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Abstract. Neural Architecture Search (NAS) has become more and
more prevalent in the field of deep learning in the past two years. Exist-
ing works often focus on image classification, and few works recently
extend NAS to another computer vision task, such as semantic image
segmentation. The semantic image segmentation is essentially a dense
prediction for each pixel on whole image. Therefore, we choose the same
basic primitive operations to build the search space for the two computer
vision task respectively. Searching good neural network architectures and
then training them from scratch is a regular procedure for NAS. In this
paper, we design a prototype system that deploy search module and
train module to collaborate with each other. Follow the former research,
we initialize over-parameterized cells architecture and then transform to
the continuous relaxation of the architecture to derive the good subnet-
work by gradient descent. Our system can support any differential search
algorithm, such as one-shot, DARTS or ProxylessNAS. We illustrate the
effectiveness of our chosen primitive operations in the image classifica-
tion and ability to transfer these operations to build search space for
semantic image segmentation.
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1 Introduction

How to automatically design a good neural network architecture for dataset
on hand? We may fit the pre-trained network model to custom dataset which
denoted transfer learning. However, a more nature way is to customize a net-
work architecture to the dataset from different fields. Neural architecture search
(NAS), a subfield of AutoML, has proposed to solve this problem. Image classifi-
cation is the start point for NAS to show it’s power on searching neural network
architectures exceed human-designed architecture. NAS can be categorized three
components: search space, search algorithm and the model evaluation [9]. The
search space defines what architectures can be found during the search process.
Incorporating prior knowledge about properties well-suited for task can reduce
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the size of the search space and simplify the search. For example, in image classi-
fication, the search space including the selection of primitive operations at each
search step and the prior backbone architecture used to define outer network.

The search strategy details how to explore the search space. The objective of
NAS is typically to find architectures that have high evaluated performance on
unseen data (e.g. split training datasets into training and validation, and search
architecture on training but evaluated by validation) [9]. Recent works have
introduced many effective search algorithm, including reinforcement learning
(RL) [2,5,20,32,33], evolutionary algorithms [22,28–31], Bayesian optimization
[14,15], and gradient based algorithms [11,21,27].

Reinforcement learning methods usually encode whole network architecture
as RNN sequence or cell architecture and update RNN weights to derive next
candidate architecture by Q-Learning or another update strategy. Besides the RL
algorithm, evolutionary algorithms represented by the genetic algorithm (GA)
describe the architecture as a gene string, and then perform crossover and muta-
tion. Each string represents a network architecture, and by training and putting
it on the validation set, those with good evaluation results are more likely to
be retained. Bayesian optimization is a good method to optimize the parame-
ters of the machine learning algorithm model. In recent years, some scholars have
used it to speed up the evaluation of the performance of currently searched which
improving the search progress. The previous methods are all based on the discrete
search space. Recently, Liu et al. extend the works of Grathwohl et al. [11,27] by
proposing a continuous relaxation of the search space to enable gradient-based
optimization [21], denoted DARTS. The authors initialize an over-parameterized
network, similar to densenet [13] but replace fix a single operation oi (e.g. con-
volution) to calculated as a specific layer with mixing N operation from a set of
operations o1, o2, · · · oN . More specifically, given a layer input x, the layer output
y is computed y = MixO(x) =

∑N
i=1 wioi(x), wi≥0, where the wi indicates how

important does oi contribute to the layer output. Cai et al. [6] propose Proxy-
lessNAS which introduces a binary gate to reduce the N candidate path to two
at each update.

Model evaluation is a vital step to tell the search algorithm whether current
candidate architecture is good or not and decide whether to keep it at next
update. The traditional way to evaluate a network performance is train from
scratch, but cost too much time. Model performance prediction is a natural idea
to speed up the process of searching network architecture. Klein et al. design a
Bayesian Neural Network to predict the learning curve of the network searched
and early terminated the worse network if the curve is bad [17]. Baker et al.
use an additional hand-designed features on the basis of Klein et al. to predict
the learning curve in the v-SVR (Sequential regression model) [3]. Liu et al.
choose a LSTM network as the surrogate predictor. Each time the network pre-
dicts the performance of the model, it selects the k best performance network
architectures and train them from scratch to get the real performance, and then
updates the surrogate predictor parameters [19]. Peephole encodes the layer of
the network architecture into vectors and put it into a LSTM surrogate function.
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This function can predict performance based only on the previous network archi-
tecture, without additional training [8].

Since Zoph et al. proposed the RL-based NAS method obtained compet-
itive performance on the CIFAR-10 and Penn Treebank benchmarks. Many
researchers have focused on improving search methods to speed up the search
process. As we mentioned before, lots of search algorithms have successfully
reduce the search time from 800 GPUs for three to four weeks to 1 GPUs
several days even one days. Weight-sharing is a major factor to accelerate the
entire search procedure for these search algorithms. In DARTS, One-Shot and
ProxylessNAS the mixed operation is actually a weight sharing trick, which
avoids retraining the currently generated network architecture by sharing the
sub-network architecture’s weights in the search process.

Image classification lays a good foundation for the development of NAS. A
logical next step is extending to another computer vision task, such as seman-
tic image segmentation and object detection. A few work recently applied NAS
to image segmentation. Chen et al. [7] first introduce NAS to solve image seg-
mentation. The authors show that even with random search on constructing
a recursive search space, the architecture search outperforms human-invented
architectures and achieves better performance on many segmentation datasets.
However, this work does not use one-shot searching, which focused on search a
small Atrous Spatial Pyramid Pooling (ASPP) module called DPC (similar as
decoder) and fix the pre-trained backbone (modified Xception) as encoder. Liu
et al. [18] propose Auto-DeepLab: a general-purpose network level search space,
and jointly search across two-level hierarchy (network level and cell level archi-
tecture). The authors indicate that search space includes various existing designs
such as DeepLabv3, Conv-Deconv and Stacked Hourglass. However, the search
space of Auto-DeepLab does not include U-Like architectures (eg. U-net), which
are the most famous architectures in the field of medical image segmentation.

In this paper, we attempt to find a set of primitive operations for computer
vision problems, such as image classification and image segmentation, and then
we build two different search space for image classification and semantic image
segmentation. After that, we design a prototype of search-train system using
NAS for image classification and semantic image classification. Our system sup-
ports any type of differential architecture search algorithms to search on our
search space. In summary, our contributions are as follows:

1. We build two different search space for image classification and semantic
image segmentation.

2. We design a prototype of search-train system for automatically search good
architecture on specific dataset and train that model.

3. We speed up the forward passing of cell-based architecture search on our
system by parallel non-topology order nodes in our cell architecture.
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2 The NAS Methods

2.1 Search Space

CNN Architecture Representation. A directed acyclic graph (DAG) is used
to represent the network topology architecture, in which each node hi represents
input image or a feature map and each edge eij is associated with an operation
(e.g. convolution operation, a pooling operation and a skip connection) between
node hi and node hj . When the generation method of the DAG is unrestricted,
its network architecture space will be very large, which will bring great challenges
to the present search algorithms. Therefore, we use cell-based architecture [33].
When determining the best cell architecture, we can stack the cells into a deeper
network on the backbone network (we will describe below). In other words, the
architecture of cell is shared by entire network.

Primitive Operation Sets. How to choose suitable primitive operations? We
have investigated the popular CNN architecture and the former NAS that has
great success on image classification, and choose the primitive operations as
Fig. 1 shown.

Fig. 1. (a) The basic primitive operations for image classification and image segmen-
tation (b) the up and down operations derived from four basic primitive operations.
CWeight operation indicates squeeze-and-excitation operation [12].

We can see from Fig. 1(b) that when the sliding step (stride value) greater
than 1, the convolution operation can halve the dimension of feature map or
double the dimension (we simply set stride as 2), the former denoted ‘Down’-
Convolution and the later called ‘Up’-Convolution. This indicates that the down
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operation and up operation can be derived from the same base operation. In
contrast, different from the primitive operations in image classification, the ‘up’-
version of some operations make no sense (e.g. the identity operation) and the
‘up’-version of pooling operations (e.g. the average pooling and max pooling) do
not exist. In our work, based on these primitive operations, we design three types
of primitive operation set: Normal POs, Down POs and Up POs. In accordance
with it, the three types of cell-based over-parameterized architecture are formed.
As shown in the Fig. 2, the Normal POs and Down POs form NormalC and
DownC, Up POs constitute UpC. All the operations is 3 × 3.

Fig. 2. The three types of primitive operation sets and in accordance with it, the three
types of cell-based over-parameterized architecture. NormalC indicates the cell outputs
the same size of input feature maps. DownC represents the cell halves the dimension
of inputs, but UpC doubles.

Backbone Network. For image classification, We follow Zoph et al. [32] that
define a minimum architecture called cell (as shown in Fig. 3(a)), which has two
input nodes: the input of the kth cell, denoted cellk, comes from the output of
the cell k−1 and k−2. During searching, we stack the cells into shadow network,
but when finish searching, we stack more cells into deep network. Inspired by
the success of encoder-decoder network in semantic image segmentation, we use
an encoder-decoder architecture as our backbone (Fig. 3(b)) for semantic image
segmentation. Different from the image classification, the input of the kth cell
either comes from the output of the cell k − 1 (FCN-like networks) or k − 1
and k − 2 in the encoder parts, but the decoder parts are L − k + 1, where
L = #DownC + #UpC is total number of cells (U-Like networks).
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Fig. 3. (a) The backbone network used for image classification. The Stem0 and Stem1
is a Conv-ReLU-BN with stride 2 for reduce the image dimensation (b) The backbone
network used for semantic image segmentation.

2.2 Search Algorithm

In this section, we frist describe the way to construct an over-parameterized
network [4,6,18,21]. After that we introduce two differential architecture search
method into our work: DARTS and ProxylessNAS, and describe the smility and
difference between them below.

Over-Parameterized Cell Architecture. Given a cell architecture
C(e1, · · · , eE) where ei represents a certain edge in the DAG. Let O = oi be
a set of operations in the above with N candidate operations. Instead of setting
each edge associates with definite operation, we set each edge to be a mixed
operation that has N parallel paths (As shown in Fig. 4(a), the green arrows
indicate the output of cell which simply the concatenation of the blocks’ output
tensors

∑M
i=1 hi, where M is the number of intermediate Nodes), denoted as

MixO. Therefore, the over-parameterized cell architecture can be expressed as
C(e1 = MixO1, · · · , eE = MixOE). The output of a mixed operation MixO is
defined based on the output of its N paths:

MixO(x) =
N∑

(i=1)

wioi(x). (1)

As shown in Eq. 1, wi represents the weight of oi, in One-Shot [4] is constant
value 1, but in DARTS [21] is calculated by applying softmax to N real-valued
architecture parameters {αi} : eαi/

∑
j eαj . The initial value of αi is 1/N .

In the above, the ouput feature maps of all N paths is calculated when all
operations are loaded into GPU memory. Because the output of each edge is
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a mixed operation for N candidate primitive operations. As such, [21] and [4]
roughly need N times GPU memory compared to training a compact model (the
model stacked by searched cells). However, training the compact model only use
one path.

Cai et al. use binary gate for learning binarized path instead of N paths [6].
The difference between DARTS and binary gate method (denoted Proxyless-
NAS) is that the former update all of the architecture parameters by gradient
descent at each step, but the latter only update one of them. On one hand,
when updating network weight parameters, we need first fix the architecture
parameters and randomly sample a binary gate for each batch of input data.
Then the weight parameters of active paths are updated via standard gradients
descent on the training dataset. On the other hand, when training architecture
parameters, the network weight parameters are frozen, then we reset the binary
gates and update the architecture parameters on the validation set (the details
see the paper). These two update steps are performed in an alternative manner.
Once the training of architecture parameters is done, we need derive the our cell-
based architecture by pruning redundant paths. In this work, we simply choose
the path with the k (k = 2, for our works) highest path weight (Fig. 4(b)). In this
way, the memory requirement is reduced to the same level of training a compact
model. Since only considers two paths for updating at each update step, the
trained-level of operation not on current two paths being much lower than the
operation on (it is unfair to compare the contribution of a well-trained operation
and another insufficiently trained operation to the output.). Therefore, we need
more iterations for updating util all of the operations is well-trained and a extra
time will cost at moving feature map not in GPU memory to GPU.

2.3 Parallel the Operations Calculation

As we mentioned before, a cell is a DAG consisting of an ordered sequence of
M nodes. Therefore, the Nodei always be produced before Nodej . However,
the Nodei and Nodej may not exist data correlation (Nodej can only be cre-
ated after Nodei has done). It means we can parallel output Nodei and Nodej .
For example, in Fig. 4(b), Node1 and Node2 has not data correlation, and we
can produce Node1 and Node2 simultaneously. In our implementation, before
training a network architecture searched, we first seperate each topology-path
and parallel compute them between cells. On this way, we can accelerate the
efficiency of our network.

3 A Prototype of Search-Train System

In this section, We design a search-training prototype for image classification and
semantic image segmentation (which can also be used to other computer vision
tasks, such as object detection). It is useful when user need find a good network
architecture for new image dataset without any high-performance equipment
at hand and it is easy to use. Combing with binary gate search algorithm [6]
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Fig. 4. (a) The over-parameterized architecture (b) Choose the path with the two
highest path weight.

Fig. 5. A prototype of search-train system, notice that the Clients can be web clients
or desktop clients (such as Qt clients).
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and our prototype of search-train system, we can build a one-shot search-train
system for all of the computer vision and deploy it in distributed cloud (Fig. 5).

The Search-Train system is composed of Clients, File Servers and GPU Clus-
ters. The Clients can be web clients or desktop clients. Its main role is to upload
the training dataset to the File servers, observe the search states or training
states (such as loss, accuracy and candidate architecture), and interact with the
server to control the search or training schedule and download both the final
trained-model and prediction results. The File servers can be any one of popular
distributed file system, such as Hadoop [1], FastDFS [25] and OpenAFS [23]. The
GPU Clusters have four components: Log Cache File, TD Cache File, Monitor
and GPUs. Both of Log Cache File and TD Cache File is on the CPU memory
implemented by the queue. Log Cache File store search or training states. For
example, the train/validation loss, performance and current best cell architec-
ture. TD Cache File implement asynchronous loading of training data set for
the NAS procedure.

Monitor plays a coordinator role, which maintains the status of Log Cache
File and TD Cache File. After the NAS procedure reads a batch size of training
data from TD Cache File, the monitor put the next batch size of training data
from File servers to TD Cache File for next load. On the other hand, when the
training is done, the monitor will send results and trained-model to File servers
and notifies Clients to download. Similarly, the monitor gets the data from Log
Cache File and send it to Clients. In addition, the Monitor also manages the
status of NAS procedure, including new a NAS procedure to waiting queue, close
the error or stopped NAS procedure to recycle the GPU resources and assign free
GPUs to the top of waiting NAS procedure. If we use DARTS update strategy,
we need clearly two steps, one for searching best cell architectures another for
training network stacked by cells searched. However, when we use ProxylessNAS
update strategy, the two steps can be merged into one step.

We implement our NAS procedure in Pytorch [24] and use ring-allreduce
technology [26] (e.g. Horovod) to distribute searching and training models.

4 Experiments

In this section, we will first describe the details of implementing search process on
image classification and semantic image segmentation. After that, we will show
the architecture DAG we searched and the performance after training on some
image datasets. Note that in our experiments, we follow the DARTS algorithm
to search our cell architecture.

4.1 Implement Searching Architecture

Image Classification. We search the network architecture searched on CIFAR-
10 dataset. We keep half of the training data as the validation set, and a small
network obtained by stacking 6 cells is trained for 50 epochs with batch size 64,
and we use the classification error rate on the validation set as the performance



CNASV 389

Fig. 6. (a) The Down Cell and Normal Cell architectures searched on CIFAR 10 for
image classification (b) The Down Cell anb Up Cell architectures on PASCAL VOC2012
for semantic image segmentation. The operation represented by the specific Node num-
bering can be found in Fig. 2

of the cells we searched. Cells located at 1/3 and 2/3 of the total depth of the
network are Down Cells.

Semantic Image Segmentation. We search our image segmentation network
architecture on PASCAL VOC 2012 dataset [10]. Similiar to Image Classification,
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Table 1. Comparison with Darts on CIFAR-10

Model Model size (million) Accuracy Evaluation time

Darts 3.16 4.74 18 h

Ours 2.12 4.96 9 h

We randomly keep half of the training data as the validation set, and stack 3
DownC and UpC into U-like backbone. When we use DARTS search strategy,
the batch size is 2 and the architecture search optimization is conducted for
a total of 120 epochs. A batch size can be 8 when we use binary gate update
strategy, but a much 200 epochs is needed.

When learning network weight w, we follow DARTS use SGD optimizer with
momentum 0.95, cosine learning rate that decays from 0.025 to 0.01, and weight
decay 0.0003 [21]. When learning the architecture, we use Adam optimizer [16]
with learning rate 0.0003 and weight decay 0.0001. The cell architectures are
show in Fig. 6. We can that the node 0 and node 1 in Normal Cell can be
calculated in parallel (Fig. 6(a)). All of intermediate nodes in Down Cell or node
0 and node 1 in Up Cell also can be calculated simultaneously (Fig. 6(b)).

4.2 Performance on Some Datasets

We evaluate our two network architectures on CIFAR10 and Camvid dataset.
The error rate is selected as the evaluation metric for image classification and
Mean Intersection over Union (mIoU) for semantic image segmentation. We will
describe the train details below.

Evaluate on CIFAR10 Dataset
We use a large network of 20 cells for training over 200 epochs with a batch

size of 64. Other hyperparameters remain the same as the ones used for the
architecture search, similar to Darts. As the Table 1 shown, our performance of
our classification network is comparable to DARTS but with halves parameters
size and much more efficient.

Evaluate on CamVid Dataset
From the Table 2, we can see that the origin U-net has a much bad per-

formance in Camvid dataset but with larger parameters. Which reveals that
the more network parameters may not improve network performance. Our net-
work achieve a comparable performance with FC-DenseNet103 but a much less
parameters and 3 time faster owing to our parallel computation technology. It is
worth to noticing that the FC-DenseNets cost over 2 times GPU memory than
U-Net and Ours network.
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Table 2. Results on CamVid dataset.

Model Model size (million) mIoU Evaluation time

U-Net 31.4 54.3 15 h

FC-Densenet56 1.5 58.9 2 day-12 h

FC-Densenet67 3.5 65.8 2 day-21 h

FC-Densenet103 9.4 66.9 3 day-10 h

Ours 1.09 66.1 18 h

5 Conclusion

In this paper, we select eight basic primitive operations for both image classi-
fication and image segmentation. Moreover, we create three types of primitive
operation set base on them. We search our cell-based architectures on different
backbone networks for image classification and image segmentation respectively.
To implement our experiments, we design a prototype called CNASV for search
good architectures and train them in a shot. Owing to our parallel calculation
of operations cell architectures, our networks are more efficient than other com-
parison networks. In the future, we will integrated binary gate for allowing use
more batch size to accelerate prune over-parameterized network and improve
each module in our system.
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