®

Check for
updates

Maintainable Software Solution
Development Using Collaboration
Between Architecture and Requirements
in Heterogeneous IoT Paradigm
(Short Paper)

Wajid Rafique2, Magbool Khan'2, and Wanchun Dou®2(®)

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, People’s Republic of China
rafiqwajid@smail.nju.edu.cn, maqbool@163.com, douwc@nju.edu.cn
2 The Department of Computer Science and Technology, Nanjing University,
Nanjing, People’s Republic of China

Abstract. Internet of Things (IoT) has been tremendously involved
in the development of smart infrastructure. Software solutions in IoT
have to consider lack of abstractions, heterogeneity, multiple stakehold-
ers, scalability, and interoperability among the devices. The developers
need to implement application logic on multiple hardware platforms to
satisfy the fundamental business goals. Moreover, long-term maintenance
issues due to the frequent introduction of new requirements and hard-
ware platforms pose a vital challenge in IoT solution development.

Numerous techniques have been devised to satisfy the issues men-
tioned above for ubiquitous and smart infrastructure. However, these
techniques lack in providing a comprehensive approach in dealing with
the above challenges. In this paper, we argue that fundamentally, there
is no difference between the architecturally significant requirements and
the architectural design decisions in IoT solution development. The archi-
tecture revolves around the requirements gathered by the analyst at the
requirements gathering phase. We stress that the requirements elicitation
process must consider the software architectural assessment for main-
tainable software development. By adopting this perspective, we identify
areas where both requirements and architecture communities collaborate
to effectively increase the user acceptability, maintainability, and fulfill
the heterogeneous needs of IoT solutions.

Keywords: Software architecture - IoT - Requirement Engineering -
IoT solution development - Maintainability

1 Introduction

Rapid progress in IT has made the ubiquitousness a reality where individuals
are widely using smart sensors, gesture control gadgets, and wearable devices

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 489-508, 2019.
https://doi.org/10.1007/978-3-030-30146-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_34

490 W. Rafique et al.

in everyday life [1]. Nowadays, smart devices/things have the capability to con-
nect with the internet and control the real-world infrastructure. These smart
devices/things are denoted by the Internet of Things (IoT) and are widely being
deployed in everyday life during the past few years. IoT provides advanced ser-
vices by employing a global internet infrastructure including homes, manufactur-
ing, aviation, agriculture, health-care, and many other areas of life. The things in
IoT have a unique identity, connected by wireless network connections, and can
be remotely controlled [1]. IoT has revolutionized the human lifestyle by enabling
decision-making capabilities in the devices with very less human interaction.

Figure 1 illustrates an IoT scenario which uses traditional cloud and mobile
edge computing for successful IoT implementation. The outermost layer corre-
sponds to the actuators and sensors embedded in the IoT devices which use
internet and gateways for the communication to offload the compute-tensive
tasks to the edge infrastructure. The traditional cloud data center infrastructure
is at the core of IoT which acts as the centralized data repository. A seamless
ToT operation is governed by the software solutions in the IoT devices. A typi-
cal architecture of IoT consists of a mini processor, actuators, and sensors. IoT
has been deployed in networked systems where smart devices collect data using
sensors and pass it to the physical systems to control the real-world infrastruc-
ture. IoT uses IPv6 network addressing scheme which can accommodate a huge
number of IoT devices with larger address space as compared to approximately
4.3 billion device space of IPv4 [2].

-' \ . ®

" u
M:Ei% uq[’ llm[MI[;
E %)
. CLOUD 3

INFRASTRUCTURE

! s EDGE . ,// ’

S INFRAbTRU(,TURE -

AN _—

. | S

b ~_ 10T DEVICES

Fig. 1. An [oT service orchestration example using traditional cloud and mobile edge
computing.

Software solutions in IoT are the fundamental component in handling the IoT
services. They comprise up of architectural components used in a specific configu-
ration while the interaction among these components depends on the underlying
software architecture. These components denote the state of the system while

Maintainable Software Solution Development in IoT 491

the links between them describe the interaction pattern among them [3]. More-
over, the architectural configurations provide the underlying structure of the
software design components. Furthermore, the architectural design explains the
configuration of the software and hardware components and their interaction to
orchestrate services from IoT. Software requirements provide the basis for the
architectural development of an IoT software solution. These can be represented
by the Architectural Design Decisions (ADDs) to illustrate the structure of a
software solution.

Due to the gigantic proliferation of IoT, the need for standardized software
architecture development has become a vital challenge [4]. Recently, many new
software development life cycles aligned with the requirements of rapid appli-
cation development and evolution have been introduced. Heterogeneity in IoT
makes maintainable software development as a complex task. Traditional soft-
ware architectural patterns suffer in IoT solution context which relies heavily
on the functional requirements. However, ADDs in IoT depend mostly on the
nonfunctional requirements of scalability, interoperability, programmability, and
maintainability.

Therefore, the study of correlation among software architecture and the
requirements in IoT is of vital importance. Both the solution architect and the
requirements’ analyst work on their specific part of the problem separately, where
the architect concentrates on the development perspective, whereas the require-
ments’ analyst apprehends the customers’ view. The requirements translate the
system in terms of “What” and “How,” statements where “What” represents
the functionality of the product to be developed and “How” corresponds to the
design of the system. Hence, there is still a need to study areas where require-
ments and architecture are strongly associated [5].

Requirement Engineering (RE) in IoT concentrates on the elicitation of
the intended user-goals from IoT that are specified in the form of functional
requirements, quality attributes, and constraints. The underlying functions of
requirements are distributed among agents like humans, available solutions, or
the solutions that need to be developed [5]. The requirements comprise up of
diverse characteristics because of the heterogeneity in the IoT infrastructure.
They should satisfy the following goals.

— The problem domain must be represented in the form of precise formal state-
ments.

— The problem statements should completely fulfill the intended functional
requirement of the business.

— The relationship among different problem statements must be analyzed and
documented.

— The stakeholders involved in the problem and the solution domain must be
explicitly identified.

Figure2 illustrates the characteristics of IoT including programmability,
intelligence, unique identification, and internet access. The interoperability in
IoT denotes its property to operate with multiple other platforms including

492 W. Rafique et al.

Internet Access Ubiquity
S~
Programmability «— 101 — Interoperability
> CHARACTERISTICS
T
Unique Identity Intelligence

Fig. 2. Characteristics of IoT.

cloud infrastructure, physical devices, and other computing systems. The tradi-
tional architectural pattern selection tools analyze, make design decisions, and
document them according to software requirements. However, these tools may
not be equally effective in the IoT software development domain [5]. The anal-
ysis of the user requirements is performed from the top to bottom and further
refined until the properties of the desired solution are established [6]. Recent
research in the field of software engineering has changed the perspective of con-
sidering software architecture as only an abstract entity to a wider scope of
architectural knowledge [5]. Additionally, new trends stress the importance of
ADDS for developing maintainable software. In this research, we discuss differ-
ent approaches which establish the collaboration among requirements and the
architecture in the IoT paradigm. We present the Architecturally Significant
Requirements (ASRs) that can be transformed to the ADDs and explain the
architectural choices that are appropriate for effective software development in
the IoT paradigm. Furthermore, we provide different models on the collabora-
tion of requirements and the architecture. Based on the above discussion, we
present the following contributions in this paper.

— We compare different perspectives of the software community on how software
requirements and architecture contribute to the software development process
in the heterogeneous IoT application domain.

— We propose that the requirements and architecture are the main building
blocks for developing maintainable software and discuss how key character-
istics are lost if software requirements and architecture are not considered
concurrently.

— We present a systematic discussion on how different models can be used in
the software requirements and architecture evolution and ascertain how a
maintainable IoT solution can be developed using these models.

Table 1 illustrates the key terms and their description used in this research.
Rest of the paper is organized as follows, Sect. 2 discusses the related work on dif-
ferent techniques used in the software architecture development for IoT. Section 3
provides the novel characteristics of IoT which pose challenges in maintainable
architecture development. Section4 explains insights into the approaches used
in simultaneous software requirements and architecture development. Section 5
discusses different models to translate problems into corresponding solutions in
IoT, whereas Sect. 6 includes the effect of requirements on ADDs. Furthermore,

Maintainable Software Solution Development in IoT 493

Table 1. Key terms and their explanation.

Term | Explanation
ADD | Architectural Design Decision
CBSP | Component-Bus-System-Property

ASR | Architectural Significant Requirements

RE Requirement Engineering
COTS | Commercial-of-the-shelf
ToT Internet of Things

XP Extreme Programming

JSF JavaServer Faces

JMS Java Message Service

MDD | Model Driven Development

KIWIS | I will Know it When I see it

ADRQ | Architectural Design Design and Requirement Repository

Sect. 7 provides a discussion on the cross-benefit analysis of software require-
ments and the architecture finally, Sect.8 concludes the paper and provides
some future insights.

2 Related Work

Software architecture is the collection of design decisions which presents a high-
level structure of a software system including its components and their interac-
tion [7]. The software architecture paradigm has been considered as structure-
oriented in the past, however, with the development of smart infrastructure, it
has been transformed towards the knowledge-oriented domain. The architecture
is not a solution structure whereas, it is a collection of design decisions which
tranced towards a structure [7]. Khan et al. discuss the similarities between the
nonfunctional requirements and the architecture of the software. However, their
approach lacks in presenting a solution for the heterogeneous IoT domain [8].
Michael Jackson devises optative and indicative problem frames and assigns
frequently occurring requirements to a particular frame to document the avail-
able software specifications [9]. The indicative corresponds to the problem
domain, and optative denotes the selected choices according to the underlying
machine specifications. The problem domain is definite, which is represented by
the indicative properties, e.g., the requirement of storing the temperature sen-
sor’s data by the IoT device. Whereas, the optative corresponds to the require-
ments, which are the explanations of what the client needs to be true in the
problem side, e.g., the interval between consecutive data transfers of an IoT sen-
sor. The machine specifications and the actual behavior of the machine at its
interface are different. Limitations on the behavior of the hardware and spec-

494 W. Rafique et al.

ifications describe the difference between architecture, requirements, problem
domain, and the solution.

Janson et al. propose an Archium model which maps the software archi-
tecture to a set of ADDs [10]. The COMPACT model proposed by Marquez
et al. extracts components from the nonfunctional requirements [11]. However,
COMPACT does not utilize any formal criteria to select design decisions. An
improvement of COMPACT has been presented in [12], which utilizes a semantic
recommendation system and provides architectural components from the busi-
ness scenarios. It assists in architectural decision making by bridging the gap
between software architecture and the requirements.

A web-based tool has been developed by [13], which assists in selecting archi-
tectural pattern and style from an architectural repository, however, it fails in
addressing quality attributes in selecting architectural styles and patterns. Cai
et al. [14] propose Model Driven Development (MDD) for mobile services in the
cloud, they demonstrate that the current software service architectures start in a
non-sequential manner and their limitations are identified during finalization of
the architecture. This methodology often needs reconsideration, which increases
cost and time. MDD for IoT has been proposed in [15] named as FARASAD
framework. Similarly, an MDD methodology and SOA framework for architec-
ture development and software artifacts generation have also been proposed in
[3]. However, MDD tends to develop the solution at a higher level of abstraction,
which makes it difficult to handle the low-level requirements of IoT solutions.
Moreover, these technologies do not stress the need of ASRs for IoT solution
development. Most of the times, the requirement analysis and the modeling
teams include different individuals. Thus, it is difficult to translate the domain
knowledge into the models.

These studies provide awareness of the relationship between software archi-
tecture and the requirements where the requirements represent the problem
domain whereas the architecture illustrates the solution paradigm. As it has
been discussed in the related work that different authors use ADD tools to
select the appropriate architectural styles and patterns. However, a lack of holis-
tic approach has been observed in the field of IoT architectural pattern selection
from the requirements which poses novel challenges. The architectural selection
problem in IoT depends on communication protocols, resource limitations, inter-
operability, scalability, and cloud support. Therefore, we discuss the architectural
style and pattern selection from different perspectives.

Multiple Deployment Diverse
Domains Stakeholders
-~
Complicated [IOT SOFTWARE , Uncertain
Usability CHARACTERISTICS Business Models
Heterogeneous Lack of loT
Communication Patterns Standards

Fig. 3. IoT solution characteristics.

Maintainable Software Solution Development in IoT 495

3 Characteristics of IoT Software Solution

Most of the IoT software solutions have been developed without the complete
realization of the business and market because of a rapid IoT evolution during
the past few years [1]. A common approach used by most of the IoT businesses
is to start with a small-scale solution with the flexibility to innovate in order
to cater to the huge business investment constraints. Large-scale development
having entire features starts upon the acceptance of the product in the market.
Figure 3 illustrates the characteristics of IoT solutions which have been discussed
in the following.

3.1 Multiple Deployment Domains

ToT solutions need to be deployed on different distributed layers due to multiple
IoT hardware constraints, including lower bandwidth, storage, and computation
power. The resource limitation also instigates that the data security and privacy
requirements are handled in a distributed way, hence, they are mostly provided
on the network infrastructure. Moreover, different programming languages are
used to develop IoT solutions without having a common code base. Nevertheless,
with different build tools, frameworks, versatile platforms, and release cycles,
everything must have to run smoothly. Similarly, IoT solutions need data man-
agement and storage capabilities to deal with the big data generated by huge
IoT infrastructure. Sometimes, the data is classified and filtered before transfer-
ring to the cloud storage. In this context, NoSQL comes into play to efficiently
manage time-series and high volumes of data.

3.2 Complicated Usability

Smart homes, health-care, and wearable IoT devices are extensively being
employed to provide state-of-the-art services to the users. Most of the IoT appli-
cations are developed considering the business needs whereas, neglecting the
users’ perspective of the IoT. The categorization of the requirements accord-
ing to the involved users and the IoT devices must be extensively performed to
understand user needs from the IoT applications. In this regard, the IoT soft-
ware solutions should be designed in a way that the end users encounter fewer
usability problems.

3.3 Lack of IoT Standards

Conway’s law in the IoT domain illustrates that the independent and parallel
activities in different IoT business solutions provoke many functionally similar
solutions which do not follow a standardized development environment [16].
Things work well in a limited paradigm, however, face problems while operating
under a broader business context. There are a few IoT standards in the market
because of the continuous evolution of the IoT infrastructure. Moreover, many
competing IoT development activities are going on around the world, which
makes it difficult to enforce standardized IoT solution development.

496 W. Rafique et al.

3.4 Diverse Stakeholders

A diverse range of stakeholders, including versatile domain experts, legal advis-
ers, standardization bodies, third-parties, and infrastructure owners make the
requirement gathering a cumbersome process in IoT. Consequently, numerous
feasible solutions can be eliminated due to minimal reasons. Extensive technol-
ogy knowledge even for a smaller solution is inevitable, e.g., development of
smart temperature sensors in a heat treating furnace requires deep metallurgical
knowledge of the heat treatment process to control the temperature in different
parts of the furnace.

3.5 TUncertain Business Models

The business models in IoT change over time because the number of users, the
connected devices, and the functionalities varies after deployment. A distributed
runtime environment having a versatile set of communication patterns also pose
uncertainty in the deployment models. The presence of multiple other IoT solu-
tions increases complexity in designing a solution. Moreover, interaction among
architects from other solution domains is also imminent, which poses a significant
overhead in IoT solution development.

3.6 Heterogeneous Communication Patterns

Protocols are necessary for moderation when devices communicate with each
other. IoT needs novel communication protocols because it has been predicted
that the level of heterogeneity of IoT will be much higher than the internet [2].
There is a greater need for communication protocols that enable inter-device
communication. Moreover, successful software solutions need to consider hetero-
geneous communication patterns in IoT.

Planning Structure

A —

Best Practices ——4 Design

‘ Configuration

Domain
Interoperability Specific

v

Performance

Fig. 4. The characteristics of IoT architecture and its dependence on requirements.

Maintainable Software Solution Development in IoT 497

Most of the IoT solutions consider only a limited deployment paradigm which
suffers in providing the solution for a global perspective. The above characteris-
tics illustrate that the IoT software development undergoes numerous challenges
due to the heterogeneity and lack of standardized development environments
which must be addressed in developing a maintainable solution.

4 Software Requirements and Architecture in IoT

In the IoT domain, the requirements of IoT-big data, computational offload-
ing, and resource limitation constraints need to be particularly addressed during
the software development process [8]. Figure4 illustrates the requirements and
architecture modeling in an IoT solution development paradigm. It demonstrates
that the functional requirements comprise up of domain-specific illustrations,
whereas nonfunctional requirements depict configuration, interoperability, and
performance. Furthermore, the architecture includes structure, design, and asso-
ciated best practices in the software. The solution architecture must be aligned
with the functional and nonfunctional requirements to enable the usability and
maintainability of the IoT solutions. Many attempts have been put forward to
evolve software architecture together with the requirements, including problem
domains model [17], twin-peak model, and Component-Bus-System-Property
(CBSP) approach [18].

The problem domain model relies on extracting individual domain mod-
els from the requirements. It represents the problem in terms of frames which
increase the efficiency of the overall application development process and insti-
gates the reuse of different frames, which reduces future development effort [17].
The domain modeling approach utilizes the object-oriented perspective for mod-
eling the components of the problem and their relationship. The problem is spec-
ified in terms of multilevel abstract-layered representation, which illustrates the
problem from multiple perspectives. These models are then developed as running
software by the application developers.

Gunbacher et al. propose CBSP an architectural development approach
which relates the requirements to the software architecture [18]. A hierarchi-
cal taxonomy is utilized to associate requirements with the architecture. A set
of general requirements are provided to the CBSP method, which provides inter-
mediate decisions about the architectural styles to be used.

Table 2. Relationship between RE and architecture design.

Requirement engineering Architecture design
Goal-oriented RE Pattern-based design

Use case-oriented RE Architectural style-based design
Sociology and linguistics bases RE Attribute-based design
Aspects-oriented RE Component-based design
Sequence constrained business requirements | Product line-based design

498 W. Rafique et al.

IoT poses a versatile set of challenges which needs to be addressed in design-
ing a solution, including the integration of software with heterogeneous plat-
forms, big data needs, scalability, and versatile nature of communication device
constraints. Moreover, the architecture is dependent on the software require-
ments, thus every statement in the requirement document must be represented
in the architectural design of the IoT solution.

4.1 RE and Architectural Design

Requirements and the architecture are the integral components of the IoT solu-
tions where requirements are considered as the analysis of the problem domain,
whereas the architecture relates to the solution paradigm. IoT requirements con-
sist of limited resources, interoperability among devices, scalability, and hetero-
geneity, which must be particularly addressed during the architectural develop-
ment process. In designing an IoT solution, attention must be given to the ASRs
which represent the essential design decision of the underlying solution. RE and
software architecture play a pivotal role in developing the software structure
as illustrated in Table 2. It represents the type of RE process used during the
elicitation and the associated architectural design that can be employed.

Practically, both requirements and the architecture emerge separately how-
ever, there is a need to explore areas of collaboration among these two pro-
cesses. Different architectural designs consist of many challenges which relate to
the specific solution classes. It is always better to have an early understanding
of the user requirements in the IoT solution development, consequently, it will
be easier to achieve customer satisfaction towards the solution. Similarly, prior
understanding of the architecture provides the basis to discover further con-
straints related to requirements and the architecture, it also helps to evaluate
the system’s deployment feasibility [6]. The waterfall process model creates the
system architecture that confines the software team to do unavoidable changes in
the requirements, which creates a bottleneck in updating the software architec-
ture with evolving requirements. The spiral model was introduced to deal with
these challenges, it resolved many deficiencies of the waterfall model and offered
incremental software development which helps the developers to flexibly evaluate
and change the requirements according to the project risks. The spiral process
model concentrates on the need for the development of stable and maintainable
software architecture. This model facilitates the developers in a way that they
can work on requirements and architecture concurrently [7].

Twin-Peak Model. Figure5 illustrates the twin-peak model, which enables
requirements and architectural specifications in increments to fulfill the needs of
the evolutionary software development in the IoT domain. The requirements can
be associated with the architecture using a continuous evolution. They are trans-
lated to the software components in the architecture, whereas the interaction
among the components is moderated by the requirement constraints. Require-
ments specification, component development, and configuration are carried out

Maintainable Software Solution Development in IoT 499

continuously until a final architecture is developed. A final assessment of the
architecture is performed to ascertain that the architecture fulfills all the required
specifications of the business logic. This model is an extension of the Stephen
Mellor and Paul ward development model, which they proposed for real-time
platforms [19]. Therefore, the twin-peak model has the ability to capture the
needs of smart devices in the IoT paradigm. Change control in software develop-
ment is one of the fundamental property which can efficiently be addressed by
using the twin-peak model. Analysis and identification of core software require-
ments are extremely necessary for stable software architecture in a changing
requirements scenario. Different processes are used to develop software systems
in this context Commercial-of-the-Shelf (COTS) components can be utilized to
re-using built-in products at an earlier stage of the requirements.

/
DETAILED /[\ /\
A /

Requireme Represent Structure

- Create

Components

-~ / \
/ 5) Interaction
) Constraints \ > among

/ \ T Components
/ \
/ Use-cases/ \7' Cross-cutting
4 Activities \ . concepts \
/ / \
\

- X
Dependencies 4 ' \ / » Assess Architecture \\

GENERAL T0T PRODUCT REQUIREMENTS 10T PRODUCT ARCHITECTURE

Fig. 5. Twin-peak model for translating IoT requirements to the architecture.

Twin-peak model has been widely used by software development organi-
zations to deal with requirements specification and design issues concurrently.
Independent consideration of software requirements and the architecture intro-
duces many challenges which pose restrictions on the developers and provoke
repeated software modifications. Agile software development model has the abil-
ity to deal with the changing software requirements. The underlying mechanism
in agile is also based on the twin-peak model, which emphasizes strong inter-
action among architecture and the requirements domain. According to Barry
Boehm, the twin-peak model has the following management concerns [20].

— I will know it when I see it (KIWIS): The requirements tend to change
in the process of software development based on the user feedback on the
releases. The twin-peak model can detect the changes at an early stage by
using incremental modeling.

— COTS: Twin-peak model stresses the reuse policy by modifying the available
COTS packages which reduce extra effort and cost.

500 W. Rafique et al.

— Rapid change: Twin-peak model employs highly adaptive and iterative
modeling technique, moreover, it facilitates in incorporating the changes pro-
vided by the user during the development life-cycle.

The above discussion demonstrates that the twin-peak model facilitates effi-
cient IoT solution development. It enforces reuse by employing multiple available
design patterns and architectural styles which can be customized to adjust in
the required context.

TIOT SOLUTION REQUIREMENTS

PROBLEM
FRAMES

SOFTWARE
COMPONENTS

DESIGN & ARCHITECTURAL
PATTERNS STYLES

10T REQUIREMENTS TRANSFORMATION

A/

DESIGN ARCHITECTURE

Fig. 6. Selection of solution design and architecture from IoT requirements.

Figure6 illustrates how requirements can be translated to the design and
architecture in IoT solution development. Initially, the requirements are repre-
sented by the problem frames, which further translates to the software compo-
nents. Architectural styles and patterns are adopted by the developers accord-
ing to the underlying software components. A predetermined architecture poses
limitations on the underlying problem, alternatively, rigid requirements pose
limitations on the architecture and design choices.

4.2 Weaving the Development Process

Extreme Programming (XP) approach has been used to stress the need for
exploring possible implementations of a given problem iteratively [21]. This app-
roach focuses more on front-end software development activities, architectures,
and requirements. Therefore, large-scale projects can be efficiently managed if
the requirements are comprehended at an early stage, and the choice of architec-
ture is aligned with the requirements. The XP focuses on the production of code,
whether it is at the expense of requirements or the architecture. Alternatively, a

Maintainable Software Solution Development in IoT 501

separate focus on requirements or architecture imposes scalability issues which
can harm iterative development and modularity in IoT. Integrating the twin-
peak model with the tested and derived components from reliable prototypes
can also help in the development of large-scale applications in increments.
Comprehensive problem analysis helps in the reduction of time to mar-
ket, high-quality, and cost-effective solutions. An efficient development life-cycle
allows the concurrent evolution of the requirements and the architecture in order
to produce the desired product. A concise consideration of the software architec-
ture provides a clear understanding of the problem from the developers perspec-
tive. Moreover, the resultant architecture provides an accurate representation of
the user requirements. IoT solutions need to consider the following questions.

— What are the stable requirements and how they can be selected in the context
of rapidly changing requirements?

— What type of changes can be expected in the software architecture?

— How can the architecture and requirements be managed to minimize the
evolving change impact because of the heterogeneous nature of the IoT
devices?

The twin-peak model follows the characteristics of evolutionary software
development. Thus, an answer to the above questions will help in identifying
ASRs and further maintainable architecture development. There is still a need
for a rapid software development process which ensures fast and incremental
delivery in the IoT paradigm.

5 Translating Problems into Solutions

A challenging task in software engineering is how to devise a solution that sat-
isfies the present customer’s demands and addresses the needs for further evo-
lution using a maintainable architecture. RE and architecture development are
the most important activities in the software development life-cycle. The core
objectives of an IoT solution can be ascertained during the requirements gather-
ing process which ensures the unambiguity, correctness, and consistency of the
requirements so that they provide a baseline for further development, validation,
and evolution. The software architecture is explicitly defined, and a baseline is
prepared on which subsequent development activities can be planned.

5.1 Problem Exploration Using RE

Problem exploration is concerned with the elicitation of the goals a user needs
to accomplish from an underlying IoT device. When developing an IoT solu-
tion, an interplay exists between the problem domain and the solution because
of the trade-off between the implementation of certain requirements over the
others. However, the architecture depends on both the implementable and non-
implementable requirements. The RE process explores the problem domain iter-
atively as further subproblems are identified during the implementation.

502 W. Rafique et al.

IoT solutions depend on design decisions during the architectural develop-
ment process. These design decisions invoke multiple other design decisions based
on the product requirements, which can be characterized in the following.

1. Existence decision: These decisions are represented in the implementation
of the software system. Moreover, they show up as a quality of the system,
e.g., “The temperature sensor solution will consist of three layers.”

2. Property decision: These decisions have a high impact on the architecture,
and they act as the design guidelines for the underlying system. These design
decisions can be replaced by new design decisions, e.g., “IoT data will be
offloaded to the cloud after 2ms intervals.”

3. Executive decision: These design decisions are not directly represented in
the design of the solution. However, they are related to environmental factors
including political, personal, financial, cultural, and technological constraints,
e.g., “The IoT solution will be deployed by using SOA architecture.”

ADDs have a high impact on developing a maintainable software solution for
IoT. The relation between design decisions plays a pivotal role in the evolution
and maintenance of the underlying IoT solution [22]. For instance, if we plan to
develop a Java application and decide to use JavaServer Faces for implementa-
tion, it limits the use of Java Management Servlets and constrains the use of
JavaServer Pages. Similarly, if we use publish-subscribe architectural style, it
limits the decision to use peer-to-peer style and constraints with the decision of
choosing the client-server architecture.

5.2 Discussion on Problems and Solutions in IoT

The software architect segregates the elicited requirements and identifies those
which are not playing any role in the architecture. For example, the requirement
to use a matrix-based display to illustrate the speed of a vehicle does not play any
role in the software architecture development hence, we eliminate this require-
ment in the architecture level discussion. Therefore, architecture development
only involves ASRs. Conflicting requirements may often appear in the IoT solu-
tion development, which needs special attention as IoT involves a versatile set
of devices having different configurations. Heterogeneous nature of IoT, big data
needs, and mobile platforms often provoke conflicting requirements. Seemingly,
performance constraints in a particular situation employ an immense impact
on the architecture of a software system. Architectural style selection directly
affects the problem as the use of a style provoke new requirements which need
additional design decisions.

In this discussion, we conclude that ASRs and ADDs have a strong relation-
ship thus, a maintainable solution must consider both of them concurrently.

6 ADDs and Requirements in IoT

The problem space constitutes the specifications of the solution to develop, its
structure, and the domain. ADDs use problem rather than the solution domain

Maintainable Software Solution Development in IoT 503

which allows the owner who has the core knowledge of the problem to assist in
the requirements elicitation phase.

Requirements Solution Problem

Optative Optative Indicative

Problem Problem Decision Solution
|

Indicative Indicative Optative Optative

Fig. 7. Indicative and optative properties [23].

6.1 Indicative and Optative Statements

ASRs and ADDs can be represented by indicative and optative statements.
They put constraints over the design decisions, and sometimes themselves are
constraints over the other design decisions. The description of the problem
domain involves indicative specifications. Figure 7 illustrates the process of opt-
ing requirements from the problem domain to the problem indicative, and sub-
sequently, the problem indicative can further help in gathering effective require-
ments for the further phases. In this figure, requirements are extracted from the
problem domain, and a loop is formed for the evolutionary software development,
which adds experience with every delivery of the product.

Considering an example of using IoT motion tracker, if the hardware has
already been selected and its properties are defined then we only need to build
its architecture whereas the constraints are only applicable to the requirements.
Alternatively, if we have not yet selected the hardware, the ADDs need to con-
sider the hardware as well as the software architecture. In the first situation,
the properties of the hardware were given as a part of the problem (indicative),
therefore, it constrains the use of software architecture. Whereas, in the second
scenario, the properties of the intended hardware need to be chosen (optative)
which is part of the solution. Both ASRs and ADDs strongly affect the software
system including the preferences for the desired implementation and elimination
of the features that are not desirable.

6.2 Architectural Decision Loop

The decision loop illustrates the relationship between ADDs, as shown in Fig. 8
that has been extended from the [23]. It represents that a design decision intro-
duces additional design decisions, which also depends on the previous design
decisions hence, creating a decision loop [24]. By using the architectural decision
loop ADDs introduce new requirements, and for those requirements, new ADDs
need to be considered. Taking an example of flood traffic analysis on an IoT net-
work, multiple use cases can solve this problem, however, we use broadcasting of
the alarm when a flooding packet is observed. This endorse further requirements

504 W. Rafique et al.

. N IoT Software |
————{ Influence of the decision }-on- Architectural | |
. | Elements
Design :l)
I 1 Action
| 5 —> Realize
v =) |— = Subclass |
loT |) — Participate/
Architectur /~ Enforce \\ ===
al Design __Decision /
1 Decision
I(?T. <b—‘ : Concern
Decision
| LA
—— =}
4< To choose }——Based on Ranking bt
3
V : 7y T
Alternative ,/ Rank.mg \J
Decisions P | Design
L. \\Decisiong/
1.*
;(To ro| ose\ for: g eiion
_Lopropose) ' 1 Topic

Fig. 8. Architectural decision loop for IoT solutions [23].

of flooding threshold definition, detection technique, and broadcast method to
be used. Therefore, the threat broadcast on flood traffic becomes a design deci-
sion which has provoked various other design decisions. Another such instance
is the storage of IoT generated data, as the IoT devices are limited in capacity,
the system keeps track of the storage and transfers the data to the cloud when it
exceeds the prescribed limit. Therefore, the decision of the cloud storage invoke
new requirements of latency, bandwidth, data rate, and time interval will be
provoked. In this regard, we consider this condition as an architectural design
decision loop as new requirements will have to follow this design decision.

6.3 Repository of ADDs and Requirements

A solution to select the ADDs and ASRs has been to devise a repository denoted
as ADD and Requirement (ADRQ) repository. User’s intention dominates the
choice of ASRs and ADDs while exploiting the repository. The relationship
between the RE to architecture concerning the ADRQ repository has been elabo-
rated in Table 3. Software architect and requirements analyst has domain-specific
criteria to contemplate the ADRQ repository, as shown in Table 3. The require-
ments analyst stores the elicited requirements in the ADRQ in the same way, the
solution architect stores the architectural statements in the repository. Require-
ments that are elicited as well as ADDs should be explicitly documented and
stored in the repository to denote the specifications for implementation of the
solution.

Maintainable Software Solution Development in IoT 505

Table 3. The comparison of RE and architecture in an ADRQ repository.

Requirements domain | ADRQ repository Architecture domain
Requirements Formation of statements Choice of architecture
elicitation

Requirements Cost-benefit analysis Architectural exchange
negotiation analysis

Requirements Documenting statements in | Architectural design
description the repository

Requirements Relate repository statements | Architecture evaluation
validation with clarity

Requirements Writing down the repository | Architectural explanation
document statements

Requirements Organizing the repository Knowledge management of
administration the architecture

Both architectural requirements and ADDs can be documented using dif-
ferent techniques, including formal language specification, unified modeling lan-
guage, entity-relationship, and sequence diagrams. The documentation process
is extremely necessary to keep track of the software requirements and ADDs
efficiently. Both requirements and architecture should analyze the quality of the
content which can capture the relationship among ADDs and requirements.

7 Discussion

In this section, we provide a cross-benefit analysis of software requirements and
the architecture.

7.1 Requirement Elicitation for Smart Devices

RE is concerned with the elicitation of the goals that a user wants to achieve
from the software system. The RE process may involve focused groups, inter-
views, prototyping, and use cases development. Every requirement is given a
relative weight by requirement negotiation process where the software architect
selects a particular architecture using the trade-off analysis. In software archi-
tecture, the requirements are not processed as they are elicited, but they are
less formally represented as they are elicited. Validation is an important compo-
nent of RE and software architecture. The architecture community has devised
various approaches for architectural assessment and their impact on software
quality [25]. Moreover, multiple techniques are used for requirements validation,
such as the informal technique of review and inspection. Usually, scenario-based
methods are used both in architectural assessment and requirements validation.

506 W. Rafique et al.

7.2 Cross-fertilization

In this research, we discuss how software requirements and the architecture com-
munity can benefit from each other’s experience for effective IoT solution devel-
opment. The software architecture life-cycle stresses the need for constant inter-
action among stakeholders to understand their requirements. Business goals and
stakeholders’ requirements play a major role in architecture development. ADDs
and related architectural knowledge plays an important role in architecture
management. [oT application development suffers from many challenges, includ-
ing modifiability, traceability, rationale, and evolution management. Knowledge
frameworks can be developed for architectural knowledge management, which
also corresponds to the requirements’ management. Goal-oriented RE involves
goals during the requirements management, whereas, architectural knowledge
management includes areas such as traceability, conflicts discovery, and explor-
ing new design variations.

Currently, both requirements and the architectural knowledge management
are considered as different information paradigms, however, effective IoT solu-
tions need to consider the similarities of both the fields. We realize that both
areas have been addressing the same problem from different perspectives. This
study finds that the requirements and architectural knowledge management for
ToT solutions need further consideration because of the lack of standard develop-
ment environments. Further exploration in this field will open new horizons for
better requirement management for the IoT architecture where both communi-
ties can learn from each other’s experience. The illustration of ADRQ repository
elaborates that architecture development is not only the responsibility of the
software architect, however, ASRs shape the architecture, which also involves
the requirement managers concurrently. A maintainable architecture cannot be
developed without the consideration of expertise from both the fields.

8 Conclusion

Internet of things utilizes smart infrastructure, big data, communication tech-
nologies, and heterogeneous platforms to enable ubiquitousness. The heterogene-
ity in IoT provokes IoT solutions to integrate with diverse software and hardware
platforms. It becomes a critical challenge to develop a maintainable solution that
satisfies the requirements of heterogeneous IoT needs. We provide a comprehen-
sive analysis of how software requirements and architectural design decisions
can help in developing a maintainable software system. We argue that the archi-
tectural design decisions and architecturally significant requirements are on an
equal level of significance. This paper plays a key role in characterizing the rela-
tionship between architectural design decisions and architecturally significant
requirements and recognize them as significant for IoT solution development.
This research opens new horizons towards tighter collaboration between these
two paradigms to satisfy the heterogeneous needs of IoT solutions. The analy-
sis of the elicited requirements should be performed by explicitly considering
the architecture of the software. Consequently, we can extract architecturally

Maintainable Software Solution Development in IoT 507

significant requirements which can further be used to develop the architecture.
Architectural design decisions play a key role in software evolution and main-
tenance. Therefore, we should use a proper blend of architecturally significant
requirements and architectural design decision to develop maintainable solutions
to satisfy heterogeneous IoT demands.

8.1 Future Research

New research directions in the field of IoT architecture modeling can be explored
by identifying the significant requirements towards the interdependencies of het-
erogeneous hardware and software systems. Moreover, these dependencies can
be defined in terms of big data needs, communication latency, and bandwidth
requirements for IoT solutions.

We are further extending this research by facilitating IoT solution developers
by automatic code generation, which reduces cost and time in software devel-
opment. In this regard, a layered RESTful framework can be employed, which
provides platform-specific APIs. Different layers in the RESTful architecture
interact to deploy a hardware-specific solution.

Acknowledgment. This research is supported by the National Science Foundation
of China under Grant No. 61672276 and 61702277 and the Collaborative Innovation
Center of Novel Software Technology and Industrialization, Nanjing University.

References

1. Salman, O., Elhajji, I., Chehab, A., Kayssi, A.: Iot survey: an SDN and fog com-
puting perspective. Comput. Netw. (2018)

2. Zanella, A., Bui, N.; Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet Things J. 1(1), 22-32 (2014)

3. Sosa-Reyna, C.M., Tello-Leal, E., Lara-Alabazares, D.: Methodology for the model-
driven development of service oriented iot applications. J. Syst. Architect. 90, 15—
22 (2018)

4. Swaminathan, J.M.: Big data analytics for rapid, impactful, sustained, and efficient
(RISE) humanitarian operations. Prod. Oper. Manag. 27(9), 1696-1700 (2018)

5. Venters, C.C., et al.: Software sustainability: research and practice from a software
architecture viewpoint. J. Syst. Softw. 138, 174-188 (2018)

6. Uikey, N., Suman, U.: A lifecycle model for web-based application development:
incorporating agile and plan-driven methodology. Int. J. Comput. Appl. 117(19),
28-36 (2015)

7. Sarker, I.H., Faruque, F., Hossen, U., Rahman, A.: A survey of software devel-
opment process models in software engineering. Int. J. Softw. Eng. Appl. 9(11),
55-70 (2015)

8. Ozdemir, V., Hekim, N.: Birth of industry 5.0: making sense of big data with
artificial intelligence “the internet of things” and next-generation technology policy.
OMICS J. Integr. Biol. 22(1), 65-76 (2018)

9. Jackson, M.: Problem frames and software engineering. Inf. Softw. Technol. 47(14),
903-912 (2005)

508

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

W. Rafique et al.

Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: Proceedings of 5th Working IEEE/IFIP Conference on Software Archi-
tecture(WICSA), Pittsburgh, Pennsylvania, pp. 109-120 (2005)

Maérquez, G., Astudillo, H.: Selecting components assemblies from non-functional
requirements through tactics and scenarios. In: Proceedings IEEE 35th Interna-
tional Conference of the Chilean Computer Science Society (SCCC), Valparaiso,
Chile, pp. 1-11 (2016)

Marquez, G., Astudillo, H.: Selection of software components from business objec-
tives scenarios through architectural tactics. In: Proceedings 39th IEEE/ACM
International Conference on Software Engineering Companion (ICSE-C), Buenos
Aires, Argentina, pp. 441-444 (2017)

Capilla, R., Nava, F., Pérez, S., Duenas, J.C.: A web-based tool for managing
architectural design decisions. ACM SIGSOFT Softw. Eng. Notes 31(5), 4 (2006)
Cai, H., Gu, Y., Vasilakos, A.V., Xu, B., Zhou, J.: Model-driven development
patterns for mobile services in cloud of things. IEEE Trans. Cloud Comput. 6(3),
771-784 (2018)

Nguyen, X. T, Tran, H.T., Baraki, H., Geihs, K.: FRASAD: a framework for model-
driven IoT application development. In: Proceedings IEEE 2nd World Forum on
Internet of Things (WF-IoT), pp. 387-392 (2015)

Kwan, 1., Cataldo, M., Damian, D.: Conway’s law revisited: the evidence for a
task-based perspective. IEEE Softw. 29(1), 90-93 (2012)

France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Proceedings Future of Software Engineering, pp. 37-54. IEEE Com-
puter Society (2007)

Grunbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and
architectures: the CBSP approach. In: Proceedings 5th IEEE International Sym-
posium on Requirements Engineering, pp. 202-211 (2001)

Mohammadi, N.G., Heisel, M.: A framework for systematic analysis and model-
ing of trustworthiness requirements using i* and BPMN. In: Katsikas, S., Lambri-
noudakis, C., Furnell, S. (eds.) TrustBus 2016. LNCS, vol. 9830, pp. 3—18. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44341-6_1

Rosa, W., Madachy, R., Clark, B., Boehm, B.: Agile software development cost
modeling for the US DoD. In: SEI Software and Cyber Solutions Symposium, pp.
1-29. Software Engineering Institute (2018)

Beck, K., Boehm, B.: Agility through discipline: a debate. Computer 36(6), 4446
(2003)

Shahbazian, A., Lee, Y.K., Le, D., Brun, Y., Medvidovic, N.: Recovering architec-
tural design decisions. In: Proceedings IEEE International Conference on Software
Architecture (ICSA), pp. 95-9509 (2018)

De Boer, R.C., Van Vliet, H.: On the similarity between requirements and archi-
tecture. J. Syst. Softw. 82(3), 544-550 (2009)

Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176-189 (2017)

Barnes, J.M., Garlan, D., Schmerl, B.: Evolution styles: foundations and models
for software architecture evolution. Softw. Syst. Model. 13(2), 649-678 (2014)

https://doi.org/10.1007/978-3-319-44341-6_1

	Maintainable Software Solution Development Using Collaboration Between Architecture and Requirements in Heterogeneous IoT Paradigm (Short Paper)
	1 Introduction
	2 Related Work
	3 Characteristics of IoT Software Solution
	3.1 Multiple Deployment Domains
	3.2 Complicated Usability
	3.3 Lack of IoT Standards
	3.4 Diverse Stakeholders
	3.5 Uncertain Business Models
	3.6 Heterogeneous Communication Patterns

	4 Software Requirements and Architecture in IoT
	4.1 RE and Architectural Design
	4.2 Weaving the Development Process

	5 Translating Problems into Solutions
	5.1 Problem Exploration Using RE
	5.2 Discussion on Problems and Solutions in IoT

	6 ADDs and Requirements in IoT
	6.1 Indicative and Optative Statements
	6.2 Architectural Decision Loop
	6.3 Repository of ADDs and Requirements

	7 Discussion
	7.1 Requirement Elicitation for Smart Devices
	7.2 Cross-fertilization

	8 Conclusion
	8.1 Future Research

	References

