
Priority-Based Optimization of I/O
Isolation for Hybrid Deployed Services

Jiancheng Zhang1,2, Youhuizi Li1,2(B), Li Zhou1,2, Zujie Ren3, Jian Wan1,4,
and Yuan Wang5

1 Key Laboratory of Complex Systems Modeling and Simulation,
Ministry of Education, Hangzhou Dianzi University, Hangzhou, China

{huizi,zhouli}@hdu.edu.cn
2 School of Computer Science and Technology,
Hangzhou Dianzi University, Hangzhou, China

3 Zhejiang Lab, Hangzhou, China
renzj@hdu.edu.cn

4 School of Information and Electronic Engineering,
Zhejiang University of Science and Technology, Hangzhou, China

wanjian@zust.edu.cn
5 Key Enterprise Research Institute of NetEase Big Data of Zhejiang Province,

Netease Hangzhou, Network Co.Ltd, Hangzhou, China

Abstract. With the increasing of software complexity and user
demands, collaborative service is becoming more and more popular. Each
service focuses on its own specialty, their cooperation can support com-
plicated task with high efficiency. To improve the resources utilization,
virtualization technology like container is used and it enables multiple
services running in the same physical machine. However, since the host
physical machine is shared by several services, the resource competition
is inevitable. Isolation is an effective solution, but the weak isolation
mechanisms of container cannot handle such complicated scenarios. In
the worst situation, the performance of services cannot meet the require-
ments and the system may crash. In order to solve this problem, we
propose a priority-based optimization mechanism for I/O isolation after
analyzing the characteristics of typical service workloads. Based on the
real-time performance data, priority is automatically assigned to each
service and corresponding optimization methods are applied. We eval-
uate the optimization effects of the priority-based mechanism in both
static and dynamic workload cases, besides, the influence of different
priority order is also analyzed. The experimental results show that our
approach can indeed improve the system performance and guarantee the
requirements of all the running services are satisfied.

Supported in part by the Natural Science Foundation of Zhejiang Province under Grant
LQ18F020003 and Grant LY18F020014, and in part by the Natural Science Foundation
of China under Grant 61802093 and Grant 61572163, in part by the Xi’an Key Lab-
oratory of Mobile Edge Computing and Security (201805052-ZD3CG36) and in part
by the Key Research and Development Program of Zhejiang Province under Grant
2018C01098.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 28–44, 2019.

https://doi.org/10.1007/978-3-030-30146-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_3


Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 29

Keywords: Priority-based · I/O isolation · Container ·
Hybrid deployment

1 Introduction

With the development of the Internet and computing technology, one service
cannot support the various requirements of users, especially when applications
are becoming more and more complex. For example, the web services nowadays
are often composed of multiple sub-services such as location, video and commu-
nication to satisfy users’ demands [5]. The cost of developing and maintaining
a “perfect” application/service that has all the functions that users request will
be huge. Hence, collaborative service is applied [18,21]. Each service is respon-
sible for a small portion, the workload is decomposed and distributed to several
services. By cooperating with each other and sharing intermediate data and
resources, the complex task can be finished efficiently. Single service normally is
simple and the resources requirement is low. To improve the resources utilization
of servers, multiple services are deployed on a same physical machine. If these
services are working on a same task, they can use memory/disk to transmit the
data instead of network, which also further improves the service performance
and security.

Virtualization is used to support multiple services running in one physical
server. Container [1,4], as a lightweight virtualization technology which does
not pack the guest operating system, is widely used since it provides high
resources utilization and low overhead. Although we deploy multiple services
in one machine, the services themselves are independent, even they may work
together. To make sure their execution are normal and not influenced by others,
there should be strict resource isolation mechanisms. However, container mainly
relies on the original Namespace and the Cgroups of the Linux to provide isola-
tion feature [16,20]. It cannot properly handle the severe competition situations.
Besides, the workload and functionality of collaborative services are various, the
different behavior/requirements of the services make the resource competition
even more complicated. The worst case is that the requirements of most services
cannot be satisfied and the system will crash. Hence, there is a great challenge
to cope with the resource isolation and performance optimization for hybrid
deployed services.

Existing isolation optimization methods mainly target homogeneous deploy-
ment scenario, that is, the deployed services have the same type of perfor-
mance requirements. So, single optimization method is enough to protect all
services. For latency-sensitive services, the commonly used approaches are send-
ing requests repeatedly and rate limiting [3,9,12,17,19,22,23]. For throughput-
first services, disk allocation and I/O concurrency control are applied [2,6–8,10].
Asides from one-dimensional (latency or throughput) performance restriction,
there are also services that require both metrics to meet the standards. The opti-
mization method [11] is more conservative, and the resources utilization is rela-
tively low. This two-dimensional services situation still belongs to homogeneous



30 J. Zhang et al.

case since all the services are the same type. Hence, the aforementioned solutions
can only handle specific type of services, and they are not appropriate for hybrid
deployment scenario. In addition, our previous work PINE [13] can cope with
one latency-sensitive service plus multiple throughput-first services scenario. It
classifies services according to their performance indicators and applies different
optimization methods accordingly. By leveraging the idle server resource of a
latency-sensitive service (when its workload is light), the enterprise can support
other throughput-first services to make extra profits. However, it cannot be guar-
anteed that PINE also works for multiple latency-sensitive services and multiple
throughput services scenario which usually happens in collaborate services.

In this paper, we extend PINE and propose an priority-based I/O isolation
optimization mechanism which targets more general hybrid deployed scenar-
ios. First, according to the services characteristics, different optimization meth-
ods are applied. For examples, adjusting the I/O concurrency level for latency-
sensitive services, and modifying disk allocation for throughput-first services.
Then, to support the execution of multiple latency-sensitive services, a priori-
tization algorithm is developed. The latency-sensitive services are sorted based
on their influence to the whole system, and the optimization method is applied
accordingly to maintain the status. As far as we know, this optimization mecha-
nism is the first method that effectively handles hybrid deployment scenario and
ensures that each service can meet its requirements.

The rest of this paper is organized as follows. Section 2 reviews the related
work in the performance optimization field. Section 3 analyzes the characteristics
of the hybrid deployment scenario and illustrates the priority-based optimization
mechanism. Section 4 comprehensively evaluates the optimization effects and the
performance of the prioritization algorithm. Section 5 summarizes the paper and
describes the future work.

2 Related Work

Performance optimization is a popular research topic in recent years, especially
with the widely-spread virtualization technology. According to the type of the
deployed services, previous researches can be divided into the following three cat-
egories: one-dimensional homogeneous services, two-dimensional homogeneous
services, and single hybrid heterogeneous services.

One-Dimensional Homogeneous Services Scenario: The most common types of
performance indicators are 99.9th percentile latency and throughput. The ser-
vices in this scenario have either latency or throughput as their requirements.
For latency-sensitive services, there are three optimization method: (1) Modify-
ing the queue scheduling strategy of the Linux kernel. Li et al. [12] believed that
the FIFO is a more friendly scheduling strategy for 99.9th percentile latency. (2)
Sending requests redundantly to reduce the blocking possibility. Google [3] pro-
posed that the same request can be sent redundantly, and the fastest response
will be take. The latency is improved as a result of resource overuse. (3) Inte-
grated scheduling. Wang et al. [19] designed Cake, a multi-layer optimization



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 31

framework, to efficiently schedule several resources together so the performance
can be improved. For throughput-first services, disk resource allocation is the
commonly used optimization approach. Gulati et al. [8] proposed mClock, which
sets the upper and lower disk threshold based on the service requirements in
advance, to control the disk resource. In one-dimensional homogeneous services
scenario, the optimization methods only work for single type of services (latency
or throughput), it cannot handle hybrid deployment scenario and will inevitably
leads to part of the services failed.

Two-Dimensional Homogeneous Services Scenarios: All the services’ type in
this scenario are also the same, but each service can contain two performance
indicators (latency and throughput) instead of one. The PSLO framework [11]
exactly targets this situation. It satisfies the latency and throughput require-
ments of each service by controlling the I/O rate and concurrency level. How-
ever, since there is an obvious trade-off between latency and throughput in some
cases, PSLO provides a boundary curve which describes this relationship. If the
resource competition is too fierce that exceeds the boundary curve, PSLO will
not take any action. Besides, the optimization strategy of PSLO is also con-
servative, and the resource utilization is relatively low. Hence, the optimization
method used in this scenario cannot cope with hybrid deployment either.

Single Hybrid Heterogeneous Services Scenario: In this scenario, services with
different requirements are deployed together, specifically, only one service can
have a “special” type of requirements that different with all others. For example,
one latency-sensitive service with multiple throughput-first services. PINE [13]
is developed to handle this scenario, it achieves latency optimization through
adjusting I/O concurrency level and throughput optimization using disk alloca-
tion. As a result, all services can satisfy their performance requirements. How-
ever, PINE has over-optimization problem and resource utilization degradation
issue when multiple latency-sensitive services exist.

After analyzing the existing related works, we plan to propose an optimiza-
tion mechanism which ultimate goal is to efficiently handle general multiple
hybrid deployment situations and guarantee all the services’ requirements can
be satisfied as much as possible.

3 Priority-Based Optimization Mechanism

In this section, we first discuss the general service types in the hybrid deployment
scenario, then the performance interference and existing optimization meth-
ods are analyzed. Following that, we illustrate the prioritization algorithm and
priority-based optimization mechanism.

3.1 Service Type

After analyzing modern collaborative services, we summarized mainly two types
of services: latency-sensitive service and throughput-first service.



32 J. Zhang et al.

Latency-Sensitive Service: With the developing of Internet, the response time
becomes a critical data that directly influence the user experience, especially
for social media service, search engines, online maps [14]. To improve the per-
formance, services normally will split the request to several sub-requests and
execute in a parallel way. So, the response time is defined by the longest task.
Compare with the average latency, the 99.9th percentile latency is selected as
the performance metric for latency-sensitive services. The execution of latency-
sensitive services are usually thread-driven or event-driven. Thread-driven ser-
vices use synchronous blocking I/O and generate a new thread for each new
user’s I/O request, while event-driven services apply asynchronous non-blocking
I/O and handle all I/O requests by several worker threads. The I/O processing
speed of a server is commonly fast until there are many request pending. The
latency will be amplified in the 99.9th percentile metric, even the interference is
very small, which leads to latency performance violation.

Throughput-First Service: Services that need to process batch jobs pay more
attention to throughput, such as analyzing working logs [15]. These services can
be delayed occasionally or restarted over time. The throughput is the main metric
that user cares most, which is decided by the available disk bandwidth. When the
disk resource of a service is enough, it can achieve the reasonable performance
requirements. If the resource competition is severe, other services may malicious
occupy the shared disk, which leads to the failure of the throughput-first service.

3.2 Performance Interference in Hybrid Deployment Scenario

In real usage scenarios, services that deployed on a same physical machine are
randomly selected. We target at general hybrid deployed situations where sev-
eral types of services may mix together and each type also can have multiple
services running. Hence, the interference exists in different types of services, and
the resource competition also comes from other same-type services. To analyze
the performance influence, we did the following experiments. MySQL represents
latency-sensitive service, which enables 64 threads to read and write 10 tables
together (the initial IO concurrency level is 64); Hadoop MapReduce as the
throughput-first service executes the MapReduce operation for 100 files.

Latency-Sensitive Service: Figure 1(a) shows the latency comparison under three
cases: running alone, mixed with MapReduce (different service type) and mixed
with MySQL (same service type). In the mixed with MapReduce case, the work-
load of MySQL is constant and the workload of MapReduce gradually increases.
Similarly, in the mixed with MySQL case, the workload of one MySQL service
increases. The results show that there is no obvious difference of the three cases
when the disk bandwidth usage is low (e.g. 50%, 60%, and 70%), which means
the competition of disk resource is not intense. While the disk usage rate rises
to 80% or more, there is a great delay in mixed cases. The 99.9th percentile
latency of MySQL in the mixed with MapReduce case is nearly 6 times higher
than running alone, and it is 8 times in the mixed with MySQL case when the
disk usage was close to 100%. Hence, the loss of performance will be significant



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 33

(a) Performance comparison of latency-
sensitive services.

(b) Performance comparison of throughput-
first services.

Fig. 1. Performance interference in hybrid deployment scenario.

when the disk usage reaches a threshold (like 80% in this experiment), and the
impact of the same-type services is greater than different types of services for
latency-sensitive services.

Throughput-First Service: The configurations are same with the previous exper-
iments except that the position of MapReduce and MySQL is interchanged,
and we focused on the throughput of MapReduce. As the Fig. 1(b) presented,
the performance trend of MapReduce was similar with previous MySQL’s. The
influence of disk resource competition became significant when the disk utiliza-
tion is around 70%, and the impact of the same type of service is also greater.

The two experiments show that the impact of disk resource competition
on service performance will suddenly increase after the system disk utilization
reaches a certain threshold. Both latency-sensitive services and throughput-first
services will be interfered by the same-type and different types of services, and
the influence from same-type services is more serious.

3.3 Existing Isolation Method

To handle the single hybrid heterogeneous services scenario, PINE applies I/O
concurrency control for latency-sensitive services and disk resource allocation
for throughput-first services. In this section, we first analyze whether the above
two optimization methods are still feasible in general hybrid deployed scenarios
(multiple hybrid heterogeneous services scenario). Since the limitation of the I/O
concurrency control method is illustrated in [13], we focus on the disk allocation
method and the combination of the two methods.

Disk Allocation: Docker creates virtual device and assigns distinct device
number for each container, so Cgroups can be used to implement disk allocation
method. Based on the throughput requirements of the services, we can perform
an overall disk resource partition at the operating system level. Throughput-first
services can get their own share, which decreases the performance interference



34 J. Zhang et al.

caused by the same-type services. For the latency-sensitive services, Cgroups
cannot accurately allocate disk for each individual service since they do not have
throughput performance value. From the perspective of container, the influence
of single latency-sensitive service and multiple latency-sensitive services have no
difference as long as the allocated disk is fixed. So the disk resource is allocated
for all latency-sensitive services instead of individual latency-sensitive service.
Hence, Cgroups can effectively guarantee the performance of throughput-first
services in general hybird deployment scenario.

(a) Comparison of 99.9th percentile latency. (b) Comparison of system disk utilization.

Fig. 2. Optimization comparison in hybrid deployed scenarios.

Combination of I/O Concurrency Control and Disk Allocation: After
allocating disk resource using Cgroups for each throughput-first service and the
group of all latency-sensitive services, the I/O concurrency control algorithm
in PINE is applied to each latency-sensitive service. There are two latency-
sensitive services (A and B) in the experiment, the optimization comparison
results are shown in Fig. 2(a). Comparing with the no optimization case, the
I/O concurrency control method successfully decreased the latency of service A
and B. After several iteration intervals, the 99.9th percentile latency of service
A and B are around 16 ms and 31 ms respectively, which is much lower than
the required latency value. However, with the same experimental configuration,
the latency value in the single hybrid heterogeneous services scenario is close to
its standard latency requirement. To figure out the behind reason, we analyzed
the system disk utilization in the two scenarios. Figure 2(b) shows that the disk
utilization decreases to a stable value after applying the optimization method
in both cases. In the single hybrid heterogeneous services scenario, the disk
utilization dropped to around 70%, which is 30% more than the multiple hybrid
heterogeneous services scenario. The results indicate that PINE sacrifices the
resource utilization to guarantee the latency. But it over-optimized, the latency
is less than 50% of the required value. Hence, this method is not appropriate for
general hybrid deployed scenarios.

Analysis: In general hybrid deployed scenarios, there are two levels of resource
competition: different-type service competition and same-type service. For



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 35

throughput-first services, their performance directly related to available disk
resource. After given fixed disk space, they are total isolated from others (includ-
ing other throughput-first services and latency-sensitive services) and their per-
formance is also determined. For latency-sensitive services, there is no clear
mathematical relationship of I/O concurrency and 99.9th percentile latency.
Besides, the allocated disk resource is for all latency-sensitive services. Since
the behavior of same-type services are very similar, the resource competition
is more intense in this case. As a result, the existing method cannot efficiently
handle the same-type service competition of the latency-sensitive services. The
I/O concurrency limitation is for all latency-sensitive services, the difference
between each service is not considered. So, the over-optimized situation hap-
pens. The potential solution is control I/O concurrency of each service one by
one. Assuming there are three latency-sensitive services: A, B and C. After we
control the I/O concurrency of A, the system needs sometime to react and it also
influences the behavior/performance of service B and C. Hence, to eliminate the
over-optimization, we can only modify one variable in each iteration and wait
for the effects, then decide the next move.

3.4 Prioritization Algorithm

To deal with same-type service competition and over-optimization phenomenon
of latency-sensitive services, the asynchronous I/O concurrency control is pro-
posed. If the disk resources of one service changed, it will also influence other
services’ performance, while the assumption of synchronous I/O concurrency
control is the environment keeps constant for all services within the iteration
interval. Hence, asynchronous I/O concurrency control method, which considers
the interactions of latency-sensitive services and only sets the I/O concurrency
level of one service in each iteration, can effectively decrease the optimization
time and improve the performance as well as resource utilization.

Prioritization algorithm is designed to automatically select the service whose
I/O concurrency should be updated at each iteration interval. The throughput
variation after applying the concurrency control is the main factor we consider.
If the throughput of a service changes greatly, it will have a huge impact on the
shared disk resource, which further influences other latency-sensitive services.
Therefore, the idea of the proposed algorithm is that the greater the impact
on the disk resource, the higher the priority should be. If concurrency control
is applied to small-impact services first, then when it comes to control large-
impact services, the latest configuration will total sacrifice the optimized results
of small-impact services. Hence, we will adjust the I/O concurrency of the highest
priority service, that is, the service whose throughput variation is maximum.

The service throughput variation is decided by the current throughput and
the violation degree of 99.9th percentile latency. If the violation degree is high,
then the I/O concurrency level control will be stronger, the variation rate of
the throughput will be high. Combined with the current throughput value, the
throughput variation can be calculated. Assuming Lcur represents the current



36 J. Zhang et al.

99.9th percentile latency and LSLO represents the required 99.9th percentile
latency, then the violation degree V io is defined as:

V io =
Lcur − LSLO

LSLO
(1)

With the current throughput Thcur, the throughput variation Thdif can be
calculated as:

Thdif =
V io

LNow/LSLO
∗ Thcur (2)

3.5 Priority-Based Optimization Mechanism

Based on the negative feedback regulation, priority-based optimization mech-
anism collects the performance requirements and real-time data of all running
services, then applies the customized optimization strategy according to the dif-
ference. The architecture is shown in Fig. 3. The optimization process includes
throughput optimization and 99.9th percentile latency optimization. Since it
takes some time for the optimization to take effect in the system, the itera-
tion interval of data collection and optimization is set to 10 s based on practical
experience.

Service starts running

Throughput 
optimization Disk allocation

99.9-percentile 
latency optimization

Data collection

Prioritize & 
I/O concurrency control

Fig. 3. The architecture of priority-based optimization mechanism.

Throughput-First Services: The performance requirement for this type of services
normally is to maintain the throughput above the predefined threshold. As the
Fig. 4(a) illustrates, the first step is collecting throughput data. It is necessary
to distinguish the different services’ traffic since the processes in the container
are all running on the host machine. Docker builds a virtual disk volume with
an distinct device ID for each container. So, the IOSTAT tool can be used to
get the performance data (e.g. IOPS) of each service, and then the real-time



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 37

throughput value can be calculated. If the throughput does not match the pre-
defined threshold, the violation happens. To control the throughput, Cgroups is
leveraged to allocate disk resources for each throughput-first service based on
their thresholds.

All throughput requirements
are satisfied?

Allocate bandwidth
using Cgroups

NO

Calculate new bandwidth

Throughput 
data collection

YES

(a) Throughput optimization.

All latency requirements 
are satisfied?

Calculate new I/O 
concurrency for the 

highest priority service

Adjust I/O concurrency 
queue length

NO

Calculate 
services priority

99.9% latency collection

YES

(b) 99.9th-percentile latency optimization.

Fig. 4. The optimization process.

Latency-Sensitive Services: Similar to throughput optimization, Fig. 4(b)
describes the process of latency-sensitive services. To calculate the 99.9th per-
centile latency, the response time of all the requests of the service within the
iteration interval is logged. The collected latency is sorted in ascending order,
and the data at the 99.9th percentile position in the sequence is tagged as the
99.9th percentile latency of the service. Comparing with the latency threshold,
if the violation exists, we need to modify the I/O concurrency level. First, the
priority of each service which does not reach the latency requirements is calcu-
lated according to the proposed prioritization algorithm. The I/O concurrency
level of the highest priority service should be adjusted. The new value of the I/O
concurrency level for the next cycle is estimated using a linear fitting equation
in a multi-iterate manner. To control the I/O concurrency level, the I/O con-
current queue length of the selected service is set to the calculated new value.
If the current number of outstanding requests (i.e., being executed) is less than
the queue length, the new request is allowed to enter the queue, otherwise the
request is refused.

4 Evaluation

After presenting the experimental setup, we evaluate the optimization effect of
the priority-base optimization mechanism and the influence of service priority.



38 J. Zhang et al.

4.1 Experimental Setup

The experimental setup is shown in Table 1, MySQL and Hadoop MapReduce
represent 99.9th percentile latency-sensitive service and throughput-first service
respectively. The Hadoop cluster is composed of three nodes, including one mas-
ter and two slaves.

We target at general hybrid deployed scenarios, that is, there are sev-
eral latency-sensitive services and multiple throughput-first services running
together. Without generosity, we simulate three latency-sensitive services and
three throughput-first services. The latency requirements are 60 ms (service L-
A), 80 ms (service L-B), 100 ms (service L-C), and the throughput requirements
are 20 MB/s (service T-A), 40 MB/s (service T-B), 60 MB/s (service T-C).

Table 1. Experimental setup.

Item Version

CPU 16 AMD Opteron Processor 6136

Memory 32 GB

Storage 5,400 RPM 120 GB SATA disks

Operating System CentOS7

Linux Kernel 3.10.5-3.el6.x86 64

Docker 1.17-ce

MySQL MySQL 5.6

Hadoop Apache Hadoop 1.0

4.2 Optimization Evaluation

Constant Workload Optimization: All the services’ workload are constant
in this experiment. The workload of each service is equal to the load amount
when the service runs alone and just satisfies its performance requirement. The
comparison under the with and without optimization cases is shown in Fig. 5.

Latency-Sensitive Services: As Fig. 5(a) demonstrates, there are serious latency
violations of the three latency-sensitive services in the no optimization case. The
99.9th percentile latency of service L-A has reached 243.13 ms, which was 305%
worse than its latency threshold (60 ms). The similar situations for service L-B
and L-C. On the contrary, the 99.9th percentile latency of the three services
can be stabilized at the predefined latency threshold. Taking service L-B as an
example, the 99.9th percentile latency was reduced by 65.5% compared to the
no optimization case and successfully reached the 60 ms latency requirement.

Throughput-First Service: As Fig. 5(b) shows, there are also serious throughput
violations of the three throughput-first services in the no optimization case.
Taking service T-A (requirement is 20 MB/s) as an example, its throughput was
only 5.42 MB/s, and it is 72.9% lower than the threshold. After applying the
optimization, the throughput was stabilized at 21.52 MB/s.



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 39

(a) Latency-sensitive services. (b) Throughput-first services.

Fig. 5. The performance comparison under constant workload.

The experimental results indicate that the isolation optimization method
proposed in this paper can indeed optimize the performance of constant workload
services in hybrid deployed scenarios.

Dynamic Workload Optimization: To evaluate the priority-based optimiza-
tion mechanism in the real-world usage scenarios, we pay more attention to
dynamic workload optimization results. The workloads in actual production
environment are commonly various with time, especially for latency-sensitive
services. Without generosity, the workload changing of the same-type services
is happened at the same time, and the transition from non-violation to viola-
tion will also occurs simultaneously. In this case, the resources competition is
stronger than the workload changes one by one. Besides, based on the previous
observation experiments, the performance influence from same-type services is
greater than the effects of different-type services. Hence, we dynamically modify
the workload of same-type services and the different-type services workload are
constant for simplicity.

Latency-Sensitive Services: As can be seen from Fig. 6, there was no latency
violation of the three MySQL services due to the low workload before the 30 s.
Then the workload increased suddenly to make their 99.9th percentile latency
over the thresholds. Take service L-A (threshold is 60 ms) as an example, its
99.9th percentile latency reaches 105.11 ms at the time 30 s. In the with opti-
mization case, the latency dropped back to 60.82 ms after six iteration cycles.
The workload increased again at 110 s, which generated another latency violation
for all latency-sensitive services. In the with optimization case, the latency of the
three services all fall back to the threshold after a few cycles. Hence, no matter
how the workload changes, the latency can be kept near the predefined threshold,
and even there is a violation, it can also be adjusted back within several iteration
cycles. The priority-based optimization mechanism can efficiently cope with the
latency-sensitive service isolation problem to guarantee their performance.



40 J. Zhang et al.

(a) Latency-sensitive service L-A. (b) Latency-sensitive service L-B.

(c) Latency-sensitive service L-C.

Fig. 6. Performance comparison of latency-sensitive services under dynamic workload.

(a) Throughput-first service T-A. (b) Throughput-first service T-B.

(c) Throughput-first service T-C.

Fig. 7. Performance comparison of throughput-first services under dynamic workload.



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 41

Throughput-First Services: Similarly, we modified the workload of the three
throughput-first services and keeps latency-sensitive services’ constant. As illus-
trated in Fig. 7, take the service T-A as an example, its throughput was below
the threshold due to the low workload in the beginning (before 30 s). Com-
pared to the no optimization case, the throughput in the with optimization case
was more close to the value when running alone. When the workload increased
and the throughput was higher than the threshold, the optimization mecha-
nism was applied to avoid excessive occupying the resource and the through-
put was restricted around the predefined threshold. The experimental results
show that the priority-based optimization mechanism can also effectively handle
throughput-first services in the hybrid deployed scenarios.

4.3 Priority Influence

To cope with latency-sensitive same-type service competition problem and elim-
inate over-optimization, we propose prioritization algorithm which assigns pri-
ority to each latency-sensitive service based on their impact to the system disk
usage and the highest service is selected to apply I/O concurrency control. In this
part, we evaluate the influence of different priority sequence on the system per-
formance. Since the priority is calculated for each latency-sensitive service, the
experimental configuration is similar to the dynamic workload latency-sensitive
services case.

Figure 8 show the performance comparison, we analyzed three cases: Fig. 8(a)
uses the order calculated from the proposed prioritization algorithm, Fig. 8(b)
does not consider the order and applies I/O control for all latency-services at
the same time, and Fig. 8(c) uses the reverse order of Fig. 8(a)’s. In Fig. 8(a), the
workload is increased in the 30th second, and the 99.9th percentile latency of the
three services took only 2–3 cycles from violation state to normal state. While in
Fig. 8(b), it did not consider impact from other same-type services and optimized
all three services at the same time, which lead to over-optimization. In order to
relief from over-optimization, the system increased the I/O concurrency level.
Unfortunately, this action only causes the latency violation in the next cycle.
The back and forth process repeatedly happen, and the optimization time is
obviously extended. In Fig. 8(c), we actually first controlled the smallest impact
latency-sensitive service, service L-A. However, since the impact of service L-A
is small, when the system comes to control high impact service, the previous
results of modifying service L-A may be affected and service L-A need to be
re-optimized again in the subsequent optimization cycle. As a result, although
the 99.9th percentile latency of the three latency-sensitive services tends to be
stable and reached their respective latency threshold, the optimization cycle is
longer compared with Fig. 8(a), and its ability to handle burst high workloads
is even worse.



42 J. Zhang et al.

(a) Prioritization algorithm order (descend-
ing order).

(b) Simultaneously.

(c) The reverse order (ascending order) .

Fig. 8. The latency comparison under three different priority orders.

In summary, optimizing one latency-sensitive service in each iteration cycle
can greatly avoid over-optimization. Besides, applying the optimization based
on the impact descending order (calculated according to the prioritization algo-
rithm), the system can effectively decrease the optimization time.

5 Conclusion

To improve the performance of hybrid deployed collaborative services, we focus
on the I/O isolation optimization problem. Firstly, we abstract the typical hybrid
deployment scenarios by analyzing the execution process and potential inter-
ference of collaborative services. Then, we propose a priority-based isolation
mechanism, which automatically assigns priority based on the real-time per-
formance data and applies appropriate optimization methods. Comparing with
the no-optimization case, for the latency-sensitive services, the 99.9th percentile
latency violation can be recovered to the normal value in one or two cycles with a
decreasing of 70%; for the throughput-first services, the throughput can achieve
50% higher in one cycle. The experimental results show that the priority-based
optimization mechanism can effectively guarantee the performance of hybrid
deployed services.

In the future, we will further improve the proposed mechanism from the
aspects of more complex usage scenarios, more types of sub-services, optimal
priority order and less recovery time.



Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services 43

References

1. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2015)

2. Bruno, J., Brustoloni, J., Gabber, E., Mcshea, M., Silberschatz, A.: Disk scheduling
with quality of service guarantees. In: IEEE International Conference on Multime-
dia Computing & Systems (1999)

3. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013)
4. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance compar-

ison of virtual machines and linux containers. In: IEEE International Symposium
on Performance Analysis of Systems & Software (2007)

5. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web
service compositions. In: 18th IEEE International Conference on Automated Soft-
ware Engineering (ASE 2003), Montreal, Canada, pp. 152–163, 6–10 October 2003.
https://doi.org/10.1109/ASE.2003.1240303

6. Gulati, A., Ahmad, I., Waldspurger, C.A.: Parda: proportional allocation of
resources for distributed storage access. In: Proceedings of the Conference on File
& Storage Technologies (2009)

7. Gulati, A., Shanmuganathan, G., Zhang, X., Varman, P.: Demand based hier-
archical QOS using storage resource pools. In: Usenix Conference on Technical
Conference (2012)

8. Gulati, A., Varman, P.J.: mClock: handling throughput variability for hypervisor
IO scheduling. In: Usenix Conference on Operating Systems Design & Implemen-
tation (2011)

9. Jeon, M., et al.: Predictive parallelization: taming tail latencies in web search
(2014)

10. Jin, W., Chase, J.S., Kaur, J.: Interposed proportional sharing for a storage service
utility. ACM Sigmetrics Perform. Eval. Rev. 32(1), 37–48 (2004)

11. Li, N., Jiang, H., Feng, D., Shi, Z.: PSLO: enforcing the Xth percentile latency and
throughput slos for consolidated VM storage. In: Proceedings of the Eleventh Euro-
pean Conference on Computer Systems, EuroSys 2016, London, United Kingdom,
pp. 28:1–28:14, 18–21 April 2016. https://doi.org/10.1145/2901318.2901330

12. Li, N., Jiang, H., Feng, D., Shi, Z.: Customizable slo and its near-precise enforce-
ment for storage bandwidth. ACM Trans. Storage 13(1), 6 (2017)

13. Li, Y., Zhang, J., Jiang, C., Wan, J., Ren, Z.: Pine: optimizing performance isola-
tion in container environments. IEEE Access 7, 30410–30422 (2019)

14. Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P.: Heracles: improving resource
efficiency at scale. ACM Sigarch Comput. Archit. News 43(3), 450–462 (2015)

15. Marshall, P., Keahey, K., Freeman, T.: Improving utilization of infrastructure
clouds. In: IEEE/ACM International Symposium on Cluster (2011)

16. McDaniel, S., Herbein, S., Taufer, M.: A two-tiered approach to I/O quality of
service in docker containers. In: 2015 IEEE International Conference on Cluster
Computing, CLUSTER 2015, Chicago, IL, USA, pp. 490–491, 8–11 September
2015. https://doi.org/10.1109/CLUSTER.2015.77

17. Suresh, L., Canini, M., Schmid, S., Feldmann, A.: C3: cutting tail latency in cloud
data stores via adaptive replica selection. In: Usenix Conference on Networked
Systems Design & Implementation (2015)

18. Touzi, J., Benaben, F., Pingaud, H., Lorré, J.P.: A model-driven approach for
collaborative service-oriented architecture design. Int. J. Prod. Econ. 121(1), 5–20
(2009)

https://doi.org/10.1109/ASE.2003.1240303
https://doi.org/10.1145/2901318.2901330
https://doi.org/10.1109/CLUSTER.2015.77


44 J. Zhang et al.

19. Wang, A., Venkataraman, S., Alspaugh, S., Katz, R., Stoica, I.: Cake: enabling
high-level SLOs on shared storage systems. In: ACM Symposium on Cloud Com-
puting (2012)

20. Xavier, M.G., Oliveira, I.C.D., Rossi, F.D., Passos, R.D.D., Matteussi, K.J.,
Rose, C.A.F.D.: A performance isolation analysis of disk-intensive workloads on
container-based clouds. In: Euromicro International Conference on Parallel (2015)

21. Li, Y., Zhou, M., You, C., Yang, G., Mei, H.: Enabling on demand deployment of
middleware services in componentized middleware. In: Grunske, L., Reussner, R.,
Plasil, F. (eds.) CBSE 2010. LNCS, vol. 6092, pp. 113–129. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13238-4 7

22. Zhang, J., Sivasubramaniam, A., Riska, A., Qian, W., Riedel, E.: An interposed
2-level i/o scheduling framework for performance virtualization. In: ACM Sigmet-
rics International Conference on Measurement & Modeling of Computer Systems
(2005)

23. Zhu, T., Tumanov, A., Kozuch, M.A., Harchol-Balter, M., Ganger, G.R.: Priori-
tymeister: Tail latency QOS for shared networked storage. In: ACM Symposium
on Cloud Computing (2014)

https://doi.org/10.1007/978-3-642-13238-4_7

	Priority-Based Optimization of I/O Isolation for Hybrid Deployed Services
	1 Introduction
	2 Related Work
	3 Priority-Based Optimization Mechanism
	3.1 Service Type
	3.2 Performance Interference in Hybrid Deployment Scenario
	3.3 Existing Isolation Method
	3.4 Prioritization Algorithm
	3.5 Priority-Based Optimization Mechanism

	4 Evaluation
	4.1 Experimental Setup
	4.2 Optimization Evaluation
	4.3 Priority Influence

	5 Conclusion
	References




