffic Flow Based on Encoder-Decoder Framework 521

Problem 1. Given the historical observation fXtjt ¼ 0; 1; . . .; n� 1g predict Xn.

4 Model Architecture

In this section, we describe the architecture of our proposed FedNet, as shown in
Fig. 3. FedNet is comprised of four components: an encoder component, a fusion
component, a decoder component, and an external component. Referring to previous
work, we also turn the traffic flow like new-flow and end-flow into 2-channel image-
like matrices according to Definitions 1 and 2, and then divide the input sequence into
three fragments: trend, period, closeness according to the analyzation [10, 11]. The
encoder component captures the spatial dependencies of the input sequence trend,
period, closeness respectively. The fusion component contains two sub-components:
temporal fusion sub-component and the spatial fusion one. The temporal fusion sub-
component outputs temporal aggregations of different spatial levels. The spatial one is
used to combine corresponding temporal aggregation with the output of previous the
upsample block. The decoder component generates the traffic flow output by upsam-
pling the fused features. The traffic flow is further adjusted by the external component
that processes the external factors (e.g. holidays) and combines traffic flow with
external features.

Fig. 3. FedNet (Flow Encoder-Decoder Network) architecture. Down0: No. 0 downsample
block; Time: Temporal fusion block; Up0: No. 0 upsample block; External: External block. Same
color means sharing the same weight. (Color figure online)

522 X. Zheng et al.

4.1 Encoder Component

The trend, period, closeness fragments share the same encoder component that com-
prises some downsample blocks, which are composed of stride-2 convolution layer,
batch normalization layer and leaky relu layer, as shown in Fig. 4.

Downsample Blocks Sharing. We share one group of downsample blocks among
trend, period, closeness instead of using three groups because it is obvious that the
spatial pattern of a city is relatively stable among trend, period, closeness fragments as
shown in Fig. 5. This structural change cuts down the amount of parameter, leads the
model to learn more general representations and reduces the risk of overfitting.

Fig. 4. Downsample block structure. 3*3: kernel size; 64: channel number; /2: Stride-2;
BatchNorm: Batch Normalization.

Fig. 5. Spatial dependency example of trend, period and closeness.

Predicting Traffic Flow Based on Encoder-Decoder Framework 523

Stried-2 Convolution. A stack of convolution layers can capture the spatial depen-
dencies among regions in the city. For serval benefits, we use the stride-2 convolution
to downsample the input.

The first benefit is about feature extraction. An autoencoder whose output dimension
is less than the input dimension is called under complete. We can obtain most salient
features of the training data from the under complete autoencoder because it is forced to
learn an under complete representation. Motivated by under complete autoencoder, we
consider stride-2 convolution can help us get more general representations.

The second benefit is about computation. The task of traffic flow prediction needs a
real-time reaction, so we want to reduce the computation as much as possible while
ensuring effectiveness. We use flops of convolution to measure the computation of the
model as follows

FLOPs ¼ 2 CinK
2 þ 1

� �
H0W 0Cout ð1Þ

where H0W 0, the output size of stride-n convolution, is the 1=n2 of normal convolution,
so the FLOPs will also be the 1=n2 [18]. Cin and Cout are input channels and output
channels respectively. And K means kernel size.

The third benefit is about effective receptive field size. Citywide traffic flow pre-
diction requires each pixel in the output to have a large effective receptive field in the
input. For example, each 3 � 3 convolution layer increases the effective receptive field
size by only 2. But using stride-2 convolution layer, each layer increases the effective
receptive field more efficiently as follows

Rl ¼ Kl; l ¼ 0 ð2Þ

Sl ¼ S0 � S1 � . . . � Sl�1; l ¼ 1; 2; ::m ð3Þ

Rl ¼ ðRl�1 � 1Þ � Sl þKl; l ¼ 1; 2; ::m ð4Þ

where R is the receptive field size, K is the convolution kernel size, S is the convolution
stride and layers are numbered by l.

In FedNet, we stack mþ 1ð Þ downsample blocks upon the input sequence
Xt;Xp;Xc½ �. Take the closeness property as an example, which is shown as follows

Xdc
l ¼ downl Xcð Þ; l ¼ 0 ð5Þ

Xdc
l ¼ downl Xdc

l�1

� �
; l ¼ 1; 2; . . .m ð6Þ

where Xdc
l is the closeness property output of No. l downsample block.

4.2 Fusion Component

The fusion component comprises two sub-components: Temporal fusion sub-
component and the spatial fusion one. The Temporal fusion sub-component com-
prises some temporal fusion blocks, which are composed of the concatenate layer, one

524 X. Zheng et al.

by one convolution layer and leaky relu layer, as shown in Fig. 6. The spatial fusion
one is composed of some skip connections as shown in Fig. 3. Like downsample
blocks sharing above, we share only one temporal fusion block among different spatial
level, because we want the model to capture a general temporal pattern of trend, period,
closeness, which is independent to specific spatial level. This structural change also
cuts down the amount of parameter, leads the model to learn more general represen-
tations and reduces the risk of overfitting.

1*1 Convolution. Instead of using parametric-matrix-based fusion [11], which
requires a different size for different input feature and is unstable with weight initial-
ization methods, we adopt one by one convolution [19] as our temporal fusion method.
One by one convolution was first introduced by Lin et al. [20] to generate a deeper
network without simply stacking more layers. However, in our paper, we majorly
consider it as a feature transformation method. Although 1*1 convolution is a ‘feature
pooling’ technique, there is more to it than just sum pooling of features across various
channels/features maps of a given layer. Because this transformation is learned through
the (stochastic) gradient descent, so we can use it to learn the different influence of
trend, period, closeness according to the training data instead of manual setting specify
weights.

In this sub-component, for every spatial level, we first concatenate three down-
sample output and then pass the intermediate output to 1*1 convolution layer that is
followed by a non-linear activation layer like leaky relu, as shown as follows

Xtime
m�l ¼ time Xdt

l ;X
dp
l ;Xdc

l

� �
; l ¼ 0; 1; . . .m ð7Þ

where Xtime
m�l is the temporal aggregation of No. m� lð Þ spatial level.

Skip Connection. To capture the city-wide spatial dependencies, we stack some
convolution layers in the encoder because one convolution layer only accounts for near
spatial dependencies. However, if we only consider the output of the final convolution
layer which contains coarse semantic information of city-wide spatial dependencies, we
will lose too much detail information from low-level spatial dependencies like distinct-
wide spatial dependencies, especially when we use stride-2 convolution. Inspired by
Skip Architecture, we add some skip connections between corresponding temporal

Fig. 6. Temporal fusion block structure. 1*1: kernel size; 64: channel number; /1: Stride-1.

Predicting Traffic Flow Based on Encoder-Decoder Framework 525

fusion block and upsample blocks to model these spatial properties respectively.
Especially, we make use of the detail information from lower spatial level. This sub-
component is also learned end-to-end to refine the traffic flow prediction, as shown as
follows

Xs
l ¼ Xtime

m�l þXu
l�1; l ¼ 1; . . .m ð8Þ

where Xs
l is the spatial fused feature of No. l skip connection.

4.3 Decoder Component

The decoder component comprises some upsampling blocks, which is composed of the
interpolate layer, convolution layer, batch normalization layer, and leaky relu layer, as
shown in Fig. 7.

Instead of using transposed convolution that causes Checkboard Artifacts [21], we
use factor-2 nearest-neighbor interpolation [22] to upsample the input feature until
getting the expected size output, which is simple yet effective as follows

Xu
l ¼ upl Xs

l

� �
; l ¼ 0; 1; . . .m ð9Þ

Xdec ¼ Xu
m ð10Þ

where Xu
l is the output of No. l upsample block and Xdec is the output of the final

upsample block.

4.4 External Component

External encoder component is composed of the linear layer, dropout layer, and leaky
relu layer, as shown in Fig. 8.

Fig. 7. Upsampling component block structure.

526 X. Zheng et al.

Referencing previous work [10, 11], we know that traffic flow can be affected by
many external factors like the date. In our experiments, we mainly consider date
features, which can be obtained directly, like is_month_start. Also, we use weather
features that can be approximated by the forecasting weather. Then, we stack two linear
layers to process external input which is the feature vector that represents the external
factors. Finally, we use the output of external component Xext to adjust Xdec by
summing them up as follows

cXt ¼ tanh Xdec þXextð Þ ð11Þ

4.5 Model Training

We finally present the training method of our model. FedNet is trained end to end.
Especially, to tackle some hard task, at training stage, we transform the one-time-step
prediction problem into a multi-time-step sequence prediction problem, and then adopt
Teacher Forcing and design a new loss function as shown in Fig. 9. At inferencing
stage, for the sake of comparing, we only perform one-time-step prediction and use
f RMSE (factored Root Mean Square Error) as the metric.

Fig. 8. External component structure.

Fig. 9. Sequence predicting and teacher forcing training.

Predicting Traffic Flow Based on Encoder-Decoder Framework 527

Teacher Forcing. Some external factors like events may tremendously change the
traffic flow in continuous time steps. Although we employ external component, we
cannot collect all the information due to many realistic limitations. If we train the
model by one-time-step predicting, then the model will focus on the next time step and
is not robust enough to tackle some unexpected continuous volume change. For this
issue, we consider the relationship among multiple future time steps as sequence
dependencies. To address this issue, we model the sequence dependencies by force the
model to predict multi-time-step at the training stage. Instead of using recursive multi-
step forecast which is hard to train because of slow convergence, model instability and
poor skill, we adopt teacher forcing, which works by using the actual output from the
training dataset at the current time step y(t) as input in the next time step X(t + 1)
rather than the output generated by the network.

For one time-step training, our model is trained to minimize the MSE (mean square
error) between the predicted flow matrix and the ground truth:

Lst ¼
1
z

X
i
ðxi � bxiÞ2 ð12Þ

where bxi and xi are the predicted value and the ground truth, respectively; z is the
number of all predicted values.

For multi-time-step training, we define the corresponding loss as the average loss of
jþ 1ð Þ time-step.

Lmt ¼ 1
jþ 1

ðLst þ Lstþ 1 þ . . .þ Lstþ jÞ ð13Þ

To evaluate our model, we design the factored Root Mean Square Error as

factor ¼ H �W
available

ð14Þ

f RMSE ¼
ffi
factor � 1

z

X
i
ðxi � bxiÞ2

r
ð15Þ

where available is the amount of available regions and H �W is the amount of all
regions.

5 Experiments

5.1 Experiment Settings

Datasets. We use 4 different sets of data as shown in Table 1, as detailed as follows.

• TaxiBJ [11]: Trajectory data is the taxicab GPS data and meteorology data in
Beijing from four intervals: 1st Jul. 2013 - 30th Oct. 2013, 1st Mar. 2014 - 30th
Jun. 2014, 1st Mar. 2015 - 30th Jun. 2015, 1st Nov. 2015 - 10th Apr. 2016. Using

528 X. Zheng et al.

Definition 2, we obtain two types of crowd flows. We choose data from the last four
weeks as the testing data, and all data before that as training data.

• BikeNYC [11]: Trajectory data is taken from the NYC Bike system in 2014, from
Apr. 1st to Sept. 30th. Trip data includes: trip duration, starting and ending station
IDs, and start and end times. Among the data, the last 10 days are chosen as testing
data, and the others as training data.

• CitiBikeNYC: Trajectory data is taken from the NYC Citi Bike System in 2014,
from Apr. 1st to Sept. 30th. Among the data, the last 10 days are chosen as testing
data, and others as training data. Among the data, the last 10 days are chosen as
testing data, and others as training data.

• TaxiNYC: Trajectory data is taken from the Taxi & Limousine Commission System
in 2014, from Apr. 1st to Sept. 30th. Among the data, the last 10 days are chosen as
testing data, and the other as training data. Among the data, the last 10 days are
chosen as testing data, and the others as training data.

Baselines. We compare our model with six different baselines as detailed as follows.

• ARIMA: Auto-Regressive Integrated Moving Average (ARIMA) is a well-known
model for understanding and predicting future values in a time series.

• SARIMA: Seasonal ARIMA.

Table 1. Datasets

Attribute Dataset
BikeNYC TaxiBJ CitiBikeNYC TaxiNYC

Data type Bike GPS Taxi GPS Bike GPS Taxi GPS
Location New York Beijing New York New York
Gird map size (16, 8) (32, 32) (16, 16) (16, 16)
Time span 4/1/2014 -

9/30/2014
7/1/2013–
10/30/2013
3/1/2014–
6/30/2014
3/1/2015–
6/30/2015
11/1/2015–
4/10/2016

4/1/2014–
9/30/2014

4/1/2014–
9/30/2014

Time interval 1 h 30 min 1 h 1 h
Available time
Interval

4392 22459 4392 4392

Holidays 20 41 20 20
Weather \ 16 types

(e.g. Sunny)
\ \

Temperature/°C \ [− 24.6, 41.0] \ \
Wind/mph \ [0, 48.6] \ \

Predicting Traffic Flow Based on Encoder-Decoder Framework 529

• VAR: Vector Auto-Regressive (VAR) is a more advanced spatial-temporal model,
which can capture the pairwise relationships among all flows, and has heavy
computational costs due to the large number of parameters.

• DeepST: a deep neural network (DNN)-based prediction model for spatial-tem-
poral data.

• ST-ResNet: a deep spatial-temporal residual network to collectively predict traffic
flow of every region, which shows state-of-the-art results on crowd flow prediction.

Hyper Parameters. For input, we fix trend, period, closeness to one week ago, one
day ago and one hour ago, which have the same fragment length 1. For teacher forcing,
the amount of predicting time step is 4. Our model is implemented with PyTorch 0.4.1,
a popular Deep Learning Python library [23]. The stride-2 convolutions of all down-
sample blocks use 64 kernels of size 3 * 3, the convolution of time block use 64 kernels
of size 1 * 1 and those of upsample blocks use 64 kernels of size 3 * 3. We select part
of the data as training data and then use it to train the model, the rest of the data like the
final 10 days’ data is the test set. The batch size is 32. We use Adam [24] with the
default learning rate 0.001 with a fixed number of epochs (e.g. 100 epochs) and the
batch size is 32, and decide whether to update the parameters based on the validation
score.

5.2 Experiment Results

Table 2 shows the results of our models and other baselines on BikeNYC and TaxiBJ.
Being different from BikeNYC, TaxiBJ is another type of traffic flow, including inflow
and outflow [11]. Comparing with the previous models, FedNet_ETS_T, which adopts
the encoder-decoder framework, temporal fusion, spatial fusion, and teacher forcing, has
9.00% and 7.01% lower RMSE respectively. Table 3 shows the results of our model on
CitiBikeNYC and TaxiNYC. Comparing with the previous best model, FedNet_ETS_T
has 9.92% and 3.00% lower RMSE respectively. These results demonstrating the
effectiveness of our model.

Table 2. Comparisons with baselines on BikeNYC and TaxiBJ. The results of ARIMA,
SARIMA, VAR, ST-ANN, and DeepST are taken from (Zhang et al. 2017).

Model RMSE
BikeNYC TaxiBJ

ARIMA 10.07 22.78
SARIMA 10.56 26.88
VAR 9.92 22.88
DeepST 7.43 18.18
ST-ResNet 6.33 16.69
FedNet_ET 5.90 16.22
FedNet_ETS 5.83 15.73
FedNet_ETS_T 5.76 15.52

530 X. Zheng et al.

5.3 Ablation Studies

Considering previous works [10, 11] have approved the effectiveness of temporal
fusion and external features, so we majorly discuss the effectiveness of the encoder-
decoder framework, spatial fusion, and teacher forcing.

• Encoder-Decoder Framework: For BikeNYC and CitiBikeNYC, comparing to ST-
ResNet, FedNet_ET brings 6.79% and 8.52% lower RMSE respectively, which
shows the effectiveness of the encoder-decoder framework. However, for TaxiBJ,
we get less improvement, and the result of TaxiNYC even becomes worse, which
shows it is hard for a simple encoder-decoder framework to tackle hard dataset
which has a higher RMSE on baseline models.

• Spatial Fusion: For TaxiBJ and TaxiNYC, comparing to FedNet_ET, FedNet_ETS
brings 3.02% and 8.47% lower RMSE respectively, which shows the effectiveness
of spatial fusion. However, for BikeNYC and CitiBikeNYC, we get relatively the
same result, which shows spatial fusion is unnecessary for an easy dataset which
has a lower RMSE on baseline models.

• Teacher Forcing: For TaxiNYC, comparing to FedNet_ETS, FedNet_ETS_T brings
2.76% lower RMSE, which is nearly twice as much improvement comparing to the
improvement on the other datasets which is 1.20%, 1.34%, 1.53% respectively. The
overall result demonstrates the effectiveness of teacher forcing, and the result on
TaxiNYC shows that modeling sequence dependencies is more effective on the
dataset that has a higher RMSE on baseline models.

6 Conclusion and Future Work

In this paper, combining the benefits of the end to end encoder-decoder framework,
spatial fusion, and teacher forcing, we propose an effective model, called FedNet, to
predict traffic flow in each region of a city. We conduct extensive experiments on two
types of traffic flows (new-flow/end-flow and inflow/outflow) in New York City and
Beijing to demonstrate that the FedNet outperforms five well-known methods. These
results confirm that our model is better and more applicable to the traffic flow pre-
diction. The code and datasets will be released at GitHub.

Table 3. Comparisons with baselines on CitiBikeNYC and TaxiNYC.

Model RMSE
CitiBikeNYC TaxiNYC

ST-ResNet 8.57 22.52
FedNet_ET 7.84 24.55
FedNet_ETS 7.84 22.47
FedNet_ETS_T 7.72 21.85

Predicting Traffic Flow Based on Encoder-Decoder Framework 531

In the future, we will explore appropriate fusion mechanisms for multiple vehicle
data (e.g. taxi, bike, bus, subway). Also, we will consider the multi-time-step predicting
task at both training stage and inferencing stage, which is much harder.

Acknowledgement. The research is supported by National Natural Science Foundation of
China (No. 61772560), and Natural Science Foundation of Hunan Province (No. 2019JJ40388).

References

1. Hoang, M.X., Zheng, Y., Singh, A.K.: FCCF: forecasting citywide crowd flows based on big
data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, p. 6. ACM (2016)

2. Deep Learning Book Homepage. http://www.deeplearningbook.org/. Accessed 06 Mar 2019
3. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-

tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015)

4. What is Teacher Forcing for Recurrent Neural Networks? https://machinelearningmastery.
com/teacher-forcing-for-recurrent-neural-networks/. Accessed 06 Mar 2019

5. Fan, Z., Song, X., Shibasaki, R., Adachi, R.: Citymomentum: an online approach for crowd
behavior prediction at a citywide level. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pp. 559–569. ACM (2015)

6. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R.: Prediction of human emergency behavior
and their mobility following large-scale disaster. In: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 5–14. ACM (2014)

7. Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation
networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015)

8. Silva, R., Kang, S.M., Airoldi, E.M.: Predicting traffic volumes and estimating the effects of
shocks in massive transportation systems. Proc. Natl. Acad. Sci. 112(18), 5643–5648 (2015)

9. Xu, Y., Kong, Q.J., Klette, R., Liu, Y.: Accurate and interpretable bayesian mars for traffic
flow prediction. IEEE Trans. Intell. Transp. Syst. 15(6), 2457–2469 (2014)

10. Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: DNN-based prediction model for spatial-
temporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 92. ACM (2016)

11. Zhang, J.B., Zheng, Y., Qi, D.K.: Deep spatio-temporal residual networks for citywide
crowd flows prediction. In: Thirty-First AAAI Conference on Artificial Intelligence,
pp. 1655–1661 (2017)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

13. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

14. Shi, X.J., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM
network: a machine learning approach for precipitation nowcasting. In: Advances in Neural
Information Processing Systems, pp. 802–810 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

532 X. Zheng et al.

http://www.deeplearningbook.org/
https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/
https://machinelearningmastery.com/teacher-forcing-for-recurrent-neural-networks/

16. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder
architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–
2495 (2017)

17. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-
resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol.
9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

18. Molchanov, P., Tyree, S., Karras, T, Aila, T., Kautz, J.: Pruning convolutional neural
networks for resource efficient transfer learning. arXiv preprint arXiv:1611.06440 (2016)

19. One by One [1 x 1] Convolution – counter-intuitively useful https://iamaaditya.github.io/
2016/03/one-by-one-convolution/. Accessed 06 Mar 2019

20. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)
21. Deconvolution and checkerboard artifacts. https://distill.pub/2016/deconv-checkerboard/.

Accessed 06 Mar 2019
22. Nearest-neighbor_interpolation. https://en.wikipedia.org/wiki/Nearest-neighbor_interpola-

tion. Accessed 06 Mar 2019
23. Pytorch. https://pytorch.org/. Accessed 06 Mar 2019
24. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.

6980 (2014)

Predicting Traffic Flow Based on Encoder-Decoder Framework 533

http://dx.doi.org/10.1007/978-3-319-46475-6_43
http://arxiv.org/abs/1611.06440
https://iamaaditya.github.io/2016/03/one-by-one-convolution/
https://iamaaditya.github.io/2016/03/one-by-one-convolution/
http://arxiv.org/abs/1312.4400
https://distill.pub/2016/deconv-checkerboard/
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
https://pytorch.org/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	Predicting Traffic Flow Based on Encoder-Decoder Framework
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Model Architecture
	4.1 Encoder Component
	4.2 Fusion Component
	4.3 Decoder Component
	4.4 External Component
	4.5 Model Training

	5 Experiments
	5.1 Experiment Settings
	5.2 Experiment Results
	5.3 Ablation Studies

	6 Conclusion and Future Work
	Acknowledgement
	References

