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Abstract. Tandem mass spectrometry is an advanced biochemical anal-
ysis method and has been widely used in screening of inherited metabolic
disorders (IMDs). Obtained examination results are filtered by cutoff
values and then interpreted based on doctor’s knowledge to get diag-
noses. However, cutoff-based approaches have difficulties with the cor-
relations of multiple metabolites. Doctor’s experiences affect the diag-
nostic decision-making as well. The rapidly increasing availability of
newborn screening data (1.5M cases in this study) enables the appli-
cation of machine learning (ML) techniques to provide more accurate
diagnoses of IMDs compared to simple cutoff values. We investigated
two tasks in this study, i.e. complicated patterns between metabolites
and better auxiliary diagnostic means. Experimental results show that
novel metabolic patterns found in the study are effective and meaning-
ful. Integrating ML techniques with these patterns improved predictive
performance compared to existing diagnostic methods, suggesting ML
techniques are becoming valuable as auxiliary diagnostic tools.
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1 Introduction

Inherited metabolic disorders (IMDs) are a class of genetic diseases causing men-
tally disabled, deformity and even death. Systematic screening and treatment
to IMDs of newborn can significantly improve prognosis. Research shows that
untreated patients tend to spend more money on avoiding neurological sequelae
while early intervention is cost-effective over the whole life [18]. Tandem mass
spectrometry (MS/MS) is a sensitive, selective and high-throughput technique
for concentration detection of various amino acids and acylcarnitine in blood
samples, which was first applied to newborn screening in 1990s [15]. A labora-
tory testing can simultaneously screen out dozens of IMDs, such as amino acid
metabolism disorders and fatty acid oxidation disorders, in a few minutes [5].
The existing process of newborn screening is mainly dependent on cutoff-based
methods and subjective diagnosis of pediatricians. Setting precise cutoff values
for each metabolite or the ratio of two metabolites is the first step to filter
out most negative cases. The remaining indistinguishable examination results of
MS/MS are interpreted by experienced pediatricians. In practice, cutoff-based
methods are hard to deal with complex relationships among metabolites, which
bring a large number of false positive cases. As a result, the clinical diagnose
still relies on doctor’s experience.

In this study, over 1.5M newborn screening data were analyzed by machine
learning (ML) techniques, which have proved to be effective for many medical
tasks, such as diabetic retinopathy diagnosis [7] and autism spectrum disorder
prediction [11]. With enough samples, ML techniques can achieve high perfor-
mance in the task of disease prediction and act as auxiliary diagnostic means to
provide accurate diagnosis. Such diagnostic tool has great social and economic
significance. For instance, reducing substantial false alarms not only avoid unnec-
essary psychological and expenditure burden of families, but improve utilization
of medical resources [8]. A refined screening system can be employed in remote
districts to enhance the overall quality of medical care in those places. To this
end, we aim to answer following two questions: What is the mazimum predictive
performance that can be achieved by introducing ML to newborn screening and
What kind of metabolic patterns can help improve diagnostic accuracy.

Some related newborn screening projects have explored ML application in
IMD diagnosis [2—4]. Compared to these researches, which focus only a few com-
mon diseases, we analyzed 16 disorders and evaluated 9 ML algorithms on our
dataset. The experimental results demonstrate that more than 20 positive sam-
ples are required for a disease to achieve stable performance. Besides common
used biomarkers, we discover several metabolites are also contributive to iden-
tify diseases. Novel metabolic patterns of their combination outperform existing
diagnostic biomarkers. Based on our analysis, ML techniques are effective to
be integrated as auxiliary diagnostic tools under certain conditions. Our main
contributions are as follows:
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— Sixteen IMDs were covered in this study including both common and rare dis-
orders. Extensive experiments with more suitable ML techniques were applied
on a large dataset for analysis of practical screening problems.

— We identify a boundary that dividing the applicable situation of ML methods
and existing approaches based on the number of positive samples. Possible
solutions are provided in both situations.

— We discover novel metabolic patterns in several disorders that achieve higher
predictive performance than existing biomarkers.

— Compared to diagnostic methods in existing screening process, we proved
integrating ML techniques as auxiliary diagnostic tools can improve predictive
accuracy.

To the best of our knowledge, there are few researches that integrating ML
techniques into auxiliary diagnosis for dozens of IMDs. We point out strength
and weakness of both ML techniques and existing screening approaches in this
paper. What’s more, further researches can build customized models on the basis
of our analyses to improve the screening efficiency (Table 1).

Table 1. List of 16 IMDs investigated in our study.

Abbr. Disorders

PKU Phenylketonuria

PTPSD | Tetrahydrobiopterin deficiency

MMA Methylmalonic acidemia

NICCD | Neonatal intrahepatic cholestasis caused by citrin deficiency

MSUD | Maple syrup urine disease

IVA Isovaleric acidemia

GA-I Glutaric acidemia type I

PA Propionic acidemia
ASS Citrullinemia type I
VLCAD | Very long-chain acyl-CoA dehydrogenase deficiency

SCAD | Short long-chain acyl-CoA dehydrogenase deficiency

MET Hypermethioninemia

IBD Isobutyryl-CoA dehydrogenase deficiency
GA-IT | Glutaric acidemia type II

CPT-I | Carnitine palmitoytransferase I deficiency
PRO Proline acidemia

2 Methods

In this section, we first introduce details of the dataset applied in this study
and describe our preprocessing strategies including standardization and train-
test split. Various evaluation metrics are then discussed for our imbalanced data.
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They are employed reasonably in latter analysis. The experiment was performed
on a server with an Intel Xeon E5-2603 1.8 GHz CPU and 16 GB memory. The
implementations of ML techniques involved in the experiment are based on
the Scikit-learn machine learning framework [16] and imbalanced-learn from its
community [14].
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Fig. 1. Number of patients with each disease.

2.1 Data and Preprocessing

The dataset is obtained from the Children’s Hospital, Zhejiang University School
of Medicine. It consists of 1,506,098 biochemical examination results of neonatus
by using MS/MS technique during the period between December, 2011 to Decem-
ber, 2016. Totally 43 biomarkers measured by MS/MS are used in our study
(Table A1 in Appendix A), including 11 amino acids, 31 carnitines and a ketone.
After excluding diseases with less than two confirmed patients, we obtained 16
IMDs of newborn listed in Tabel 1. Corresponding number of patients in our
dataset are shown in Fig. 1. It is worth noting that the actual incidences of dis-
orders are different while total 224 positive cases are only screened by MS/MS.
To study the impact of positive sample size on prediction performance, we set
two groups, i.e., G5 ={PKU, MMA, NICCD, SCAD, MET} and G16=1{all 16
disorders}, whose average number of positive cases are 32.8 and 14, respectively.

One-Versus-Rest (OVR) strategy, a frequently-used multiclass learning app-
roach, was applied to study each disease separately. That is, one disease was
selected as the positive class in each time while others were regarded as negative
classes. Common sample splitting strategies, e.g., shuffle split and stratified split,
may lead insufficient positive samples when setting small training size or bring
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redundant negative samples with large size of training set because the split-
ting almost follows positive-negative sample ratio. Thus, we design an unequal
stratified split method called US-split for train-test set generation. The US-split
method has a list of class-size parameter < C,S >, where S is training size
corresponding to target class C. For binary classification problem under OVR
strategy, < Cp,Sp > and < Cpy,Sy > are two parameter pairs of US-split
that controls splitting size of positive and negative classes in training set. In our
experiment, we set S&%" = 0.5 and ST = 0.05 indicating sampling half of
positive data and 5% of negative data in the partitioning process. These sam-
ples were combined as a single training set. Similarly, S% = 0.3 and S§* = 0.1
were employed for validation set and the remaining were for testing. We ran
US-split with replacement for 20 times to generate different train-validation-test
splits. All hyperparameters of ML algorithms involved in latter sections were
tuned independently in the validation set. Evaluation results of each test set
were averaged as the final performance.

A patient who has high metabolite concentration values may strongly affect
traditional standardization methods because large values would flat most of sam-
ples and make them hard to distinguish. In case of outliers, a robust standard-
ization was applied to training set and test set separately as follows:

KXo = i (1)
gmax — “dgmin
where X,;q is median for current set, Xgma, and Xgpmin are two quantiles that
specify the standardizing scale. Due to few outliers, Xgmar = 0.95 and Xgmin =
0.05 were chose to cover most of normal samples.

2.2 Evaluation Metrics

We adopted various metrics to evaluate predictive performance from different
perspectives. Minimizing false positive rate (FPR) is the primary goal to improve
quality of newborn screening while keeping other performances unchanged.
Along with this, positive predictive value (PPV), sensitivity (SEN) and speci-
ficity (SPE) were considered as basic evaluation metrics. Furthermore, Fjg score
and G-mean were used for comprehensive ability evaluation.

PPV x SEN
32 x PPV + SEN

G-mean =+ SEN x SPE (3)

Newborn screening dataset is a typical imbalanced dataset and the details
will be discussed in Sect.3. To better evaluating performance of predictors on
this kind of dataset, many researches use Fjg to avoid being deceived by a single
basic metrics with good results due to preference of models. However, small
cardinality of patients would bring impact to PPV if the number of false alarms
change slightly. In Eq. (2), it is difficult to choose an appropriate 8 that balancing

Fy=(1+6) 2)
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PPV and SEN to fairly reflect the model ability. As an alternative metrics that is
useful for imbalanced data, G-mean in Eq. (3) utilizes SPE to reduce instability
brought by PPV. Specificity is the complementary set of FPR so it satisfies
our top priority as well. Therefore, G-mean is more accord with this study and
chose as major evaluation metrics. We also calculate F; score as a reference
where 3 = 1.

3 Results

3.1 Model Comparison

To validate feasibility of introducing ML techniques to newborn screening, we
selected nine suitable classification algorithms as shown in Table2 to compare
their performances based on different evaluation metrics. Basically, these algo-
rithms can be categorized into various types such as weighted-bagging and boost-
ing of ensemble methods, linear or nonlinear mapping, tree-based models and
so on. Some special configurations of algorithms should be mentioned to avoid
misunderstanding. The gradient boosting in our experiment indicates gradient
boosting decision tree that using decision trees as weak learners. As for adap-
tive boosting (adaboost for short), we choose decision stump, or called one-level
decision tree [12] as the weak learner.

Table 2. List of nine machine learning algorithms evaluated in our study.

Abbr. | Models

LR Logistic regression

LDA | Linear discriminant analysis

DT Decision trees

RF Random forest

ET Extremely-randomized tree
GB | Gradient boosting

ADA | Adaptive boosting

SVM | Support vector machine
kNN |k Nearest neighbors

Hyperparameter optimization applied grid search measured by G-mean to
choose best configuration Py.s for diverse diseases and models. Other evalua-
tion metrics including PPV, SEN, and SPE were calculated based on the same
Pyesi. Interestingly, we set three kernels, i.e., linear, polynomial and radial basis
function for SVM classifier in grid search and Pyes; of SVM for different diseases
are all configured by the linear kernel. Thus, LSVM is treated as a synonym of the
SVM model equipped with linear kernel in the remainder of this paper. During
the test, all classifiers are equipped with corresponding Pyes;. Average evaluation
results of diseases on group G5 and G14 are treated as their performances.
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Table 3. Average evaluation results of nine machine learning algorithms on group Gs
and G16.

are
the

Metrics | ADA |LR GB DT ET |LDA |RF SVM | KNN
GM .7201 |.6114 | .5519 | .5347 | .4988 | .4549 |.4050 |.3235 | .2282
.4549 | .5397 | .3872 |.3768 |.2973|.5071 | .1892 | .4387 | .1225
F1 .5710|.3819.3205 |.3818 | .2200|.2730 |.3417 |.1784 | .1769
L3731 | .2768 |.2645 |.2818 |.1543|.3408 |.1604 | .2976  .1015
SEN .5906 |.6585|.4498 |.3937 | .3523|.8851 |.2679 |.9130  .1146
3814 | .7066 | .3301 | .3053 |.2218|.7399 | .1327 |.7647 |.0712
SPE .9994 | 8563 | .9460 | .9980 |.9688 |.5277 |.9999 |.3636 |.9999
L9998 | 7714 |.9763 | .9938 | .9806 | .7282 |.9999 | .6297 |.9999
PPV L7013 | .4877 |.3715 |.4905 | .2791 | .2747 |.6083 | .1929 | .4658

.4408 | .3031 |.2962 |.3299.2039 | .3420|.2614 |.3016 |.2164
Note: The Metrics GM, Fi, SEN, SPE, PPV are G-mean, F score, sensitivity,
specificity, positive predictive value, respectively

As we can see in Table 3, the top three best performances for each metrics
in bold. The result in the upper line represents the performance on G5 and
lower line is on G14. There are some conclusions can be inferred according

to the observation of experimental results.

(a)

In ensemble-based methods, boosting models especially adaboost have good
generalization on G5, but bagging methods including extremely-randomized
tree and random forest perform relatively poor. The reason is that positive
cases are insufficient to represent the real distribution. Inconsistent prob-
ability distributions are estimated by base classifiers, which affect bagging
methods. Their diverse opinions tend to misclassify samples hovering over
the border because of the independence between these base classifiers. That
is why sensitivity becomes a weakness for bagging models. As for boosting
methods, although their base estimators have high bias, the misclassification
is considered and passed to next iteration to repair errors. This propagation
pays more attention to indistinguishable samples to avoid missed diagno-
sis. Some false alarms occur but with limited sensitivity degradation, hence
keeping high comprehensive performance.

Unlike ensemble methods, linear models such as LR, LDA and LSVM behave
well in Gyg. Specifically, linear models have the three best sensitivity yet
their specificity are the worst. The reason is these models have a less com-
plex decision boundary. Under the constraint of avoiding missed diagno-
sis, they naturally bring false alarms when searching more positive cases.
Also, insufficient positive samples reduce generalization of trained models.
No matter how to partition training and testing set, the diversity of pos-
itive cases is still low. Theoretically, the cutoff-based method is a kind of
naive linear model. Thus, this evidence proves the shortcoming of traditional
cutoff-based decisions as well.
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(¢) Similarity-based methods such as kNN require adequate decision supports
from data points nearby. For rare data problem, this kind of method is not
able to obtain enough information to distinguish positives from negatives so
it is not suitable in application of IMD diagnosis.

In general, most of evaluation results in G5 are better than Gig. It is consis-
tent with the opinion that too few positive samples have impact on predictive
accuracy. In our scenario, ML algorithms require approximately 20 positive sam-
ples of a disorder to achieve stable performance. With the positive sample grows,
models would have higher accuracy for the disease prediction. Among these algo-
rithms, adaboost outperforms all other methods. If a dataset contains only a few
positive samples, existing cutoff-based methods or some linear classifiers could
be a good choice.

Table 4. Best algorithms for each disease in auxiliary diagnosis.

Disorders | LR | ADA |SVM | LDA | DT
PKU VANIRIVAN

MMA A

NICCD | A |*

SCAD A A
MET A

PTPSD | A

MSUD A *

IVA A *

GA-I A

PA A

ASS AN

VLCAD | A * A

IBD *

GA-IT AN A
CPT-I A A
PRO A

Note: The symbol A denotes a model with
at least one highest score on G-mean or F1
metrics, and * indicates a model performs
both second best on two metrics. Disorders
belonging to G5 are in bold.

Based on the analysis results, Table 4 lists recommended ML algorithms that
achieve relative good predictive performance for each disease. An algorithm is
selected if it has one of the highest scores or both second-best in G-mean and Fy
metrics. Otherwise, models are omitted in the table. Adaboost is quite appro-
priate for predicting IMDs if owning enough data of patients. It has preferable
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comprehensive ability and performs well in other basic metrics especially in PPV.
Besides, linear models cover nearly all diseases so they can be alternatives when
lack of positive data.

3.2 Feature Selection

Feature selection methods are designed to automatically filter out irrelevant
variables while retaining important features to accomplish certain tasks. Pop-
ular feature selection methods are usually as viable options for dataset with
tens of thousands of variables, such as gene segments or personalized recommen-
dation, to avoid curse of dimensionality. Although our dataset owns relatively
few features, other functionalities of those methods are still helpful for new-
born screening data analysis. In this section, we mainly focus on answering How
much performance improvement can a feature selection method brings to predic-
tors and Are those selected features reasonable enough to act as a supplement
for diagnostic guidance.

Wrapper-based, filter-based and embedded-based were described as three
typical types of feature selection methods [9]. We do not intend to analyze all
these methods for the former question, instead, we chose five popular feature
selection methods as listed in Table 5. Their selected features were compared to
existing diagnostic markers. Other feature construction methods, for instance,
principal component analysis (PCA), would not be involved because of inter-
pretable requirements constrained by the latter question.

Table 5. List of five feature selection methods and two baselines compared in this
study.

Types Methods (Abbr.)

Statistics X° test (Chi2)

Analysis of variance (ANOVA)
Information theory | Mutual information (MI)
Model oriented Ll-norm (L1-SVM)
Tree-based (ET)

Baseline None (origin)

General standard (existing)

Note: In model-oriented methods, L1-Norm indicates
using L1 regularization term to get sparse solution
based on SVM classifier and Tree-based uses extremely-
randomized tree as the model to fetch important features.
We set two baselines: “None” means using all 43 biomark-
ers without any feature selection and “General Standard”
applies metabolic patterns in existing newborn screening.
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Fig. 2. Predictive performance comparison on G5 before and after applying feature
selection methods and existing diagnostic biomarkers. X-axis represents the number of
selected features and Y-axis is average G-mean for all subgraphs.
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Figure 2 shows evaluation results of feature selection methods on G5. Each
subgraph consists of two parts: bar graphs are the highest G-mean score can
be achieved after using different selection algorithms; the dashed line represents
the best predictive performance based on existing diagnostic markers and the
solid line applies all metabolites in disease prediction. Two lines are treated as
baselines to explore effectiveness of these feature selection approaches. Features
were selected based on their own criterion such as statistical value or informa-
tiveness. In the experiment, we took out the most valuable features considered
by different algorithms one at a time and put it into a candidate set B. We iter-
atively compared changes in prediction performance with the size of B increase,
which are drawn in x-axis as the number of selected features. Up to eight most
valuable metabolites are analyzed that account for about 20% of total features.
It is remarkable that we enlarge y-axis for better observation of detailed results.
Information loss in the figure is inevitable but our primary purpose focuses on
higher scores.

From view of differences between two baselines, biomarkers used in newborn
screening are truly effective for diagnosis. The results validate the correctness
of using existing metabolic patterns. As for feature selection methods, features
selected by statistics-based approaches achieve a similar performance to diagnos-
tic markers in general situation. More concretely, ANOVA tends to pick more fea-
tures, which would not lead to significant improvement or bring any side effects.
Chi2 can find out the most relevant features rapidly but is narrowly beaten by
ANOVA. Those information theory or model oriented methods greatly outper-
form statistics-based approaches in some case while keeping similar performance
in others. Especially in MET prediction, MI and L1-SVM improve more than
20% performance compared to existing metabolic patterns. Although the first
two or three features selected by L1-SVM are usually meaningless, the algorithm
can rapidly locate the most valuable features in several more searching steps.
Selection criterion based on mutual information performs relatively stable with
the size of candidate set changes and the selected metabolic patterns would be
useful for diseases prediction. Similarly, the tree-based approach is quite pow-
erful and even the best in the most cases because it involves the idea of both
mutual information and bagging in the algorithm. According to the experimen-
tal results, model oriented method, especially ET, and mutual information are
recommended as auxiliary diagnostic tools for selecting biomarkers.

Table 6. Novel metabolic patterns found by algorithms.

Disorders | Metabolic patterns

PKU PHE, TYR, LEU, VAL, PRO, ALA

MMA | C16:1-OH, C3, MET, C0, C2, C18:1

NICCD |CIT, PHE TYR

SCAD C4, C3, C5:1, C2, SA, C8, C10:1, C6DC

MET C4, C16:1-OH, C6, C5, PHE, C18:1-OH, C4DC+C5-OH, C18
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The most discriminating metabolic patterns found by ML techniques are
listed in Table 6. Biomarkers are ranked in the order of their importance. Metabo-
lites are in bold if they are involved in existing diagnostic patterns. For the first
four disorders, we can find that these biomarkers are also considered valuable
by feature selection algorithms, which verifies correctness of existing patterns.
Beyond that, some extra features are deemed to have potential relationships
to the cause of disorders. Surprisingly, mutual information approach does not
recommend methionine as the top important biomarker to MET. The deeper
reason requires further researches by medical experts.

3.3 Rare Data

Many existing ML algorithms assume input data have satisfied the hypothesis of
good quality, quantity and representation. Quite the contrary, incompleteness,
noise and other data issues in the real application scenarios are completely dif-
ferent from ideal condition. Among these, the class imbalance problem is one
of big and common challenges. The term majority class denotes the number of
samples in a class are overwhelming, otherwise is called minority class. There is
no definite boundary to distinguish whether a class is considered as majority or
not, but in general, the ratio of majority to minority usually reaches hundreds
to thousands. Furthermore, rare data problem is a extreme case of imbalance
problem, whose ratio is over ten thousand and more. For instance, the majority-
minority ratio of our dataset is from 22 thousand to 75 thousand according to
data description in Sect. 2. Thus, the absolute quantity of positive samples is rare
essentially and it is impractical to solve the insufficiency by increasing overall
sample size.

Balancing data by generating simulated samples in minority class or reducing
less useful samples in majority class is a natural way to solve this kind of issue.
Correspondingly, over-sampling and under-sampling are two types of solutions.
We selected two random sampling methods and six advanced works to solve rare
data problems, as listed in Table7. On the basis of metabolic patterns shown
in Table 6, re-sampling algorithms are employed to explore possible performance
improvements. These algorithms only act on training set without any change in
testing set.

Figure 3 shows performance comparisons between before and after apply-
ing re-sampling algorithms, which are represented as red lines and bar graphs,
respectively. Red lines are used as baselines indicating the highest G-mean
achieved in Fig. 2. However, it seems these algorithms incur a slight performance
degradation in some cases. Two random methods are not stable as expected but
still useful in some situation. In general, under-sampling methods perform a lit-
tle bit better than over-sampling method except One-Sided Selection. But for
MET, over-sampling methods are beyond the baseline and achieve higher perfor-
mance. Core concept of re-sampling techniques utilizes neighbors in the adjacent
area to generate simulated samples or drop redundancy. Simulated samples are
lack of novelty and informativeness if minor classes provide only a few samples
as seeds. Thus, over-sampling methods are not recommended for rare data in
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Table 7. List of resampling algorithms for rate data learning.

Types Methods

Under sampling | Random under sampling
Tomek links [17]

One-sided selection [13]
Edited nearest neighbors [19]
Over sampling | Random over sampling
SMOTE [6]
Borderline-SMOTE [10]
Mixed SMOTE + ENN [1]

general circumstances. However, it could be effective if positive samples have a
dense distribution. Generated cases are able to represent relative small sample
space with less seed samples. Although under-sampling methods are not help-
ful for performance improvement, they are also valuable in other applications.
For instance, these methods exclude many redundant samples without too much
performance degradation, hence selected samples can be used to describe the
profile of normal population and new classifiers can be designed based on it.

mRandom Under Sampling ®mTomek Links mOne-Sided Selection
Edited Nearest Neighbors ®mRandom Over Sampling ®mSMOTE
mBorderline-SMOTE mSMOTE+ENN —Origin

095 — 098 0.95 e 1
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(a) PKU (b) MMA (¢c) NICCD (d) SCAD (e) MET

Fig. 3. Predictive performance in Gs after using re-sampling algorithms. The red line
in each subgraph is a baseline representing highest G-mean after applying feature
selection algorithms. (Color figure online)
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4 Conclusion

Simple cutoff values and doctor’s experiences in existing process of newborn
screening have limitations on dealing with large-scale MS/MS examination
results. To provide more accurate diagnosis of IMDs, we analyze samples of
1.5M neonates and apply several techniques, including ML algorithms, feature
selection and re-sampling methods, to improve accuracy in disorder prediction.
Experimental results show that adaptive boosting achieves the best compre-
hensive performance compared to other ML algorithms. Furthermore, feature
selection methods are able to find more discriminating metabolites than existing
cutoff values on biomarkers. Our analyses also demonstrate that ML algorithms
require at least 20 positive samples to achieve stable prediction. For disorders
with more than twenty patients, ML techniques can become effective auxiliary
diagnostic means for IMDs.
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A MS/MS Biomarkers

Table Al. Overview of 43 biomarkers measured by MS/MS in this study.

Amino acid Carnitine

Alanine (ALA) Free (CO)

Arginine (ARG) Acetyl (C2)

Citrulline (CIT) Propionyl (C3)

Glutamate (GLU) Malonyl+Hydroxybutyryl (C3DC+C40H)
Leucine (LEU) Butyryl (C4)

Methionine (MET) | Methylmalonyl+Hydroxyisovaleryl (C4DC+C50H)
Ornithine (ORN) Isovaleryl (C5)
Phenylalanine (PHE) | Tiglyl (C5:1)

Proline (PRO) Glutaryl+Hydroxyhexanoyl (C5DC+C60H)
Tyrosine (TYR) Hexanoyl (C6)
Valine (VAL) Methylglutaryl (C6DC)
Octanoyl (C8)
Ketone Octenoyl (C8:1)

(continued)
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Table Al. (continued)

Amino acid Carnitine

Succinylacetone (SA) | Decanoyl (C10)

Decenoyl (C10:1)

Decenoyl (C10:2)

Dodecanoyl (C12)

Dodecenoyl (C12:1)

Myristoyl (C14)

Myristoleyl (C14:1)
Tetradecadienoyl (C14:2)
Hydroxytetradecadienoyl (C140H)
Hexadecanoyl (C16)
Hexadecenoyl (C16:1)
Hydroxypalmitoyl (C160H)
Hydroxypalmitoleyl (C16:10H)
Octadecanoyl (C18)
Octadecenoyl (C18:1)
Linoleoyl (C18:2)
Hydroxystearoyl (C180H)
Hydroxyoleyl (C18:10H)
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