
Nemesis: Detecting Algorithmically
Generated Domains with an LSTM

Language Model

Dunsheng Yuan1,2, Ying Xiong3, Tianning Zang2(B), and Ji Huang1,2

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{yuandunsheng,zangtianning}@iie.ac.cn

3 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing, China

Abstract. Various malware families frequently apply Domain Gener-
ation Algorithms (DGAs) to generate numerous pseudorandom domain
names to communicate with their Command and Control (C&C) servers.
Security researchers make a lot of efforts to detect Algorithmically Gen-
erated Domains (AGDs) for fighting Botnets and relevant malicious net-
work behaviors. In this paper, we propose a new AGD detection app-
roach, Nemesis, based on a Long Short-Term Memory (LSTM) language
model. Nemesis can identify whether given domain names are AGDs
according to their string compositions, and without additional informa-
tion. Nemesis first leverages an n-gram dictionary, which is built on real
domain names, to tokenize domain names into n-grams. Then a pre-
trained detector is used to classify domain names as real ones or AGDs
according to the tokenized results. We evaluate Nemesis’ abilities to
detect domain names generated by known DGAs and to discover new
DGA families. It turns out that Nemesis can accurately detect AGDs
with the precision of 98.6% and the recall of 96.7%. Besides, we verify
that Nemesis largely outperforms several existing effective approaches.

Keywords: Domain Generation Algorithm · LSTM ·
Language model · Deep learning

1 Introduction

The Domain Name System (DNS), which resolves domain names into IP
addresses, is an important public infrastructure and significant for the collabora-
tion of the Internet. However, this mechanism can also be abused by malware to
communicate with their Command and Control (C&C) servers. Since it can be
easily blocked by blacklists to use hard-coded IP addresses or domain names to
establish C&C connections, a variety of malware families apply a more sophis-
ticated mechanism known as Domain Generation Algorithms (DGAs) to hide
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 350–363, 2019.

https://doi.org/10.1007/978-3-030-30146-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_24

Nemesis 351

their C&C servers [1]. In a botnet, such as Conficker and Mirai, each compro-
mised computer (bot) algorithmically generates a large set of domain names
and queries each of them until one of them is resolved successfully, and then the
bot contacts the resolved domain name, which is typically corresponding to the
IP address of the C&C server (botmaster). Once the connection is established,
the bots can be controlled by the botmaster to launch distributed denial-of-
service (DDoS) attacks, steal data and privacy, mine digital currency illegally,
etc [2]. For example, on October 21, 2016, a large DDoS attack on Dyn, a DNS
provider was performed through a Mirai botnet, which involved 100,000 mali-
cious endpoints. The Mirai botnet sent superfluous DNS requests to overload
the DNS servers, and the serious consequences of this attack caused dozens of
popular websites unreachable for the users in North America. Besides botnets,
spammers also generate pseudorandom domain names in spam emails to avoid
detection by regular expression based domain blacklists [3].

Since Algorithmically Generated Domains (AGDs) are involved in various
malicious network behaviors mentioned above, it becomes a crucial topic of con-
cern for researchers to detect AGDs automatically and accurately. Some tradi-
tional AGD detection approaches leverage the distribution of characters in the
domain [3]. These approaches are simple but hard to achieve good effects. Others
utilize human engineered lexical features [4,5], nevertheless, it is time-consuming
to construct effective features.

Motivated by these reasons, we propose a new AGD detection approach called
Nemesis1, which is implemented based upon an LSTM language model. Nemesis
first tokenizes a domain name into n-grams and then classifies it as a real domain
name or an AGD according to these n-grams. The key insight of Nemesis lies
in the truth that domain names are composed of syllables or acronyms for easy
readability, and n-grams can represent both of them. Nemesis only mines the n-
gram information of domain names but can still keep high precision and recall.
Specifically, we make the following key contributions:

– Nemesis can identify whether a single domain name is an AGD according to its
string composition. It does not need extra data or the association information
of multiple domain names.

– Nemesis can detect AGDs of known DGA families with high precision of
98.6%, recall of 96.7%, an F1-Score of 97.6%, and it largely outperforms
detection approaches based on KL, ED, and JI.

– We verified that Nemesis is also able to discover new DGA families, which
are not seen in the training data. Specifically, we test Nemesis on AGDs of
10 new DGA families individually, and it can achieve high recall values for
every DGA family.

The rest of the paper proceeds as follows. Section 2 summarizes related work
in DGA detection and discusses their limitation. Section 3 introduces an overview
of our approach and then describes how to implement each module in detail.
Section 4 presents the experimental setup, including datasets and evaluation
metrics. After that, we compare Nemesis with a typical prior work in Sect. 5.
Finally, we conclude our work in Sect. 6.
1 Nemesis is the goddess of retribution for evil deeds in ancient Greek mythology.

352 D. Yuan et al.

2 Related Work

Researchers propose a variety of approaches [3–10] to detect AGDs. Anton-
akakis et al. [4] develop a detection system called Pleiades to identify DGA-
based bots. Their insight is that most DGA-generated domains queried by bots
will result in Non-Existent Domain (NXDomain) responses, and that bots using
the same DGA algorithm will generate similar NXDomain traffic. Pleiades is
implemented based on a combination of clustering and classification algorithms.
At first, Pleiades clusters domains based on the similarity in the lexical fea-
tures of domain names and the groups of machines that queried these domains.
Then Pleiades uses the classification algorithm to assign the generated clusters
to models of known DGAs. A new model indicating a new DGA family will be
produced if a cluster cannot be assigned to a known model.

Schiavoni et al. [5] propose Phoenix, a mechanism to detect and classify
AGDs. Phoenix first proceeds a binary classification to identify AGDs and real
domains based on two linguistic features, namely, the meaningful character ratio
and the N-gram normality score. These features are able to measure the meaning
and pronounceability of domain names. Then they calculate the probabilistic
distribution for legitimate domains based on those linguistic features, and cluster
suspicious domain names with known AGDs to classify them as belonging to
specific malware families.

Although previous work mentioned above can obtain good effects in terms
of detection precision or accuracy, they rely strongly on string-based and host-
based features of domain names. These features are time-consuming to construct
and extract, and host-based features, such as IP addresses, may change over
time. Thus, to build a simple AGD detection approach based on string-based
information only, Yadav et al. [3] leverage three metrics of distance to detect
AGDs, including Kullback-Leibler (KL) distance, Edit distance (ED) and Jac-
card Index (JI). These metrics can be easily calculated based solely on sets
of domain name strings, and researchers do not need to spend a lot of time
on feature engineering for domain names. Although detection method based on
these metrics can achieve high accuracy for some DGA families, they have two
essential shortcomings. On the one hand, approaches based on KL and JI only
leverage the character distributions of domain names. Therefore, the can hardly
work on AGDs that have different character patterns but similar distribution as
real domain names. On the other hand, approaches based on ED can only detect
domain names generated with regular grammar.

3 Proposed Approach

As discussed above, some existing AGD detection approaches are not efficient
enough since they spend a lot of time and resources on constructing string-based
and host-based features. Thus, in this paper, we propose a new AGD detection
system called Nemesis, which does not rely on human-engineered features. Specif-
ically, Nemesis is implemented based upon an LSTM language model, and it only

Nemesis 353

leverages the string-based information of domain names. In this section, we first
introduce the architecture of Nemesis, then describe the implementation of each
component in detail.

3.1 Architecture of Nemesis

The ultimate purpose of Nemesis is to identify whether unlabeled domain names
are real ones or AGDs. Nemesis takes unlabeled domain names as the input,
then it outputs the corresponding class label of each unlabeled domain name.
To this end, Nemesis first tokenizes each domain name into n-grams according
to a predefined n-gram dictionary, then trains an LSTM neural network based
on the tokenized results, and uses this network to identify unlabeled domain
names at last. As shown in Fig. 1, Nemesis generally consists of three modules:
the Modeling module, the Training module, and the Detecting module.

Real Domain Names

12 3

n-gram Generator

n-gram Dictionary

Labeled Domain Names

n-gram Tokenizer

Tokenized Domain
Names

Model Trainer

Training module

Modeling module

n-gram Tokenizer

Unlabeled Domain Names

Tokenized Domain
Names

DGA Detector

Detecting module

LabelsModel

Fig. 1. The architecture of Nemesis.

Modeling Module. The purpose of the Modeling module is to build an n-gram
dictionary which includes common n-grams of real domain names. The input to
this module is a set of known legitimate domain names, and the output is an
n-gram dictionary. This dictionary will be used by the n-gram Tokenizer in the
Training module and the Detecting module. The only component of this module
is the n-gram Generator, which will be detailly described in Sect. 3.2.

Training Module. The input to the Training module is a set of labeled domain
names consisting of known AGDs and legitimate domain names, and the output
is a trained LSTM network model. There are two important components in
this module: the n-gram Tokenizer and the Model Trainer. We use the n-gram
Tokenizer, which is implemented based on the n-gram dictionary obtained in the
Modeling module, to tokenize domain names into n-grams, and then employ the

354 D. Yuan et al.

Model Trainer to train the LSTM network. The trained model can automatically
distinguish AGDs in unlabeled domain names and will be used as the DGA
Detector in the Detecting module.

Detecting Module. The input to the Detecting module is a set of unlabeled
domain names, and the output is the corresponding class label of each domain
name. This module contains two major functional components, the n-gram Tok-
enizer and the DGA Detector. The former is the same as the n-gram Tokenizer in
the Training module, and the latter is the LSTM model trained in the Training
Module. They will be described in Sects. 3.3 and 3.4 respectively. We classify
unlabeled domain names in two steps. First, we utilize the n-gram Tokenizer to
tokenize unlabeled domain names into n-grams. Second, we leverage the DGA
Detector to label these tokenized unlabeled domain names as real ones or AGDs.

3.2 n-gram Generator

For readability and pronounceability, real domain names are usually composed
of syllables or acronyms. Since it is hard to collect all syllables and acronyms,
we compromise to represent them with n-grams. Nemesis learns the rules that
how syllables or acronyms form real domain names and identifies domain names
that disobey the rules as algorithmically generated. The n-gram Generator is
tasked with extracting n-grams from real domain names and build a dictionary
containing the most common n-grams.

The input to the n-gram Generator is a set of real domain names, such as
Alexa top 1 million, and the output is an n-gram dictionary providing for the
n-gram Tokenizer. First, we count the occurrences of each n-gram in real domain
names, with n = {1, 2, 3, 4}. For example, in domain name “google”, 1-grams
include {‘g’, ‘o’, ‘l’, ‘e’}, and the corresponding occurrences are respectively {2,
2, 1, 1}. 2-grams include {‘go’, ‘oo’, ‘og’, ‘gl’, ‘le’}, and the corresponding occur-
rences are respectively {1, 1, 1, 1, 1}. Similarly, 3-grams and 4-grams can be
counted in this way. Next, we sort all these n-grams by their occurrence frequen-
cies in ascending order and collect the top 5000 into a dictionary. By extracting
n-grams from domain names, we are trying to acquire the most frequent combina-
tions of characters (including lower-case letters, digits, and hyphens) in domain
names.

For a fully qualified domain name (e.g. www.example.com), the rightmost
segment (e.g. com) is the top-level domain (TLD), and example.com is the
second-level domain name (2LD). Since legitimate TLDs come from a well-known
list [11], it is unnecessary for DGAs to generate a TLD. Therefore, we refer to
effective 2LD (e.g. example) as “domain name” in this paper.

3.3 n-gram Tokenizer

The n-gram Tokenizer splits domain names into n-grams according to the dictio-
nary obtained from the n-gram Generator. The input to the n-gram Tokenizer is

www.example.com

Nemesis 355

unlabeled domain names, and the output is the corresponding tokenized domain
names (i.e., an n-gram list) for each of the unlabeled domain names.

In this paper, we adopt the Bi-direction Maximum Matching (BMM) Method
to tokenize domain names into n-grams. The BMM Method fits languages that
have no space to delimit words or characters, such as Chinese and Japanese.
The principle of the BMM Method is a combination of the Forward Maximum
Matching Method and the Backward Maximum Matching Method. The Forward
Maximum Matching Method aims to partition a sentence into words from left
to right as long as possible. In contrast, the Backward Maximum Matching
Method partitions a sentence into words from right to left as long as possible.
For the same sentence, the BMM Method compares the results from the Forward
Maximum Matching Method and the Backward Maximum Matching Method,
and chooses the better one according to the following rules:

– If the segmentation results from those two methods are the same, choose
either of the two.

– If the number of words in the segmentation results from those two methods
are not equal, choose the result that has fewer words.

– If the number of words in the segmentation results from those two methods
are equal but these two results are not the same, choose the result that has
less individual characters.

As we know, a domain name is a contiguous string without spaces, which
is similar to the writing convention of Chinese and Japanese. Thus, in the n-
gram Tokenizer, we regard domain names and n-grams as sentences and words
respectively, then we can apply the BMM Method to domain names. In practice,
the n-gram dictionary produced by the n-gram Generator contains all individual
characters (1-gram) that appear in real domain names. Therefore, it is unneces-
sary to worry about meeting an n-gram that does not exist in the dictionary.

3.4 DGA Detector

The purpose of the DGA Detector is to distinguish AGDs from real domain
names. After getting tokenized domain names from the n-gram tokenizer, we
input them to the DGA Detector and expect it to output the corresponding
class label of each domain name. The DGA Detector is implemented mainly
based on an LSTM neural network which is widely used in natural language
processing. The architecture of the DGA Detector is shown in Fig. 2.

The Numeric Encoder is employed to convert the tokenized domain name
(an n-gram list) to a numeric vector since the neural network can only deal with
tensors but not strings. It can be simply accomplished by replacing each n-gram
with its sequence number (range from 1 to 5,000) in the n-gram dictionary to
form a numeric vector. Then we pad the vector with 0 to make all of them have
the same length l. The parameter l is the maximum number of n-grams in a
single tokenized domain name.

The embedding layer converts the l-length vector to a 2-D tensor in the
shape of l∗d. The tunable parameter d is the output dimension of this layer. We

356 D. Yuan et al.

Tokenized domain name

Numeric Encoder

Embedding layer

LSTM layer

Dropout layer

Output layer

Output label

Fig. 2. The architecture of DGA detector

conduct several experiments with different parameter d and find the detection
results are not very sensitive to it. Thus it is not important to choose the best
parameter d and we set a proper value d = 64 to provide enough degrees of
freedom to the model in subsequent experiments.

LSTM can capture meaningful temporal relationships among tokens in a
sequence [12]. The LSTM cell consists of a state that can be read, written or
reset via a set of programmable gates, thereby mitigating the vanishing gradients
problem [13]. The LSTM layer can implicitly extract features of domain names
and learn the contextual information of n-grams. This layer takes the output of
the embedding layer as input, and a dropout layer is applied to the output to
avoid overfitting when training the neural network.

The fully connected output layer is a simple logistic regression. It outputs
the probability that the input domain name is algorithm generated. At last, the
DGA Detector can label the domain name by comparing the probability with a
proper threshold. We describe how to choose the optimal threshold in Sect. 5.1.

4 Experimental Evaluation

In this section, we design two experiments to evaluate the effectiveness of Neme-
sis. We first introduce the data sets used in our experiments, then define the
evaluation metrics, and finally describe the experimental setup in detail.

Nemesis 357

4.1 Data Sets

To evaluate Nemesis, we collect 30 typical DGA families used by live botnets
and select ten of them (i.e., Conficker, Banjori, Corebot, Cryptolocker, Dircrypt,
Kraken v1, Locky v2, Pykspa, Qakbot, and Simda) that are more difficult to
detect. We build two data sets for subsequent experiments:

– malicious dataset : We use each of these ten DGA families to generate 10k
AGDs respectively, and regard all of these 100 k AGDs as the malicious
dataset.

– legitimate dataset : We randomly sample 100 k domain names from Alexa top
1 million on 28th, Oct 2018 as legitimate dataset.

4.2 Evaluation Metrics

To evaluate the effectiveness of an AGD detection approach, we first make three
definitions for further analysis:

– True Positives (TP): the number of domain names that are classified as AGDs
by a detection approach and are indeed AGDs;

– False Positives (FP): the number of domain names that are classified as AGDs
by a detection approach but are real ones in fact;

– False Negatives (FN): the number of domain names that are classified as real
ones by a detection approach but are AGDs in fact.

Based on these definitions, we use three evaluation metrics, Precision (P),
Recall (R) and the F1-Score (F1), to measure the effectiveness of a certain AGD
detection approach. They can be calculated as follows:

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 =
2 × P × R

P + R
(3)

Precision and recall reflect the ability of the detection system in two aspects
respectively. We expect the two values to reach the maximum. However, these
two metrics are often contradictory, so we use F1-Score as a compromise between
the two.

4.3 Experimental Setup

We conduct two different experiments, Experiment I and Experiment II, to eval-
uate Nemesis from two aspects.

358 D. Yuan et al.

Experiment I. The purpose of this experiment is to evaluate the ability of
Nemesis to accurately identify domain names generated by known DGAs. Specif-
ically, We use 90% of the domain names in legitimate dataset and malicious
dataset as the training dataset, and the rest 10% as the test dataset. We use
precision, recall, and F1-Scores to evaluate Nemesis in this experiment. At the
same time, we compare Nemesis with previous work in this experiment.

Experiment II. The purpose of this experiment is to evaluate the ability of
Nemesis to identify AGDs generated by new DGA families which does not appear
in the training dataset. To this end, we apply the leave-one-out cross-validation
(LOOCV) method at the level of DGA families. Specifically, for each DGA fam-
ily, we collect domain names generated by this DGA as test dataset, and the
training dataset consists of domain names from legitimate dataset and those
generated by nine other DGA families. Since we only care about the proportion
of domain names that are correctly identified, only recall is used to evaluate
Nemesis in this experiment. Similarly, we also compare Nemesis with previous
work in this experiment.

The results of Experiments I and II will be presented in Sect. 5.

5 Comparisons

To show the effectiveness of Nemesis, we compare it with a prior AGD detection
approach in the process of Experiment I and II. In this section, we introduce the
prior work at first, then presents the results of Experiment I and II.

5.1 Prior Work

As described in Sect. 2, Yadav et al. [3] use Kullback-Leibler (KL) Distance,
Edit Distance (ED) and Jaccard Index (JI) to detect AGDs. Recently, Fu et al.
[14] also apply these three forms of distance to detect real-life DGA families and
achieve good results for five of them. This approach only requires the string-based
information of domain names, which is similar to Nemesis, thus we compare it
with Nemesis. The main idea of this approach is easy to understand. Given an
unlabeled domain name d, the detection procedure can be divided into three
steps: (1) Calculate the distance between d and a set of real domain names. (2)
Calculate the distance between d and a set of AGDs. (3) Classify d as a real one
or an AGD according to which distance is closer. Next, we will describe how to
calculate these distances in detail.

Kullback-Leibler Distance. KL distance is a metric to measure the diver-
gence between one probability distribution diverges and a reference probability
distribution. In terms of a domain name, the probability distribution refers to
the distribution of occurrence frequencies of all valid characters. For simplifica-
tion, suppose that the list of valid characters in domain names is [a, b, c, d, e, f],

Nemesis 359

then the probability distribution of domain name “faddec” is [1/6, 0, 1/6, 1/3,
1/6, 1/6]. For discrete probability distributions P and Q defined on the same
probability space, the KL distance between them can be calculated as follows:

DKL(P‖Q) =
∑

i

Pi log
Pi

Qi
(4)

where i is the index of the value in a discrete random variable. It is evident that
KL distance between P and Q is not symmetric, so we can define a symmetric
KL distance for uniformity:

DKLsym(PQ) =
1
2
(DKL(P‖Q) + DKL(Q‖P)) (5)

Edit Distance. The Edit Distance [15] between two strings A and B are defined
as the minimum times of edit operations required to convert A to B. Only three
edit operations are allowed: insertion, deletion, and substitution of single char-
acters. ED is symmetric and can be easily calculated by dynamic programming
methods.

Jaccard Index. JI [16] is a metric to measure the similarity between two finite
sets A and B. It is defined as:

JI(A,B) =
|A ∩ B|
|A ∪ B| (6)

In our experiments, we can refer the sets of characters in two domain names
as set A and B respectively. Note that JI measures similarity while KL and ED
measures dissimilarity, we can define JI Distance for uniformity:

dJI(A,B) = 1 − JI(A,B) = 1 − |A ∩ B|
|A ∪ B| . (7)

After figuring out the meaning of each metric, we now focus on how to detect
AGDs with them. Given a test domain name dt, we can use one of the three
statistical distances to determine whether it is an AGD by following steps:

(1) Calculate d(L) and d(M) which denote respectively the average distance
from dt to each domain names in the legitimate dataset and the average
distance from dt to each domain names in the malicious dataset.

(2) Calculate Δd which denotes the difference between d(L) and d(M), namely
Δd = d(L) − d(M). The greater Δd, the more likely dt is legitimate than
malicious.

(3) Select a proper threshold topt for Δd and build a classifier. If Δd is greater
than or equal to topt, the classifier will judge dt as real. Otherwise, dt is
judged as an AGD.

360 D. Yuan et al.

Fig. 3. An ROC curve demo

Then we leverage the Receiver Operating Characteristic (ROC) curve [17] to
select the optimal threshold topt as follows: (1) Sample nine-tenth of the training
dataset in Experiment I to train the classifier and use the rest one-tenth as the
test dataset. (2) Select different t to calculate true positive rates (TPRs) and
false positive rates (FPRs). (3) Draw the ROC curve based on the series of TPRs
and FPRs, as shown in Fig. 3. (4) Find the closet point A on the ROC curve to
the point (0,1), and the corresponding threshold is the optimal threshold topt.

5.2 Experimental Results

Experiment I. This experiment compares the ability of several approaches to
accurately detect domain names generated by known DGA families. Figure 4
shows the results comparison among Nemesis and previous approaches based
on KL, ED and JI. As illustrated in Fig. 4, Nemesis reaches the highest values
of precision (98.6%), recall (96.7%) and the F1-Scores (97.6%), while those of
the other approaches range from 72% to 83%. Obviously, the experiment result
suggests that Nemesis has a considerable advantage in terms of detecting AGDs
generated by known DGAs over approaches based on KL, ED and JI.

Experiment II. This experiment compares the ability of several approaches
to discover new DGA families. Table 1 displays the recall values of Nemesis
and approaches based on KL, ED and JI. In terms of certain DGAs, previous
approaches are even inferior to an untrained binary classifier since they get recall
values lower than 50%, though they may achieve better results than Nemesis on

Nemesis 361

Fig. 4. Results of Experiment I

Table 1. Recall of four detection approaches on 10 DGA families in Experiment II

DGA name Nemesis KL ED JI

Conficker 0.833 0.879 0.402 0.902

Banjori 0.945 0.876 0.922 0.884

Corebot 0.975 0.572 0.743 0.473

Cryptolocker 0.903 0.821 0.835 0.794

Dircrypt 0.968 0.901 0.873 0.893

Kraken v1 0.994 0.912 0.822 0.904

Locky v2 0.983 0.886 0.929 0.813

Pykspa 0.985 0.473 0.895 0.402

Qakbot 0.942 0.899 0.793 0.845

Simda 0.834 0.858 0.729 0.784

other DGAs. In contrast, recall values of Nemesis are all greater than 83%, which
means Nemesis has better stability in discovering different DGA families. In a
word, Nemesis is stable and effective to discover unknown DGAs.

6 Conclusion

This paper represents a new AGD detection approach, Nemesis, which is imple-
mented based on an LSTM language model. It takes unlabeled domain names
as inputs, and outputs whether the domain names are AGDs or not. Nemesis
employs theories and techniques in natural language processing and deep learn-
ing. It can learn from labeled domain names automatically and does not require
any other additional information. We conduct two experiments on ten DGA

362 D. Yuan et al.

families to measure the abilities of Nemesis, i.e., the ability to detect AGDs of
known DGAs and to discover new DGA families. The experiment results show
that Nemesis outperforms the prior work in both respects.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China under Grant No. 2018YFB0804702 and No. 2018YFB080
4704. The corresponding author is Tianning Zang.

References

1. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A com-
prehensive measurement study of domain generating malware. In: 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016,
pp. 263–278 (2016)

2. Gai, K., Qiu, M., Tao, L., Zhu, Y.: Intrusion detection techniques for mobile cloud
computing in heterogeneous 5G. Secur. Commun. Netw. 9(16), 3049–3058 (2016)

3. Yadav, S., Reddy, A.K.K., Reddy, A.L.N., Ranjan, S.: Detecting algorithmically
generated domain-flux attacks with DNS traffic analysis. IEEE/ACM Trans. Netw.
20(5), 1663–1677 (2012)

4. Antonakakis, M., et al.: From throw-away traffic to bots: detecting the rise of
DGA-based malware. In: Proceedings of the 21th USENIX Security Symposium,
Bellevue, WA, USA, 8–10 August 2012, pp. 491–506 (2012)

5. Schiavoni, S., Maggi, F., Cavallaro, L., Zanero, S.: Phoenix: DGA-based botnet
tracking and intelligence. In: Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment - 11th International Conference, DIMVA 2014, Egham, UK, 10–11
July 2014, Proceedings, pp. 192–211 (2014)

6. Sharifnya, R., Abadi, M.: Dfbotkiller: domain-flux botnet detection based on the
history of group activities and failures in DNS traffic. Digit. Invest. 12(12), 15–26
(2015)

7. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain genera-
tion algorithms with long short-term memory networks. CoRR, vol. abs/1611.00791
(2016)

8. Huang, J., Wang, P., Zang, T., Qiang, Q., Wang, Y., Yu, M.: Detecting domain
generation algorithms with convolutional neural language models. In: Trust-
Com/BigDataSE, pp. 1360–1367 (2018)

9. Yu, B., Pan, J., Hu, J., Nascimento, A.C.A., Cock, M.D.: Character level based
detection of DGA domain names. In: 2018 International Joint Conference on Neural
Networks, IJCNN 2018, Rio de Janeiro, Brazil, 8–13 July 2018, pp. 1–8 (2018)

10. Sood, A.K., Zeadally, S.: A taxonomy of domain-generation algorithms. IEEE
Secur. Priv. 14(4), 46–53 (2016)

11. Root zone database. https://www.iana.org/domains/root/db
12. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing

recurrent networks. In: IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2013, Vancouver, BC, Canada, 26–31 May 2013, pp.
8624–8628 (2013)

13. Gers, F.A., Schmidhuber, J., Cummins, F.A.: Learning to forget: continual predic-
tion with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

14. Fu, Y., et al.: Stealthy domain generation algorithms. IEEE Trans. Inf. Forensics
Secur. 12(6), 1430–1443 (2017)

https://www.iana.org/domains/root/db

Nemesis 363

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

16. Small, H.: Co-citation in the scientific literature: a new measure of the relationship
between two documents. J. Am. Soc. Inf. Sci. 24(4), 265–269 (1973)

17. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006)

	Nemesis: Detecting Algorithmically Generated Domains with an LSTM Language Model
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Architecture of Nemesis
	3.2 n-gram Generator
	3.3 n-gram Tokenizer
	3.4 DGA Detector

	4 Experimental Evaluation
	4.1 Data Sets
	4.2 Evaluation Metrics
	4.3 Experimental Setup

	5 Comparisons
	5.1 Prior Work
	5.2 Experimental Results

	6 Conclusion
	References

