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Abstract. Participatory sensing applications have gained popularity due to the
increased use of mobile phones with embedded sensors. One of the main issues
in participatory sensing applications is the uneven coverage of areas, i.e., some
areas might be covered by multiple participants while there is no data for other
areas. In this paper, we design mobile and web-based infrastructure to enable
domain scientists to effectively acquire crowd-sensed data from specific areas of
interest (AOIs) to support the goal of even coverage for data collection. Sci-
entists can mark the AOIs on a web-portal, then volunteers will be proactively
informed about the participatory sensing opportunities near their current loca-
tion. We presented a caching algorithm to increase the performance of our
proposed system and studied the performance of the caching algorithm for
different real-world scenarios on different mobile phones. We observed that
prefetching data improves the performance to some extent; however, it starts to
degrade after a certain point depending upon the number of nearby AOIs.

Keywords: Participatory sensing - Mobile caching - Citizen science -
Crowdsensing

1 Introduction

Mobile phones have evolved from merely being a medium of audio communication to
a means of improved information exchange between individuals or groups using the
Internet, along with accessing the GPS, microphones, cameras, accelerometer, and
other sensors. Due to these additional features, mobile phones are being widely used by
users in their day-to-day lives. The increase of mobile phones with embedded sensors
has introduced a paradigm called participatory sensing [1]. The main idea of partici-
patory sensing is empowering citizens for collecting data from ubiquitous, handheld
mobile phones [2], and it is used in various domains such as urban planning, public
health, and natural resource management [3, 4]. Participatory sensing can also be
referred to as crowdsensing, urban sensing, community sensing, people-centric sensing,
opportunistic sensing, or citizen sensing [5, 6].

Participatory sensing has many advantages over traditional sensor networks. First,
due to the mobility of users, broad areas can be covered [7]. Secondly, more often than

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

X. Wang et al. (Eds.): CollaborateCom 2019, LNICST 292, pp. 215-230, 2019.
https://doi.org/10.1007/978-3-030-30146-0_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30146-0_15&amp;domain=pdf
https://doi.org/10.1007/978-3-030-30146-0_15

216 N. H. Tonekaboni et al.

not, there is no need to deploy and maintain sensors as they are integrated into mobile
phones. Lastly, the availability of software development tools for mobile phones makes
application development and deployment relatively easy [7]. Advantages of participa-
tory sensing have led to an increase in mobile sensing applications. Maintaining user’s
privacy, recruiting and training participants, incentivizing them, dealing with low-
quality data, and interpreting the data are some of the challenges in such applications [1].

There are many different challenges in participatory sensing applications. Quality
of the crowd-sensed data, the anonymity of users, incentivization mechanisms, and
resource consumption are all different factors to be taken into account in designing such
applications. This study focuses on collecting data only from the areas where domain
scientists are interested in, as an essential step towards efficient resource consumption.
The data collected from the same area by different participants waste participants’
resources. On the other hand, the resource consumption of mobile applications plays an
essential role in keeping or losing users. Therefore, our approach can significantly
benefit different participatory sensing applications. Most of the current participatory
sensing applications are passive, and there is a little or even no communication between
the participants and domain scientists. In passive participatory sensing, participants
install the application and submit the geotagged data to the backend server, while they
have no idea whether the geo-tagged data is redundant or not. Passive mode of
operation causes data disparity; too much data may get collected from specific loca-
tions, while the data acquired from many other locations are insufficient.

In this study, we propose a mobile and web-based approach for leveraging domain
scientists’ areas of interest to address this shortcoming of many participatory sensing
applications. A web portal is developed through which researchers can specify the
AOIs to enable proactive participatory sensing. We have also designed and imple-
mented a mobile caching algorithm to prefetch the AOIs as participants are collecting
data. To analyze the caching performance, different implementations of the algorithm
have been tested on three mobile devices under different scenarios. Our analysis shows
the caching performance starts to degrade after a certain threshold depending upon the
number of nearby AOIs.

2 Background

In this section, we briefly discuss some of the existing participatory sensing applica-
tions and also illustrate the system model of the typical applications. Participatory
sensing applications can be classified into three areas based on the type of data being
collected [1]:

Environment Centric Applications. In this type of applications, sensors collect data
from a surrounding environment of participants. For instance, Youdale et al. [11]
introduced a participatory sensing application called Haze Watch in which a mobile
phone is interfaced with a pollution sensor to measure carbon monoxide, oxygen, and
nitrogen dioxide in the air as well as the temperature and wind speed. This information
is uploaded to a server along with the time and location of the participant, which is used
by environmental scientists and ecologists. Another application called Ikarus [12]
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collects thermal information of the atmosphere during flights by paraglider pilots,
which is used by other pilots to gain the required heights. It uploads this information
along with the time and location of pilots to be used for navigation purposes. Noise
Tube [13] and Noise Spy [14] are two other applications of this category which are
used to monitor noise pollution. Participants record the audio and upload it to the
server. These data are used by specialists to understand the relationship between noise
exposition and behavioral problems. Another example is Creek Watch [15], an
application that is used for water and trash management. In this application, users take
pictures of creeks at various locations and upload this information to the server. All the
applications mentioned above are designed to monitor and analyze a specific envi-
ronmental phenomenon.

Urban Centric Applications. These applications focus on infrastructure and urban
information. ParkNet [8] is one of such applications that provides information about
parking space occupancy to users through an ultrasonic device installed on the cars. As
a result, users can find the nearest vacant parking spots. Nericell [9] is another location-
based service app which monitors road traffic conditions through smartphones. It uses
microphones, accelerometer, GSM radio, and GPS sensors to detect potholes and
bumps. These data are reported to the server to be aggregated for annotating maps and
allowing users to search for best driving directions.

Community Centric Applications. These are people-centric applications which use
sensor devices to collect data about users. Diet Sense [17] is one such application
which captures the image of foods that users eat along with the time, date, and location.
Participants share these images with community members to compare their eating
habits. The primary use case of this application is for diabetic patients and the ones who
want to lose weight using the suggestions from other people with the same conditions.
MobAsthma [21] is a personalized asthma-monitoring application which lets asthma
specialists and allergists explore the relationship between respiratory symptoms and
exposure to different air pollutions. It also monitors the person’s asthma condition and
remotely alerts the medical staff if the patient experiences an asthma attack. BikeNet
[18] is another application that monitors sports exercise of participants by analyzing
location information, speed, and burnt calories. It also measures the carbon dioxide on
the route taken by the cyclists to find the most suitable routes for cycling. In another
application of this category called Live Compare [10], participants take pictures of
products’ price and barcode. The app searches the stores in that proximity to display the
current price of that product in other stores.

Overview of Typical Participatory Sensing Model. Typical participatory sensing
applications have a client- server architecture in which mobile devices act as clients
through which the participants collect sensor data and submitted to the application
server. In the backend server, the data are stored, analyzed, and made available in
various forms to the end users as shown in Fig. 1. Various stakeholders are involved in
participatory sensing applications as follows:

Participants/Citizen Scientists. Participants act as information providers. They gather
sensor data for participatory sensing application and submit it through Wi-Fi or
wireless operators to the infrastructure provider.



218 N. H. Tonekaboni et al.
s(]
& D -
o D 3 . D

Database v «— &

B Server Domain
Participants Scientist 2

- =
[ )
Domain

Scientist 1

Fig. 1. Conventional model for participatory sensing applications

Domain Scientists. Domain scientists subscribe to the service and access the data
gathered by participants. They are experts who use the data collected by participants to
analyze the target phenomenon.

Participatory Sensing Infrastructure Provider. Application infrastructure providers are
initiators of participatory sensing campaigns. They are responsible for designing,
implementing, deploying, and managing the applications.

3 System Architecture

We developed a web-based platform for domain scientists such as social researchers,
ecologists, and environmentalists. Using this platform domain scientists can specify
AOIs on a map (i.e., the areas from which they are interested in collecting data). Along
with AOQIs, stop limit (i.e., the number of data entries required for each targeted area)
can be specified to prevent additional data collection from a particular area. As depicted
in Fig. 2, marked AOI along with stop limits are stored in a database server. When
participants collect data using the mobile application, the nearby AOIs are shown on
the map as a guide to the participants.
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Fig. 2. System architecture
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This system is divided into two parts. The first part is designed to identify AOIs by
domain scientists, and the second part is designed to obtain data from targeted areas. To
identify the AOIs, a web portal is implemented where domain scientists provide the
coordinate of their targeted areas upon authorization. They can search for any region on
the map and mark the areas, in the form of rectangles as depicted in Fig. 3. Identifi-
cation of AOIs also allows domain scientists to specify the number of required entries
for that area as the stop limit. This information is passed to the server to be stored in a
spatial database. PostgreSQL along with PostGIS as a spatial database extender is used
to store the spatial and non-spatial data.
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Fig. 3. Identifying Areas of Interest (AOIs)

Proactive participatory sensing approach obtains data from the database server and
enables targeted and proactive participatory sensing by showing nearby AOIs to par-
ticipants. As shown in Fig. 4, this system consists of three modules: data collection
platform for mobile applications on the left, web service for AOIs retrieval, and a
database server.
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Fig. 4. Proactive participatory sensing
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Our data collection platform for mobile application is developed using Android SDK.
As depicted in Fig. 5, the app allows participants to specify the radius (from now on, we
call it “specified distance”) and then shows the AOIs within that radius to the users.
Considering that the participants are constantly moving, repeatedly updating the AOIs
requires continuous connection and querying from the database which leads to perfor-
mance degradation. To overcome this challenge, we prefetch targeted areas on the clients’
device and present a caching algorithm to improve the performance.

Fig. 5. Android application showing nearby AOIs

The caching algorithm is illustrated in Fig. 6. The user’s locations are constantly
tracked in the background. Users specify the distance within which they are willing to
see the available AOIs (it is called “specified distance”). In addition, we use the term
“extra-prefetched distance” to refer to the extra amount of data which the application
retrieves from the database server and prefetches to the cache to have a better per-
formance. In other words, the application retrieves more data than required from the
database so as to perform more efficiently while the users are moving. In the next step,
the whole data, i.e., all the AOIs within a circle that its radius is equal to the specified
distance plus the extra-prefetched distance, are inserted into the cache. For example, if
a participant specifies to see all the AOIs within 1 km radius and the application is set
to 2 km of extra prefetched distance, the AOIs which are within 3 km distance from the
current location of the participant will be retrieved from the database server and
inserted into the mobile phone’s cache. Initially, only the AOIs which are within 1 km
radius will be shown to the participant. As they move, the application keeps fetching
data from the cache and shows them to the user. The algorithm also keeps calculating
the distance between the initial location and the current location of the participant to
make sure they are still within the valid scope. The valid scope is defined as the area
where its data is available in the cache. For instance, in the last example, if the
participant walks for more than 2 km, they go beyond the valid scope, and the data in
the cache needs to get updated. In that case, the application retrieves the updated data
from the database server, clears the cache, insert the updated data into the cache, and
again keeps fetching from the mobile’s cache.
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Fig. 6. Basic caching algorithm

For caching targeted areas on the client side, we used SQLite on mobile phones as
an embedded relational database. It is serverless, highly portable, easy to use, efficient,
and reliable. SQLite is used in numerous applications such as in Apple’s Aperture
photography software and the Safari web browser. We also used SpatiaLite as a spatial
extender of SQLite for caching AOIs (i.e., rectangles) that are retrieved from the
database server.

4 Experimental Study

In this section, we discuss the performance of our system for varying extra prefetched
distances. We show the performance of our algorithm on three smartphones with
different configurations for different caching scenarios.

Experimental Setup. Three mobile phones used for our analyses are OnePlus 3T with
6 GB RAM and 64 GB of internal memory, Samsung Galaxy Note 4 with 4 GB RAM
and 32 GB of internal memory, and Nexus-5 with 2 GB RAM and 16 GB of internal
memory. We tested the results of our algorithm on a backend server using PostgreSQL
v9.6 with spatial extender PostGIS v2.4, and MongoDB v3.6. Our database resides on
a Windows server with 8 GB memory using Intel Core i5 2.7 GHz processor. It should
be mentioned that we used the geometry data type in SQLite to store each AOI which is
120 bytes. Considering that the primary key associated with each AOI is of type integer
(2 bytes), therefore, each row in the cache takes 122 bytes.
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Our dataset consists of one million rectangles (i.e., domain scientists’ AOIs). We
randomly generated twenty thousand rectangles in each state of the United States. Each
state is considered as a bounding box, and the random points are generated within each
box. Then, we generated AOIs by randomly choosing two points which are the two
ends of each rectangle’s diagonal. Generated rectangles could be either overlapping or
non-overlapping. On average, there are 46 AOIs in each 1 km radius.

Experimental Details. In order to test our algorithm, we simulated the scenarios in
which a participant is moving for five kilometers from the initial location while col-
lecting data. We assume that the participant is only interested to see the AOIs within
1 km of their location at any given point of time. In order to compare the performance
of different caching approaches, we assumed that the number of AOIs updates every
0.5 km (therefore, the location information is captured every 0.5 km). We created an
array of locations for each route and calculated the average time required to show AOIs
if the user moves for 5 km by varying extra prefetched distances. For instance, if the
extra prefetched distance is set to 2 km, the application retrieves the AOIs within 3 km
radius from the database and inserts into the cache. At the start location, the response
time is equal to the time required for retrieving data from the database, clearing the
cache, inserting into the cache, fetching the AOIs within 1 km from the cache, and
showing them to the user. At locations 0.5 km, 1 km, 1.5 km, and 2 km, the response
time equals to the fetching time from the cache. Going one step further, at 2.5 km,
some of the AOIs within 1 km radius is not in the cache anymore. Therefore, the
application needs to retrieve the new data from the database server again and follow the
steps depicted in Fig. 6. We continue the same steps up to the 5th kilometer of the route
and average the response time of all 11 points (start point, end point, and the 9 points in
the middle). We assign this average response time to that route. We compared the
results of our algorithm by varying the extra prefetched distances for which the data
were cached. Table 1 shows the percentage of cache misses associated with different
prefetched distances for the routes used for the following experiments.

We perform the following three experiments to test the caching on different mobile
phones on LTE network.

Table 1. Prefetched distance and cache misses.

Prefetched distance (km) | Percentage of cache misses
0 100%
1 36%
2 27%
3 18%
4 18%
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4.1 First Approach: Basic Caching

In the first experiment, we test the performance of the caching algorithm exactly as
explained in Fig. 6. In other words, this experiment includes the following steps:

1. Retrieving the data (both the specified and extra- prefetched distance) from the
database.

Clearing the cache.

Inserting into the cache.

Fetching the required data from the cache.

Showing the results for the specified distance to the user.

kW

In this experiment, the x-axis represents the extra prefetched distances, and the
y-axis shows the average response time to show the AOIs. As shown in Fig. 7, we
observed that the performance of the algorithm improves as the extra prefetched dis-
tance increases up to a certain point, then it degrades for 4 km of extra prefetched data.
We can find the reason in Table 1, which shows the percentage of the cache misses for
3 km and 4 km extra prefetched distance is the same. Therefore, inserting more data
into the cache and fetching from it takes more time. In Fig. 7, the depicted values for
the extra prefetched distance of zero shows the time required to retrieve the data from
the database server (at that step, the cache is still empty).

1000 926

800 718 205

400

200

Response Time (Milliseconds)

Extra Prefetched Distance (Kilometers)

H One-Plus NSamsung EINexus

Fig. 7. Performance of the basic caching

To have a better understanding of the caching performance, we calculated the cache
insertion and fetching time on different phones. Figure 8 depicts the time it took to
insert the AOIs into the cache of different mobile phones. There is a considerable
increase in the insertion time as the number of AOIs increases. Figure 9 depicts the
fetching time for the same number of AOIs. The difference between the insertion and
fetching time is noticeable. On average, the insertion time is 7.5 times more than the
fetching time. Therefore, we got to know that cache insertion is a very expensive
operation and to improve the total response time in such applications, we need to
mainly focus on the insertion operation.
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Fig. 9. Fetching data from the cache

4.2 Second Approach: Caching in the Background with Single
Database Call

In the second experiment, we test the performance of the algorithm by inserting the
data into the cache in the background. In other words, this experiment includes the
following steps:

1. Retrieving data (both the specified and extra-prefetched distance) from the database.
This step consists of two queries in one database hit, i.e., one query for the whole
data and the other one for the specified distance only.

2. Showing the results for the specified distance to the user.
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3. Clearing the cache in the background.
4. Inserting into the cache in the background (insertion is an expensive operation).
5. Fetching the required data from the cache for the following locations of the user.

Instead of inserting the data into the cache (which is an expensive operation) and
then showing it to the user, in this experiment we first retrieve both extra prefetched
and specified distance AOIs from the database server. Then, the application shows the
specified distance AOIs directly to the user, and the extra prefetched distance AOIs are
inserted into the cache in the background as participants are moving. As shown in
Fig. 10, there is a drastic increase in the performance of this approach compared to the
first approach. In this figure, when the extra prefetched distance in zero, it means that
the application retrieves the data from the database server and nothing is inserted into
the cache yet.
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Fig. 10. Performance of caching in the background with single database call

4.3 Third Approach: Caching in the Background with Two
Database Calls

In the third experiment, we test the performance of the algorithm same as previous
experiment, and the only difference was the fact that instead of retrieving the whole
data in the first step, we only retrieved AOIs within the specified distance to be shown
to the users. In the next step, we query the database for the second time to retrieve the
whole data. In other words, this experiment includes the following steps:

1. Retrieving data (specified distance only) from the database.
2. Showing the results for the specified distance to the user.
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3. Retrieving data (both the specified and extra-prefetched distance) from the database
in the background.

4. Clearing the cache in the background.

Inserting into the cache in the background.

6. Fetching the required data from the cache for the following locations of the user.

e

In this approach, while the application is showing the AOIs to the users, retrieving
the whole data and the other steps happen in the background. As depicted in Fig. 11,
we can see a performance increase on all the phones. In this figure again, the extra
prefetched distance of zero shows that there is no data in the cache and the depicted
numbers show the time it took to retrieve the data from the database server.
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Fig. 11. Performance of caching in the background with two database calls

Comparing the Three Approaches. In order to make an unbiased conclusion, we
repeated the experiments associated with each of the three caching approaches on 10
different routes. Figure 12 depicts the average response time to show the AOIs to the
users. We observed that the third approach performs 5.48 times faster than the first
approach and 10% faster than the second approach. Therefore, for proactive and tar-
geted participatory sensing applications, the third caching approach would be the best
choice. Although it is reasonable to have a limit for caching the data, we cannot
generalize the observation in our experiments which shows going beyond 3 km of extra
prefetched distance leads to performance degradation. In fact, the optimum cache limit
is application- specific, and it pretty much depends on the number of nearby AOIs.
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Fig. 12. Performance comparison of the three approaches

5 Related Works

In this section, we review some related studies. Caching the data has been widely used
in mobile environments for improving access time. However, cached data becomes
obsolete due to the movement of users known as location-dependent data invalidation
[20]. Several approaches are proposed to overcome this challenge.

Zheng et al. [19] proposed location dependent data cache invalidation and
replacement under a geometric model. They introduced polygon endpoints and app
circle invalidation schemes for representing the valid scopes (i.e., regions within which
data values are valid). Polygon endpoint records coordinates of polygons representing
the valid scope. However, when there are a large number of endpoints, they will
consume a substantial portion of the cache space. They also introduced an alternative
approximation scheme, which uses inscribed circles to approximate a polygon. How-
ever, this scheme treats valid data as invalid for data points which are outside the circle
but within the polygon. In order to make a balance between the overhead and precision,
a caching-efficiency-based method was proposed. Various cache replacement policies
such as probability area and probability area inverse distance in location-dependent
services were also proposed in this paper. Access probability, data distance, and valid
scope were three factors considered for cache replacement. In the probability area, valid
scope and access probability were considered for calculating the cost function,
whereas, in the probability area inverse distance, all three factors, i.e., access proba-
bility, valid scope, and data distance were considered for calculating the cost function.
Both policies choose data with least cost as the victim.

Xu et al. [22] addressed the issue of location-dependent cache invalidation under a
cell-based systems location model. Bit vector with compression grouped vector with
compression, and implicit scope information is the three methods that were proposed.
In this study, it is assumed that each geographical area is partitioned into service areas
and each service area can cover one or multiple cells. Also, each service area is
associated with an ID for identification purposes which is broadcasted periodically to
all mobile clients in that service area. Bit Vector with compression uses bit vector, and
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its length is equal to the service areas in a system. Every cache item is associated with a
bit vector; however, associating every cache item with bit vector is an overhead for a
large system. Grouped vector with compression was proposed as a solution to bit vector
with compression, where the whole geographical area is divided into disjoint districts
and all the data service areas within a district form a group. In Implicit Scope Infor-
mation model, the database is divided into multiple logical sections based on a valid
scope. Data in the same logical section has the same location validation information.

6 Future Works and Improvements

MongoDB is one of the most popular open-source NoSQL databases. For the sake of
performance improvement, we analyzed the third caching approach using MongoDB to
compare with PostgreSQL. We created the same dataset for MongoDB and performed
the same experiments. As depicted in Fig. 13, the performance is consistently better on
MongoDB as opposed to PostgreSQL. Therefore, for future work, we are migrating to
MongoDB.

OnePlus 3T Samsung Galaxy Note 4 Nexus 5

Response Time (Milliseconds)

lometers)
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Fig. 13. Performance of the third approach on different database servers

We would also like to compare the performance of the discussed approaches by
updating the cache rather than clearing the cache and inserting data into it again.
Considering that in participatory sensing applications users often take a loop-like tra-
jectory where they end up near their start location, there are some overlaps with the
previously visited AOIs. As a result, updating the cache may outperform our current
approaches.

7 Conclusion

Widespread use of mobile phones with embedded sensors has introduced the term
participatory sensing. Despite the many advantages of such frameworks, there are some
challenges and limitations. Most of the participatory sensing applications are passive,
and there is little or no communication between the domain scientists and the partic-
ipants. In this study, we present a mobile and web-based approach to enable domain
scientists to acquire crowd-sensed data from particular areas of interest adequately.
Domain scientists mark the areas and participants are proactively informed about the
sensing opportunities near their current location. In order to show the nearby AOIs to



A Mobile and Web-Based Approach 229

the participants, data need to be retrieved from a database server frequently, which
leads to performance degradation. In order to increase the performance, we introduce a
caching approach that stores and prefetches the nearby AOIs locally from the partic-
ipant’s mobile phones. We analyze the performance of the algorithm for three different
caching approaches on different mobile phones and present the approach with the best
performance.
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