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Abstract. Bug triaging is an essential activity of defect repair, which is closely
related to the cost of software maintenance. Researchers have proposed automatic
bug triaging approaches to recommend bug fixers more efficiently and accurately.
In addition to text features, most of the previous studies focused on single-layer
bug tossing (or reassignment) graphs, but they ignored the multiplex (or multi-
layer) network characteristics of human cooperative behavior. In this study, we
build a collaborative multiplex network composed of a tossing graph and an e-
mail communication graph in the bug triaging process. By integrating the idea of
network embedding and multiplex network measures, we propose a new strategy
of random walks. Moreover, we present a bug fixer prediction model that takes
structure and text features as inputs. Experimental results on two large-scale
open-source projects show that the proposed method outperforms the selected
baseline approaches in terms of commonly-used evaluation metrics.

Keywords: Collaborative multiplex network � Network embedding �
Bug fixer prediction � Structure and text features

1 Introduction

As a necessary activity of software development, defect repair (also known as bug
fixing) plays a vital role in software quality assurance. Defect repair usually uses bug
tracking systems (such as Bugzilla1 and JIRA2) to manage software bug information
and assists developers in fixing reported bugs. Bug triaging is an essential part of defect
repair [1], and its primary goal is to go through a list of bug reports and assign bugs
which have been confirmed to appropriate developers to fix. Since a large number of
duplicate, invalid, or unreproduced bugs are regularly reported to bug tracking systems,
accurate, automated bug triaging becomes an urgent problem for open-source software
development and maintenance. Ideally, a confirmed bug can be assigned directly to the
right developer to fix immediately. However, bug triaging is a time-consuming process

1 https://www.bugzilla.org/.
2 https://www.atlassian.com/software/jira.
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in practice. For example, a previous study on the Eclipse project3 showed that it took
40 days on average in the first assignment process, and then it took 100 days or more
time in the reassignment process (or called tossing process) [2].

In recent years, many researchers have studied automated bug triaging approaches.
In general, these existing methods can be categorized into three main classes: (1) ma-
chine learning-based approach [3–6], where classification models are trained based on
bug features, such as title, comment, and description; (2) graph (or network)-based
approach [2], in which prediction models are built with tossing graph attributes to
reduce the tossing path length; and (3) hybrid approach which combines machine
learning-based and graph-based approaches. Besides the prediction of the ultimate
fixer, some researchers argue that non-fixer developers (also known as tossers) also
play a crucial role in the whole bug fixing process. Their contributions include but are
not limited to reproducing bugs, commenting bugs, and modifying bug status. This
type of developers was called “bug resolution catalyst” by Mani et al. [7]. In the bug
triaging process, different types of developers work together and collaborate to find the
right fixer via deepening the understanding of given bugs.

Social network analysis (SNA) has been widely recognized as a commonly-used
tool to analyze the interactions between individuals from network-structured popula-
tions in real life and cyberspace. Many previous studies of bug triaging were conducted
based on bug tossing graphs, a specific type of social networks, where each node
represents a developer and each edge represents an action of bug reassignment (or
called tossing). However, most of the previous studies focused on a single-layer tossing
graph which has only a single type of relationships between nodes, and they ignored
the multiplex (or multi-layer) network characteristics of human cooperative behavior.
For example, when different developers collaborate to develop a project, they usually
communicate by e-mail or chat by instant messengers (e.g., WhatsApp and WeChat),
thus leading to a multiplex network that possesses several layers, each of which rep-
resents one type of relationships between nodes.

To leverage more interaction information between developers to predict the right
fixer, in this study, we propose a new concept of collaborative multiplex network,
which is a network composed of different developers and development activities.
Different types of activities are represented as different layers of the network to describe
various relationships between developers. Because hundreds or thousands of devel-
opers are usually involved in a large open-source software project, there has been an
increasing concern for the ability of SNA in processing the unprecedented growth of
activity data. To facilitate efficient analysis of a complex collaborative multiplex net-
work, we utilize network representation learning (also known as network embedding)
to understand the composition of different layers of the network, as well as to analyze
the network from different perspectives. Also, we analyze the text information of bug
reports, including summary, status, history, and some predefined fields. As a result, the
combination of structural information and text information enables us to predict fixers
more accurately. In brief, the main contributions of this study include:

3 https://www.eclipse.org/.
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1. We construct a collaborative multiplex network composed of two everyday developer
activities (i.e., bug tossing and e-mail communication) in the bug triaging process.
Inspired by the idea of network embedding, we also propose a new random walk
strategy designed based on multiplex network measures and network embeddings.

2. By combining the structural information of the collaborative multiplex network and
text information extracted by the latent Dirichlet allocation (LDA) model [8], we
propose a prediction model to recommend appropriate fixers for target bug reports.

3. We conducted an empirical study on the datasets collected from Eclipse and
Gnome4, and the experimental results indicated that the proposed model outper-
formed the selected baseline methods.

The remainder of this paper is organized as follows. Section 2 introduces the
related work; Sect. 3 presents the background and preliminaries of this work to
facilitate understanding the concept of collaborative multiplex networks in bug triag-
ing; Sects. 4, 5, 6 and 7 introduce the proposed prediction model, experimental setups,
empirical results, threats to validity, respectively; finally, Sect. 8 concludes this work.

2 Related Work

2.1 Bug Fixer Prediction

Generally speaking, the studies of bug fixer prediction can be divided into two main
types, namely text content-based approach and developer relationship-based approach,
according to the feature information they used.

Text Content-Based Approach. The existing approaches based on text information
usually use machine learning algorithms to predict the ultimate fixer of a given bug.
The text information of a bug report mainly includes title, description, and comments.
Cubranic had previously extracted keywords from the fields of title and description as
training features and used a Naïve Bayes (NB) classification model (or called classifier)
to achieve 30% accuracy [9]. Anvik et al. [10] then improved the data processing and
classification algorithm by Cubranic’s work. They filtered out all the records labeled as
invalid, wontfix and worksform, deduplicated bug reports, and removed the bug reports
processed by those inactive and non-participating developers. Their prediction model
achieved an accuracy of 57% for the Eclipse dataset and 64% for the Firefox5 dataset.

With the rapid development of natural language processing techniques, the topic
extraction of text information has also attracted the attention of researchers. For
example, Xie et al. [11] used the Stanford topic modeling toolbox6 to group bug reports
on the same topic. For new bug reports that have been confirmed, they obtained bug
groups (or clusters) according to the model they built and then recommended top-
k appropriate fixers based on developer experience and skills learned from historical
data of fixed bugs. Naguib et al. [12] used the LDA model to divide bug reports into

4 https://www.gnome.org/.
5 https://www.mozilla.org/.
6 https://nlp.stanford.edu/software/tmt.
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different topics. According to the topics and history of each bug report, they created an
activity description file (i.e., a profile) for each developer to describe the role and
expertise associated with the developer. Eventually, the proposed model recommended
the most appropriate fixer by matching developer expertise with extracted bug topics.
Xia et al. [13] proposed a specialized topic model-based bug triaging approach, which
considered the topic distribution of a new bug report when assigning topics to words of
the bug report. They evaluated the method on five software projects and demonstrated
that it was better than the selected baselines.

Along with the popularity of deep learning, some new approaches based on deep
neural networks have also been proposed in recent years. Lee et al. [14] applied deep
learning-based automatic bug triager to a few industrial software projects. In particular,
they built an automatic bug triager using convolutional neural networks (CNNs) and
word embedding. The results obtained from both industrial and open-source projects
revealed the benefits of the proposed approach. Xi et al. [15] presented a sequence to
sequence model named SeqTriage. Since the model took into account fixed bugs which
developers report themselves and the tossing sequence information, it outperformed the
selected baseline methods. Besides, Mani et al. [16] considered the data noisy in the
description of bug reports, which consists of unstructured text, code snippets, and stack
trace making. By using DBRNN-A (short for an attention-based deep bidirectional
recurrent neural network model) that learned syntactic and semantic features from long-
word sequences in an unsupervised manner, they proposed a bug report representation
algorithm to address the problem mentioned above.

Developer Relationship-Based Approach. Developer relationship-based approaches
need to construct developer collaboration networks, which are sometimes referred to as
tossing graphs. Jeong et al. [17] proposed a tossing graph model based on a Markov
chain and the bug tossing process among developers. The experimental result indicated
that the reassignment rate of new defects was reduced by about 72% when taking the
structural features of the graph into account. Wu et al. [18] proposed a method based on
the k-nearest neighbor (KNN) algorithm by ranking developer expertise. After con-
structing a developer collaboration network, the method ranks developers in terms of
network measures, such as degree, out-degree, frequency, PageRank, betweenness, and
closeness. Their empirical results showed that two network measures, out-degree and
frequency, were more effective in predicting appropriate fixers. Besides, Zhang et al.
[19] proposed an approach named KSAP using KNN search and heterogeneous
proximity. KASP recommends possible fixers for a given bug report via automatically
building a heterogeneous network of a bug repository and extracting meta-paths of
developer collaborations in the network.

2.2 Network Embedding

In recent years, unsupervised learning-based network node representation (i.e., network
embedding) methods have been proposed and proven to be more effective in capturing
latent structural features than standard network metrics [20]. For single-layer networks,
inspired by the idea of Word2Vec, each network node can be regarded as a word, and
the sequence of walks on different nodes can be regarded as a sentence. Nodes of such
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a network are then assigned to low-dimensional representations in a similar way to
utilizing the skip-gram model [21] in Word2Vec.

Until now, researchers have proposed a few network embedding methods that
embed nodes of a (single-layer) network to vectors and other low-dimensional repre-
sentations while preserving the network structure. DeepWalk [22] is the first approach
applying deep learning techniques which have achieved success in natural language
processing to network analysis. It obtains the context sequence of a node by random
walks and then optimizes the probability of neighbors around the node. Finally,
DeepWalk outputs embedding results by using the skip-gram model. However, this
method does not have any limitation on the direction and length of the search of
neighbors, thus resulting in relatively high computational complexity.

To overcome the above shortcoming of DeepWalk, Node2Vec [23] sets two
parameters p and q to control the width and breadth of random walks. Similarly, the
large-scale information network embedding (LINE) method [24] extends the random
walk strategy to the first-order and second-order similarity-induced weighted random
walk, which can meet the embedding requirements of large-scale networks. Besides,
Wang et al. [25] proposed a structural deep network embedding method, called SDNE,
which exploits the first-order and second-order proximity jointly to preserve the local
network structure and global network structure. For more information about other
network embedding approaches, please refer to the survey made by Cui et al. [20].
Unfortunately, most of the existing methods of network embedding focus on single-
layer network and do not consider multiplex networks.

Collaborative human activities such as distributed collaborative writing with wikis
and software development, which usually take place on multiple layers rather than on a
single one, can be better modeled by multiplex networks [26]. Multiplex networks,
whose edges indicate various types of interactions belonging to different layers, rep-
resent a significant advance of network science in describing real-world networked
systems [27]. Liu et al. [28] defined three Node2Vec-based random walk strategies on
multiplex networks, including network aggregation, result aggregation, and layer co-
analysis. Inspired by a specific random walk model, Guo et al. [29] investigated a new
navigation strategy on multiplex networks. Significant analytical expressions were
derived for the mean first-passage time and the average time to reach a node on these
networks, using the spectral graph theory and stochastic matrix theory. Considering the
information of multi-type relations, Zhang et al. [30] combined different types of
relations while maintaining their distinctive properties by using a high-dimensional
common embedding and a lower-dimensional additional embedding for each type of
relation. Matsuno et al. [31] proposed an embedding method for multiplex networks
named MELL, which was able to capture and characterize each layer’s connectivity. In
particular, this method exploited the overall structure effectively and was also capable
of embedding both directed and undirected multiplex networks.
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3 Preliminaries to This Study

3.1 Bug Tossing Graph and E-mail Communication Graph

Bug Report and Tossing Graph. Bug reports are one of the most valuable assets in
the bug tracking system of an open-source software project. Each reported bug report is
a semi-structured document that contains all the information about a software bug,
which can be used to help developers find and fix the bug. Figure 1 illustrates an
example of a bug report whose ID is 15327 in the Eclipse project.

As shown in Fig. 1, the abstract field present the primary information (or attributes) of
the bug directly. For example, product and component, which are two necessary pre-
defined attributes in this filed, describe the primary and secondary categories, respec-
tively, of a bug. The history field is a table which details the bug repair process.
Figure 2 displays the modified history of the bug. There are five columns in the table,
namely Who, When, What, Removed, and Added. The values of Removed and Added in
a row represent a change to the value ofWhat. According to modification records of the
assignee field, we can extract bug tossing paths of resolved bug reports to form a
tossing graph. Besides, a bug report provides a detailed description of the bug and
developer comments in the natural language form to help find appropriate fixers.

Abstract

History

Description

Comments

Fig. 1. An example of a bug report with ID 1532 in the Eclipse project.

7 https://bugs.eclipse.org/bugs/show_bug.cgi?id=1532.
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E-mail Communication Graph. Software developers always communicate with each
other by e-mail to develop open-source software projects. Figure 3 illustrates an e-mail
“Using ACTF on Linux”8 in the mailing list of the accessibility tools framework9

(ACTF), which is a subproject of the Eclipse Project. Developers can follow any e-mail
in a mailing list after subscribing to the mailing list. As shown in Fig. 3, the fields
From and Date record the sender and time of the e-mail, respectively. The Follow-ups
field at the bottom of the figure indicates the developer who responded to this e-mail
(i.e., Kentarou Fukuda). After entering the link in the Follow-ups field, we can see
more information about the follow-up e-mail. After analyzing records in the archive of
the ACTF project, we can construct an e-mail communication graph by extracting
possible e-mail communication paths, each of which contains different developers with
e-mail addresses corresponding to From and Follow-Ups.

Fig. 2. The modified history of the bug 1532.

Basic Information

Follow-Ups

Fig. 3. An example of an e-mail in the mailing list of the ACTF project.

8 https://www.eclipse.org/lists/actf-dev/msg00477.html.
9 https://www.eclipse.org/actf.
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3.2 Multiplex Network Measures

First of all, we introduce some notations of multiplex networks. A multiplex network
system (MNS) consists of N nodes and MðM� 2Þ layers, each of which is a network
that has the same nodes V but different edges [27]. The adjacency matrix of layer a of

the MNS system is defined as A½a� ¼ a½a�ij

n o
ða 2 1;M½ �Þ. If there is an edge between

nodes i and j on layer a, a½a�ij ¼ 1, otherwise 0. Then, the whole system can be expressed

as MNS ¼ fA 1½ �; � � � ;A½M�g. If we take the weight of each edge into consideration, the

weighted adjacency matrix of layer a is defined as W ½a� ¼ w a½ �
ij

n o
, and the whole

system can be represented as MNS ¼ fW 1½ �; � � � ;W ½M�g. The definitions of other mul-
tiplex network measures are given in Eqs. (1)–(6).

Degree of node i on layer a: the number of links of node i to other nodes on layer a.
This metric represents a developer’s activity level in a certain way of collaboration.

Thus, the degree of node i in a multiplex network is a vector ki ¼ ðk 1½ �
i ; � � � ; k½M�

i Þ.

k½a�i ¼
X

j
a½a�ij : ð1Þ

Overlapping degree of node i: the sum of the degree of node i on all the layers of a
multiplex network. This metric represents a developer’s activity level in the whole
multiplex network.

oi ¼
X

a
k½a�i : ð2Þ

Strength of node i on layer a: the weighted degree of node i on layer a. Thus, the

strength of node i can be represented as a vector si ¼ ðs 1½ �
i ; � � � ; s½M�

i Þ.

s½a�i ¼
X

j
w½a�
ij : ð3Þ

Entropy of multiplex degree: the distribution of the degrees of node i among various
layers. This metric represents the uniformity of the degree distribution of a node across
different layers.

Hi ¼ �
XM

a¼1

k½a�i

oi
lnðk

½a�
i

oi
Þ: ð4Þ

The first (clustering) coefficient for node i: the ratio of the number of 2-triangles with a
vertex at node i to the number of 1-triads centered at node i. Due to the popular saying,
“the friend of your friend is my friend,” clustering coefficient is an essential network
metric to measure the tendency of nodes to form triangles. In this study, a 2-triangle is
defined as a triangle whose edges belong to two different layers, and a 1-triad centered
in i is also defined as a triangle composed of nodes j, i, and k, in which both edge eji
and edge eik are on the same layer.
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Ci;1 ¼
P

a

P
a0 6¼a

P
j6¼i;m6¼iða½a�ij a

½a0 �
jm a½a�miÞ

ðM � 1ÞPa k
a½ �
i ðk a½ �

i � 1Þ
: ð5Þ

Interdependence of node i: the multiplex contribution of node i to the reachability of
each unit of a multiplex network. Reachability is also a crucial characteristic in graph
theory and network science. In Eq. (6), rij is the total number of shortest paths between
nodes i and j in the multiplex network, and uij is the number of shortest paths between
the two nodes which make use of links on two or more layers.

ki ¼
X

j6¼i

uij

rij
: ð6Þ

4 Bug Fixer Prediction Approach

4.1 Overall Framework

The overall framework of our bug fixer prediction approach consists of three parts (see
Fig. 4). The first part is structural information processing, which has three steps:
(1) constructing a collaborative multiplex network; (2) calculating the measures of the
multiplex network; and (3) using a new random walk strategy to obtain the structural
information of all developers. The second part is text information processing, which
has two steps: (1) collecting and preprocessing bug reports; and (2) obtaining text
vectors of all bugs and developers by the LDA model. The third part is prediction
model, which takes the structure features of developers and text features of bug reports
as inputs and outputs possible k bug fixers. More details of the three parts, please refer
to the following subsections.

Extract 
tossing graph

Extract 
e-mail graph

Multiplex network

Pre-exploring

Network 
embedding

Collaboration
structural vectors

Bug history

E-mail list

1
2

3

4
5

6
7

1
2

3

4
5

6
7

Tossing 
graph 

E-mail 
graph

New bug with tossing path

Developers and 
their fixed bugs

Analyze fields of bug report

Developer expertise

LDA model

Developers
Textual vectors

LDA model

Mean developers’ 
structural vectors Bug

report

Prediction model

Top-k candidates

Train

Test

Fig. 4. The overall framework of our method.
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4.2 Structural Information Processing

Building a Collaborative Multiplex Network. According to the definition of mul-
tiplex networks, we take the Eclipse project as an example to introduce the construction
of a collaborative multiplex network (see Fig. 5). First, we removed duplicated and null
records when building the tossing graph and e-mail communication graph. Second, we
preserved the common nodes (i.e., the same developers) in the two graphs and removed
other nodes and their corresponding edges. We then summed up the number of edges
between each pair of nodes as the weight of the edge between the nodes. For example,
in Fig. 5, the weight of the edge between Denis and Olivia is two. Third, we generated
the collaborative multiplex network after mapping each developer in the two graphs
into a unified node ID.

Multiplex Network Embedding. Most of the random walk methods were designed
for single-layer networks. For random walks across layers in a multiplex network, the
way of crossing layers is often random or based on degree importance, possibly leading
to the loss of valuable information within the multiplex network. Therefore, we propose
a new random walk strategy for collaborative multiplex networks. The proposed
scheme takes into account five primary multiplex network measures, i.e., overlapping
degree, node strength, clustering coefficient, interdependence, and multiplex degree
entropy, in the process of random walks. More specifically, we can obtain a score by
weighting these measures, which is used to choose the next-step node to generate a
sequence of nodes when sampling node sequences in layer a of the multiplex network.

Suppose i and j denote the current node and the next-step node, respectively, on the
same layer a. The score of node j is defined as follows:

scorej ¼ ðx1 � oj þx2 � s a½ �
j þx3 � Hj þx4 � Cj;1 þx5 � kjÞ � w½a�

ij

s:t:
P5

k¼1 xk ¼ 1
; ð7Þ

where xk 2 ½0; 1� is the weight of a multiplex network measure and w½a�
ij represents the

weight of the edge between nodes i and j. Nodes vi are then generated according to the
following distribution:

Kris

Olivia

Rozil

Boko

Denis

Genie

Tossing graph

Kris

Olivia

Leo

Boko

Denis

E-mail communication graph

Kris

Olivia

Boko

Denis

Tossing graph

Kris

Olivia Boko

Denis

E-mail communication graph

1

4
3

2

Tossing graph

1

4 3

2

E-mail communication graph

Fig. 5. An example of the construction of a collaborative multiplex network.
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P vi ¼ pjvi�1 ¼ qð Þ ¼
scorep
Z if q has a link to p
0 otherwise

�
: ð8Þ

where Z is a normalizing constant. We set the same objective function as Node2Vec
[23], described as follows:

maxf
X

v2V ½� log
X

v2V expðf ðuÞ � f ðvÞÞþ
X

ni2NsðuÞ f ðniÞ � f ðuÞ�; ð9Þ

where f : V ! R
d is a mapping function from nodes to vection representations and

NS uð Þ � V is a set of the neighbours of node u.
By employing the embedding algorithm based on the random walk strategy (see

Algorithm 1), we can obtain the embedding result of each node in the multiplex
network, which can be used as structural features of developers in this study.

Algorithm 1. The multiplex network embedding algorithm

Input: Two-layer collaborative multiplex network G, Dimensions d, Walks per node r, Walk 
length l, Context size k, Parameter weight vector 

Output: Mapping function f for layer α

1: Gs = CountScore(G, ) // Update G with each node’s score calculated using Eq. (7)

2: Initialize walks to Empty

3: for iter = 1 to r do

4: for all nodes u V do

5: walk = RandomWalk(Gs, α, u, l) 

6: Append walk to walks

7: f = StochasticGradientDescent(k, d, walks)

8: return f

RandomWalk(Gs, α, u, l) 

1: Initialize walk to [u] 

2: for walk_iter = 1 to l do

3: Vcurr = GetNearestNeighbors(walk[-1], Gs, α) // Layer α is also a graph (V,W [α])

4:  Find node s with the highest score in Vcurr

5:  Append s to walk

6: return walk
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4.3 Text Information Processing

A previous study [32] showed that the summary, product, component, description, and
comments fields in a bug report are significant textual descriptions of a bug. Therefore,
we collect and preprocess the above fields of each fixed bug and then integrate them
into a text representation (or called text information). Finally, we obtain text features of
each bug after inputting the text information to the LDA model [8].

Text Preprocessing. As mentioned above, we first clean the text information of each
bug report by using Gensim10. Moreover, numbers, punctuations, and special charac-
ters are removed, and stop words and stems for long texts are deleted. More details of
text preprocessing, please refer to previous studies [9–13, 32].

Text Feature Extraction. Considering the success of topic models in automatic bug
triaging, in this study, we also utilize the LDA model to extract text features of bug
reports. The LDA model can capture themes (or topics) of each bug in the whole
dataset in the form of a probability distribution, and it clusters (or groups) bugs
according to the topics extracted from the text information. Besides, the topics of bugs
fixed by a developer can represent the expertise or skills of the developer. Similarly, we
input all bugs fixed by a developer to the LDA model, and the output of the LDA
model is used to represent the professional skills of the developer.

4.4 Fixer Prediction Model

After extracting structure and text features, we train a fixer prediction model, which is
essentially a multi-class classification model, for new bug reports. In theory, the fixer
prediction model can be trained by any classification algorithm. For example, support
vector machines (SVMs) have been used as a standard classification model and proven
to be effective in automatic bug triaging in many previous studies [2, 10, 17, 32]. In this
study, we utilize a multilayer perceptron (MLP), which is a typical class of feedforward
artificial neural networks, to train the fixer prediction model.

5 Experimental Setups

5.1 Research Questions

In this study, we attempt to answer the following two research questions.

RQ1: Does the proposed network embedding (structure features learning) method
perform better than the selected baseline approaches?

The first research question aims to test the effectiveness of the proposed random
walk strategy designed based on multiplex network measures and network embeddings.
Since it is hard to evaluate network embedding results obtained by different approaches
directly, we evaluate the efficacy of the approaches under discussion on two binary

10 https://radimrehurek.com/gensim.
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classification tasks, i.e., link prediction and node classification. Note that we perform
these two tasks on the layer of bug tossing regarding the primary goal of this study.

RQ2: Does the proposed bug fixer prediction (multi-class classification) model
outperform the selected baseline approaches?

The primary goal of the second research question is to test the effectiveness of the
proposed bug fixer prediction model. We will compare the performance of different
classification models when inputting the same features. In the context of this research
question, a bug’s fixer is the ultimate developer who fixes the bug.

5.2 Data Collection

The experimental datasets used in this study were collected using Bugzilla, a popular
bug tracking system. In the whole lifecycle of each defect, its status is ever-changing.
Therefore, in this study, we selected only fixed bugs, whose statuses were “RESOL-
VED” or “CLOSED” and bug resolution was “FIXED,” to crawl their abstract, de-
scription, comments, product, component, and history fields. Finally, we collected
200,000 bugs (record number from 1 to 357553) and 200,000 bugs (record number from
93 to 782996) from the Eclipse project and the Gnome project, respectively.

Large-scale open-source software projects often set up mailing lists for developers
to communicate with each other via e-mail. A developer can send e-mails through a
mailing list to inform any developer who has subscribed to the mailing list. The
projects of Eclipse and Gnome have a large number of mailing lists and e-mails. As
shown in Fig. 3, each e-mail contains From, Follow-Ups, Date, Follow-Ups-Date, and
other fields. We crawled 30,338 and 1,748,687 e-mail records created before August
2017 from public subprojects in the two projects, respectively.

We then constructed two collaborative multiplex networks following the procedures
introduced in Subsect. 4.2. According to the definition of multiplex networks, the two-
layer collaborative multiplex networks were smaller than the combination of a tossing
graph and an e-mail communication graph. The statistics of the two constructed network
are shown in Table 1, where TG, ECG, and LSCC denote tossing graph, e-mail com-
munication graph, and the largest strongly connected component, respectively.

5.3 Baseline Approaches

We use the following four network embedding (structure features learning) methods as
baseline approaches to answer RQ1.

DeepWalk. DeepWalk (Perozzi et al. 2014) [22] assumes that the space formed by
the corresponding vectors of nodes can accurately represent the actual relationship

Table 1. Statistics of the experimental datasets.

Dataset #Nodes #Edges (TG/ECG) Transitivity
(TG/ECG)

#LSCC Nodes
(TG/ECG)

Eclipse 716 6,954 (4,041/2,913) 0.067/0.054 323/594
Gnome 916 20,310 (1,280/19,030) 0.029/0.186 115/893
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between nodes in a network. It transforms network nodes into a linear sequence,
regards the hierarchical softmax of the skip-gram model as an objective function, and
finally obtains the corresponding vector of each node.

LINE. LINE (Tang et al. 2015) [24] is an improved network embedding method
based on DeepWalk. It preserves the local and global properties of a network by taking
into account the first-order proximity and second-order proximity. Moreover, this
approach can be applied to different types of networks and is useful for large-scale
network embedding.

Node2Vec. Inspired by the idea of maximizing the probability of the neighbors of
network nodes, Node2Vec (Grover et al. 2016) [23] combines the depth-first search
and breadth-first search. It uses return parameter p and in-out parameter q to explore the
neighbors of nodes flexibly. At the same time, this approach satisfies the local and
global attributes of a network, thus making random walks relatively controllable.

PMNE. PMNE (Liu et al. 2017) [28] proposes three patterns based on Node2Vec,
which combine all the layers of a multiplex network. Network aggregation merges
nodes and edges on multiple layers directly to form a new network. Node2Vec takes
the new network as an input. Result aggregation embeds each layer of a multiplex
network with Node2Vec and then concatenate s node vectors on different layers to
obtain the final embedding result. Layer co-analysis adds a parameter r to Node2Vec to
determine whether it crosses layers in the random walk process. The final sequence of
nodes is a cross-layer sequence embedded by the skip-gram model.

As for RQ2, the proposed MLP model uses the softmax function as an activation
function for the output layer. Because the SVM algorithm and Cosine similarity have
been widely used as classification models in many previous studies, we also choose
them as baseline models for comparison in this study.

5.4 Configurations of Tasks and Parameters

To answer RQ1, we used five-fold cross-validation in the link prediction and node
classification tasks for bug tossing. In the link prediction task, the cosine similarity
between two nodes represented by embedding vectors determines whether there is a
link between the two nodes. In our experiments, the decision rule is that a cosine
similarity value greater than 0.5 indicates a link. Besides, we randomly selected the
same number of non-existent edges from the existing network as negative samples for
training, and the negative sample size was set to five.

In the node classification task, more specifically, a multi-label classification task,
embedding vectors of nodes were inputted to an SVM model [33] implemented by the
tool sklearn11. The SVM model outputs a binary classification result to determine
whether the target developer corresponding to a given node is a skilled developer in
fixing software defects.

The parameter weight vectors x were set to [0,0,0.3,0.4,0.3] and [0,0,0.9,0,0.1] for
Eclipse and Genome, respectively. The weights were obtained from their respective
largest strongly connected componnets. The embedding dimension of each method was

11 https://scikit-learn.org/stable.
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set to 200. Since LINE has two embedding settings, we set each of the LINE
embedding dimension to 100 and concatenated them directly to form the final
embedding. Besides, the window size of random walks was set to ten, and other
parameters of our method used in the experiments were set as the same as Node2Vec
unless specified otherwise.

To answer RQ2, we employed five-fold incremental learning [2, 13, 32] to compare
the performance of different classification models. The topic number of the LDA model
was set to 200. We also used the tool sklearn to implement the MLP model with default
parameter settings. Note that we optimized the log-loss function of this model using
stochastic gradient descent (SGD).

5.5 Evaluation Metrics

To answer RQ1, we utilize the area under the curve (AUC) [34] as an evaluation
metric, which has been used by a previous study [23]. As with previous work [13, 16]
that studied RQ2, we choose Accuracy@k as an evaluation metric to measure how
many fixers are hit by the top k recommend developers.

6 Experimental Results

6.1 Answer to RQ1: Node Representation Capability

Table 2 shows the experimental results of the two tasks on the Eclipse and Gnome
datasets. NA, RA, and CA represent network aggregation, result aggregation, and layer
co-analysis, respectively, of the PMNE method. The best result is highlighted in bold.

As shown in Table 2, our method achieves the best results in both link prediction
and node classification tasks. Because DeepWalk, LINE, and Node2Vec are used for
single-layer networks, they cannot leverage useful information from the other layer in
the collaborative multiplex network. Therefore, in the two tasks, the results of the three
methods were, in general, worse than those of PMNE and our approach. Although the
PMNE method merged two-layer embedding results, its result was still worse than that

Table 2. Results of link prediction and node classification in term of AUC (mean ± s.d.).

Approach Link prediction Node classification
Eclipse Gnome Eclipse Gnome

DeepWalk 0.639 ± 0.007 0.482 ± 0.009 0.720 ± 0.123 0.536 ± 0.022
LINE 0.708 ± 0.011 0.581 ± 0.009 0.720 ± 0.000 0.510 ± 0.000
Node2Vec 0.639 ± 0.007 0.482 ± 0.009 0.704 ± 0.016 0.518 ± 0.012
PMNE (NA) 0.644 ± 0.011 0.630 ± 0.008 0.794 ± 0.019 0.519 ± 0.012
PMNE (RA) 0.691 ± 0.009 0.582 ± 0.011 0.817 ± 0.012 0.531 ± 0.043
PMNE (CA) 0.707 ± 0.010 0.641 ± 0.004 0.818 ± 0.016 0.527 ± 0.015
Ours 0.731 – 0.004 0.656 – 0.002 0.823 – 0.007 0.625 – 0.065
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of our approach. The main reason for the difference is that PMNE does not consider
multiplex network measures when designing the random walk strategy. The results
indicate that these network measures can represent the connectivity and transitivity of
nodes in the whole multiplex network better. Due to limitations of space, we do not
show the results of parameter sensitivity.

6.2 Answer to RQ2: Fixer Prediction Performance

In this experiment of multi-class classification, the Eclipse dataset contains 531 fixers
and 98,301 bug reports, and the Gnome dataset has 603 fixers and 19,701 bug reports.
We compared the prediction performance of different models in two cases: considering
“S” (short for structural features of developers) and considering “S + T” (short for both
structural features of developers and text features of bug reports). The main results of
the two datasets using five-fold incremental learning are presented in Tables 3 and 4,
respectively. Note that the value of k ranges from one to five. The best result is
highlighted in bold.

In each of the two tables, the first part that ranges from the 2nd row to the 8th row
represents the case of “S,” and the second part that ranges from the 9th row to the 11th

row represents the case of “S + T.” The structure features extracted by each of the five
approaches were inputted into an MLP classification model to predict k possible fixers.
As shown in Tables 3 and 4, the proposed network embedding method outperforms the
four baseline approaches in both the two datasets. In particular, for the Eclipse dataset,
our method achieved a 60.0% accuracy when recommending only one developer
(k = 1). If k = 5, the prediction accuracy increased to 81.7%. The results further
demonstrate the effectiveness of our method that learns structure features from multi-
plex networks.

In the case of “S + T,” we inputted the same features set, including structure
features obtained using our method and text features extracted by the LDA model, to
three classification models. As shown in Tables 3 and 4, the MLP model performs

Table 3. Accuracy@k values of different models on the Eclipse dataset (mean ± s.d.).

Model Top-1 Top-2 Top-3 Top-4 Top-5

DeepWalk 0.585 ± 0.006 0.706 ± 0.007 0.749 ± 0.008 0.775 ± 0.009 0.792 ± 0.008
Node2Vec 0.580 ± 0.002 0.708 ± 0.008 0.751 ± 0.009 0.776 ± 0.010 0.793 ± 0.010
LINE 0.593 ± 0.009 0.718 ± 0.009 0.760 ± 0.010 0.784 ± 0.009 0.800 ± 0.009
PMNE (NA) 0.581 ± 0.009 0.712 ± 0.003 0.756 ± 0.004 0.782 ± 0.003 0.798 ± 0.003
PMNE (RA) 0.561 ± 0.014 0.689 ± 0.007 0.729 ± 0.008 0.751 ± 0.009 0.766 ± 0.008
PMNE (CA) 0.593 ± 0.007 0.726 ± 0.005 0.772 ± 0.007 0.798 ± 0.007 0.815 ± 0.006
Ours 0.600 – 0.007 0.729 – 0.003 0.775 – 0.003 0.800 – 0.002 0.817 – 0.002
Cosine 0.064 ± 0.004 0.102 ± 0.003 0.145 ± 0.002 0.163 ± 0.001 0.177 ± 0.001
SVM 0.597 ± 0.007 0.729 – 0.003 0.774 ± 0.001 0.799 ± 0.001 0.816 ± 0.001
MLP 0.614 – 0.005 0.720 ± 0.007 0.799 – 0.005 0.813 – 0.002 0.830 – 0.002
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better than the other two models. When k was equal to one, the accuracy of the MLP
model was, on average, increased by 3.5% compared with that of the SVM model.
Moreover, the improvement increased to 3.6% when k reached five. However, the
concatenation of structure features and text features did not contribute to a significant
improvement in the performance of bug fixer prediction (see the difference between
“Ours” and “MLP”), which deserves further investigation on feature combination and
dimension reduction.

7 Threats to Validity

Although this study achieves some useful results on the Eclipse and Genome projects,
there are still potential threats to the validity of the study that may affect the results,
mainly including the internal validity and external validity.

The internal validity concerns the explanation (or causality) of the results within the
context of this study. It is hard to evaluate network embedding results directly. As with
a few previous studies [22–24, 28], we evaluated different methods’ embedding results
in the link prediction and node classification tasks under the assumption that better
node representations contribute to higher performance in the tasks. Besides, the
parameters of the baseline approaches were set as default. Therefore, computational
optimization or parameter fine-tuning may change the experimental results.

The external validity focuses on the generalizability of the proposed network
embedding and fixer prediction approaches outside the context of this study. First, due
to the strict definition of multiplex networks [27], i.e., a multiplex network’s layers
have different types of edges with the same nodes, the conclusions of this study do not
apply to single-layer tossing graphs [17] or heterogeneous information networks [19].
Second, the performance of our methods on other large-scale software projects is yet to
be tested. Therefore, their advantages over the selected baseline approaches on other
software projects remain unexplored. Third, since commonly-used network embedding
and classification algorithms were selected as the baseline methods in our experiments,
we are unable to determine whether the proposed approaches can outperform some
recently-proposed approaches, such as graph convolutional networks [35].

Table 4. Accuracy@k values of different models on the Gnome dataset (mean ± s.d.).

Model Top-1 Top-2 Top-3 Top-4 Top-5

DeepWalk 0.551 ± 0.004 0.642 ± 0.002 0.677 ± 0.002 0.705 ± 0.003 0.730 ± 0.004
Node2Vec 0.552 ± 0.005 0.641 ± 0.002 0.675 ± 0.003 0.705 ± 0.005 0.726 ± 0.006
LINE 0.555 ± 0.004 0.635 ± 0.002 0.670 ± 0.002 0.699 ± 0.003 0.723 ± 0.004
PMNE (NA) 0.561 – 0.005 0.648 ± 0.004 0.687 – 0.004 0.714 ± 0.005 0.734 ± 0.005
PMNE (RA) 0.551 ± 0.010 0.639 ± 0.008 0.676 ± 0.006 0.705 ± 0.006 0.723 ± 0.005
PMNE (CA) 0.558 ± 0.005 0.647 ± 0.002 0.685 ± 0.003 0.715 ± 0.003 0.737 ± 0.002
Ours 0.560 ± 0.006 0.651 – 0.002 0.687 – 0.002 0.716 – 0.003 0.740 – 0.004
Cosine 0.047 ± 0.005 0.087 ± 0.003 0.136 ± 0.002 0.143 ± 0.002 0.155 ± 0.002
SVM 0.562 ± 0.004 0.647 ± 0.002 0.685 ± 0.003 0.713 ± 0.003 0.735 ± 0.004
MLP 0.586 – 0.007 0.683 – 0.004 0.731 – 0.005 0.756 – 0.004 0.775 – 0.003
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8 Conclusion and Future Work

Software bug triaging is a necessity in software development and maintenance. In this
paper, we study the problem of automatic bug triaging from the perspective of mul-
tiplex networks rather than from single-layer tossing graphs. Due to the multi-layer
network characteristics of human cooperative behavior in bug triaging, this study
constructs a collaborative multiplex network composed of two layers corresponding to
bug tossing and e-mail communication. We then present a new random walk strategy
based on some multiplex network measures (e.g., overlapping degree, node strength,
and the entropy of the multiplex degree) to generate network embeddings for nodes,
which can be used as structural features of developers. Besides, we propose a bug fixer
prediction model that takes structural features of developers and text features of bug
reports as inputs. According to the experiments on two large-scale open-source soft-
ware projects with a large number of bug reports and e-mails, we have two conclusions.
On the one hand, the proposed network embedding algorithm based on the random
walk strategy performed better than four standard network embedding methods in the
link prediction and node classification tasks. On the other hand, the proposed prediction
model outperformed the selected baseline approaches in predicting the right fixers for
target bug reports.

In addition to testing the generalizability of the proposed approach in more large-
scale software projects, our future work includes two aspects. First, we will extend the
collaborative multiplex network to k-layer collaborative networks where k � 3 by
leveraging other available social relationships between developers such as “Follow” on
GitHub12. Second, due to the complexity of the proposed network embedding algo-
rithm, we will investigate more efficient deep feature learning algorithms to extract
structure features of nodes in multiplex networks that have greater than or equal to
three layers.
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