
Type-Based Modelling and Collaborative
Programming for Control-Oriented

Systems (Short Paper)

Weidong Ma1,2(B) and Zhaohui Luo2

1 Institute of Electronic Engineering,
China Academy of Engineering Physics, Mianyang, China

mawd.sjtu@gmail.com
2 Department of Computer Science, Royal Holloway,

University of London,
Egham, UK

Zhaohui.Luo@hotmail.co.uk

Abstract. Domain-specific languages (DSL) are more expressive and
thus tackle complexity better, making software development easier and
more efficient. DSL can automate the production of quality code that
based on the proper abstraction of the system. This paper proposes a
type-base approach to requirement modelling, called CosRDL, to Imple-
menting a trusted real-time embedded system. A set of rules and formal
methods are defined to build CosRDL models for embedded systems,
from which the model may be verified apart the specification. CosRDL
is described as abstract of event-driven behaviors that support commu-
nication between active objects (processes) to support concurrency and
collaborative computing. The control processing and properties can be
described by CosRDL syntax as an model extension and to make system
implementation model. Meanwhile, a case study is presented to figure out
how to apply the approach of CosRDL modelling for control systems.

Keywords: Modelling · Domain-specific · Type theory ·
Embedded system · Collaborative computing

1 Introduction

Embedded systems are used in many fields including mobile phone, automation,
aeronautics, and so on. Many embedded systems are timed sensitive, application-
specific, tightly constrained and system-in-a-system, so that most of them are
safety critical systems. These systems are stimulated by some asynchronous
events, and the components in the embedded systems need collaborate with

W. Ma—The work has been supported mainly by a project with foundational funds of
China Academy of Engineering Physics (Grant No. 060608-2017).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 509–517, 2019.

https://doi.org/10.1007/978-3-030-30146-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_35&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_35

510 W. Ma and Z. Luo

each other, waiting for the occurrence of external or internal events. For exam-
ples, time event is triggered by timer, and a data process task is executed by an
arrival event of a data packet from network. After an event was triggered, the
components need perform the appropriate actions or operations to manipulate
the hardware or generate a new event that triggers other components. It is a
classical reactive system that continuously interacts with the physical world.

The design complexity of embedded systems includes high degree of par-
allelism, sufficient design freedom and constraints, and multiple optimization
objectives. Because of its design complexity, the software engineers have to
improve productivity by promoting the level of abstraction of embedded systems.
Therefore, the model abstracted from the system has more reachable the actual
problem domain from the requirements and hides the implementation details.
In embedded software development, the domain-specific modelling (DSM) also
raises the level of abstraction beyond the programming codes by providing solu-
tion scheme and domain concepts. We may use the DSM model to generate the
final products. The DSM methodology usually focuses on specific domains so
that enables providing better productivity and code quality.

This paper define a modelling languages and development framework for
control-oriented embedded systems. The embedded system is designed from the
models that is easy understandable, and the specification documentations is
conveniently created. According to the defined model, we could implement the
designs and correct codes, and finish the debugging, testing, validation and ver-
ification on the code level. A control-oriented system requirements description
language called CosRDL, is proposed. It is an approach to modelling for control-
oriented system in the event-driven framework. The CosRDL-based model has
three levels: CosRDL requirements model, CosRDL syntax, and CosRDL system
model. It is very proper to develop for control-oriented applications.

2 Related Work

The model-based approaches help abstract away unnecessary details and increase
the potential for efficient validation and verification, and easy reuse and evolu-
tion. There are several modelling languages such as UML [9], MARTE [2], and
SysML [4] etc. Architecture Analysis and Design Language (AADL) is devel-
oped for the specification, analysis, automated integration and code generation
of critical computer systems. Some researchers have been efforts to establish
an effective relationship between AADL and MARTE [7,8]. The paper [5] pro-
poses to extend hybrid MARTE statecharts based on MARTE and the hybrid
automata. The formal syntax and semantics of hybrid MARTE statecharts are
submited from labeled transition systems (LTS) or live transition systems.

The Spacecraft Requirements Description Language, called SPARDL, which
is proposed by Wang, is designed as a requirement modelling language for peri-
odic control systems (PCS) [10–12]. It can specify the features to implement the
design, such as periodic driven behaviors, procedure invocations, timed guard,
mode transition, and other basic element modes that represents the observable
states in periodic control system.

Type-Based Modelling and Collaborative Programming 511

The process algebras CCS and CSP were proposed to model asynchronous pro-
cesses, describing concurrent, running at indeterminate speed, and can be mod-
elled for embedded system. Hybrid CSP (HCSP) is to extend CSP for describing
hybrid systems, which uses differential equations for modelling continuous time-
domain environment. The syntax of HCSP can be described as follows [1,3]:

P ::= skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P � Q | P ∗

| �i∈I ioi → Pi | 〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉 � �i∈I(ioi → Qi)
S ::= P | S‖S

(1)

– x is variables, and s is vectors, respectively
– B is boolean and e is arithmetic expressions
– d is a non-negative real constant
– ch is the channel name, ioi stands for a communication event, and either

chi?x or chi!e
– P,Q,Qi are sequential process terms, and S stands for an HCSP process

term.

3 Modelling of the Control-Oriented Systems

3.1 The Development Based on CosRDL

In generally, the system designers write requirements in natural language using
Word, Tex etc. Requirements documents written in natural language are prone
to ambiguity and no proper formal syntax structure. The CosRDL-based devel-
opment of control-oriented systems that submits in the paper, is showed in Fig. 1.

Fig. 1. CosRDL-based development.

The development process is begun from the original software requirements
document and system requirements document. The original requirements doc-
ument can translate into semi-structure requirements by requirement mining.
The approaches are using key words of domain-specific fields in control system,

512 W. Ma and Z. Luo

so that the semi-structure requirements document keeps the exact semantics
of the requirements document. For the system and hardware requirements, it is
described by AADL (architecture analysis and design language). For the software
requirements, we use CosRDL-based model to describe the control systems.

The CosRDL-based model has three levels: CosRDL requirements model,
CosRDL syntax, and CosRDL system model. CosRDL requirements model is
designed to define the key elements of the software system that include opera-
tions, events and the mapping between events and operations. CosRDL syntax
defines a syntax of CCS/CSP style to a model of formal semantics. CosRDL
system model is defined for software reuse based on designed components. Once
the model has been designed by CosRDL syntax, it can be transformed from
CosRDL to C Codes.

3.2 CosRDL Requirements Model

The CosRDL requirement model is defined as follow:

Definition 1. The CosRDL requirement model is a domain-specific model with
7 objects: an operation set, an event environment set, a type set, an internal
action set τ , a mapping function σ, an initial node s, and a set of termination
nodes S:

CosRDLreq ::= (Oprn,Envr, Type, τ, σ, s, S) (2)

– Oprn = {a1, a2, ..., aNa
} is a set of operations for a control system.

– Envr = {e1, e2, ..., eNe
} contains communicating events which come from

external channels.
– Type is a set of types that gives a computing semantic.
– τ is a set of internal variables that can not be directly observed in user space.
– σ is a mapping function defined as followed:

b = σ(a, e, t), where a, b ∈ Oprn, e ∈ Envr, t ∈ R

– t ∈ R is a restricted variable of timer.
– s ∈ Oprs is an initial node.
– S ⊆ Oprn is a set of nodes which are represented termination of operations.

In the CosRDL requirements model, every operations and events belong to
a type. We use operator typeof to get the type of an operation or an event. We
get the type of ai and ei as followed:

(event type)Tyei : typeof(ei)
(opration type)Tyai

: tpyeof(ai)

The type is very important because it not only have formal grammars, but
also clarified operational semantics. For examples, we can define a type N based
on Z that combine with predicate subtypes:

type N = {x : Z|x ≥ 0} (3)

Type-Based Modelling and Collaborative Programming 513

That means if we have a object p ∈ N, and once we meet p < 0 that must occur
some error based the type definition of N.

In the control-oriented systems, the signals of input and output that mostly
are voltage or current, usually have special boundary, such as a range of voltage
[0.00 v, 5.00 v]. Thus we can define a type of signals VOLA as

type VOLA = {x : R|x ≥ 0 & x ≤ 5.00} (4)

If all operations or input/output signals are defined by basic types and pred-
icates, we have the right type of the model. Every design and programming must
based on the types and then any error maybe discovered in time.

The set of events is an external input/output events, and its type has a real
semantics meaning, such as the data of position, speed, accelerator and others.

Every node a ∈ Oprn, if a has more than 2 input from other nodes, we must
decide the relation of the input actions. Two operator ⊗ (or &) and ⊕ (or +)
was defined as: ⊗ means if all input is triggered, then the node is activated; ⊕
means if one input is triggered, then the node is activated.

The CosRDLreq can be described by a directed acyclic graph (DAG), see
Fig. 2. Control systems model with directed acyclic graphs have a wide range
of applications. It is closely linked to various control systems that operate in
chronological order, such as cars, rail transportation, and aircraft. Usually such
systems do not have a loop back to the past scene, the sequence of events and
operations are one-way. The operating mechanism of such a system is completely
constrained by the external environment and internal timers.

Fig. 2. DAG model of CosRDLreq.

3.3 CosRDL Syntax

Definition 2. A formal language for describing hybrid systems, called CosRDL,
is defined by the events and its execute operations to modelling the control system.
The CosRDL syntax describes as follows:

P ::= SKIP | STOP | λ.P | P ;Q | P ‖ Q | P�Q (5)
λ ::= (ch?(x : A), t) | (ch!(v : A), t) | ε | τ (6)

– SKIP is an empty statement or represents successful termination.
– STOP is a termination statement, and represents the process that commu-

nicates nothing (or deadlock).

514 W. Ma and Z. Luo

– λ is an event that executes by input/output actions or empty (λ = ε).
– P and Q are processes or tasks, and is an abstraction of a group of operations.
– P ;Q is represented a sequential execution.
– A ranges over a type.
– ch ranges over a channel name, and x, v ranges over the set of communicable

data values.
– t is a restricted timer bind the event of x or v.
– P ‖ Q behaves as if P and Q run independently.
– P�Q is a external choice of P or Q.
– τ is a set of invisible actions in the internal of the system.

If λ = (ch?x, t), we define the operation ⊗ and ⊕ for all x ∈ Envr as follows:

(x1, t1) ⊗ (x2, t2) = [x1&x2),Max(t1, t2)] (7)
(x1, t1) ⊕ (x2, t2) = [(x1|x2),Min(t1, t2)] (8)

Where x1&x2 = True means that both events x1 and x2 happen, and x1|x2 that
x1 or x2 happens.

We use labelled transition system to define the semantics. A transition of
form

P
(ch?x,t)−−−−−→ Q (9)

is taken to express the ability of P to perform the event that inputs x at timer t
from channel ch, and thereafter behave like the process Q (execute output v in
time t on channel ch). In CSP, there is an internal choice syntax P � Q, and we
do not use the statement in CosRDL syntax.

3.4 CosRDL: System Model

Definition 3. The CosRDL system model is defined by a sequence of active
objects, a global events set, a data dictionary, programming framework and global
clocker:

CosRDLsystem ::= (ActiveObj,Evts,DataDict, uFrm, t) (10)

– ActiveObj is a set of active objects, which can be run concurrently.
– Evts is a set of global events that used by the ActiveObj.
– uFrm is the uFusion programming framework.
– DataDict is a set of variables that mainly have the global scope in system.
– t is a global clocker.

An active object has its own private thread that executes all of its works, and
it has private data and methods that can be invoked by other callers through
event-trigger mechanics.

Definition 4. The active object is a set including three tuples:

ActiveObj ::= (Oprs,EvtQueue, pri) (11)

Type-Based Modelling and Collaborative Programming 515

– Oprs is a set of some operations that process related events.
– EvtQueue is an event queue.
– pri is a priority used by system scheduler.

The ActiveObj and uFusion are running by event-trigger model that intro-
duced by [6]. We can design the event process function by using directly C/C++
codes, or using simulink/stateflow, pseudocodes etc.

4 Case Study

A case study is presented that figure out how to use CosRDL to build an abstract
model. A simplified model of an aircraft was built that showed in Fig. 3.

Fig. 3. A simplified CosRDL model of an aircraft electronic system

There are many nodes that represent the specific operations of phases in the
system. Each node has to process some actions or operations based on event trig-
gers coming from outer-environment or inner-timer. The Fig. 3 can be modelled
in CosRDL as follows:

Oprs = {LPAct, LauAct, SwtAct, SepAct,Dev2wk, CellPOn, ReeAct,DevOn,

Dev1Pon,Dev1Dt1,Dev1Dt2,Dev2Cp1,Dev2Cp2,Dev3Dy, End}
Envs = {e0, e1, e2, . . . , e16}
Type = {typeof(e0), . . . , typeof(e16), typeof(LPAct), . . . , typeof(End)}

Ts = {t0, t1, t2, . . . , t16}
s = LPAct, S = {End}
s;
(e0, t0).LauAct;
(e1, t1).SwtAct;
(e2, t2).SepAct;
(e3, t3).Devwk[ch!(v : A)] ‖ e4(t4).CelPon[ch?(x : A)]];

516 W. Ma and Z. Luo

[e5, t5)&(e6, t6)].ReeAct;
(e7, t7).DevOn;
{(e8, t8).Dev1Pon; (e11, t11).Dev1Dt1; (e13, t13).Dev1Dt2; } ‖

{(e9, t9).Dev2Cp1; (e12, t12).Dev2Cp2; } ‖ {(e10, t10).Dev3Dy; }
[(e14, t14) + (e15, t15) + (e16, t16)].End.

Where Devwk and CelPon communicate in channel. Devwk has an output action
along the channel ch with ch?(x : A)and CelPon has an action to accept a
value on channel ch with ch!(v : A). In the same time, We may refined in some
restriction for ek and tk and define the types of all values, then execute model
checking for the software system. For examples, we define a verified function
checktype to verify the valid of the event ek and the operation ak in every step
of the operation, such as:

(e1, t1).SwtAct[checktype(e1, t1); checktype(SwtAct)];

5 Conclusions

The CosRDL model is designed for model-driven development environment. It
supports the more reusability and efficient analysis of control systems that based
on model-driven development and program framework. Traditionally, embedded
programs have been developed in ad hoc time-sensing ways. If the requirements
were changed, the CosRDL requirement model would be modified and automat-
ically be translated into the system model, and the system model bind with a
program framework. The CosRDL requirement model is built by engineers from
the system specification to describe the system behavior through operations,
events and functional mapping. The CosRDL system model is translated from
CosRDL requirement model to expressed by actived objects, events, data dic-
tionary and program framework, which have more reusability and extensibility.
The CosRDL syntax defined a formal language for described the hybrid systems,
and the method is more expressive and tackle complexity better, especially for
the domain-specific field such as railway control and flight control systems etc.

Acknowledgements. The first author thanks for discussions of related work of the
DSL model of embedded systems with prof. Geguang Pu and Weika Miu, and for
discussions of formal modelling and hybrid CSP with prof. Naijun Zhan and Shuling
Wang.

References

1. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

https://doi.org/10.1007/BFb0020972

Type-Based Modelling and Collaborative Programming 517

2. Espinoza, H., Cancila, D., Selic, B., Gérard, S.: Challenges in combining SysML and
MARTE for model-based design of embedded systems. In: Paige, R.F., Hartman,
A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 98–113. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02674-4 8

3. He, J.: From CSP to hybrid systems. In: A Classical Mind. Embedded system,
Programming, Software. Prentice Hall International Ltd., Hertfordshire (1994)

4. Khan, A.M., Mallet, F., Rashid, M.: Combining SysML and Marte/CCSL to model
complex electronic systems. In 2016 International Conference on Information Sys-
tems Engineering, pp. 12–17. IEEE, Los Angeles, April 2016

5. Liu, J., Liu, Z., He, J., Mallet, F., Ding, Z.: Hybrid marte statecharts. Front.
Comput. Sci. 7(1), 95–108 (2013)

6. Ma, W., Deng, Y., Xu, L., Lin, W., Liu, Z.: COSRDL: an event-driven control-
oriented system requirement modeling method. In: Bi, Y., Chen, G., Deng, Q.,
Wang, Y. (eds.) ESTC 2017. CCIS, vol. 857, pp. 103–117. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-13-1026-3 8

7. Mallet, F., André, C., DeAntoni, J.: Executing AADL models with UML/Marte.
In: 2009 14th IEEE International Conference on Engineering of Complex Computer
Systems, pp. 371–376. IEEE, Potsdam, June 2009

8. SAE: Architecture analysis and design language (AADL)
9. Samek, M.: Practical UML Statecharts in C/C++, Programming for Embedded

System. Embedded system, Programming, Software, 2nd edn. Elsevier Inc., Oxford
(2008)

10. Wang, Z., et al.: SPARDL: a requirement modeling language for periodic control
system. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 594–
608. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0 48

11. Wang, Z., et al.: A novel requirement analysis approach for periodic control sys-
tems. Front. Comput. Sci. 7(2), 214–235 (2013)

12. Yang, M., Wang, Z., Pu, G., Qin, S.: A novel requirement analysis approach for
periodic control systems. Sci. China Inform. Sci. 55(12), 2675–2693 (2012)

https://doi.org/10.1007/978-3-642-02674-4_8
https://doi.org/10.1007/978-981-13-1026-3_8
https://doi.org/10.1007/978-3-642-16558-0_48

	Type-Based Modelling and Collaborative Programming for Control-Oriented Systems (Short Paper)
	1 Introduction
	2 Related Work
	3 Modelling of the Control-Oriented Systems
	3.1 The Development Based on CosRDL
	3.2 CosRDL Requirements Model
	3.3 CosRDL Syntax
	3.4 CosRDL: System Model

	4 Case Study
	5 Conclusions
	References

