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Abstract. Vessel Monitoring Systems (VMS) have been adopted by many
countries which provide information on the spatial and temporal distribution of
fishing activity. Real-time communication and interaction between fishing
vessels and shore-based systems is a weakness of traditional vessel monitoring
systems. This paper proposes a novel framework of edge computing-based VMS
(EC-VMS). The framework of EC-VMS mainly consists of four layers. An edge
computing terminal is used on each vessel, and the BeiDou navigation satellite
system (BDS) is adopted for communication. Meanwhile, edge computing
servers interact with corresponding management vessels and the cloud. In order
to decrease the communication cost, a data transmission policy called Adaptable
Trajectory Transmission Model (ATTM) is presented in this paper. The
experimental results illustrate the efficiency of the proposed EC-VMS, with the
average communication time significantly decreased in a typical scenario.
Moreover, EC-VMS improves the real-time performance of the system.
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1 Introduction

Currently Vessel Monitoring Systems (VMS) are widely adopted by many countries
around the world to allow fisheries administrators to control and monitor fishing
activity. The electronic modules are installed on-board vessels which can automatically
send data to a base station on shore by satellite communication. The fisheries moni-
toring center receives the transmitted data and processes it to get vessel trajectories and
other information. Utilizing information on the vessels near-real time location, along
with the vessel movements information that the VMS gives many benefits such as
improving the quantity and quality of logbooks recovered, obtaining access to fishery-
independent fishing effort estimates and prompt catch/effort re-porting, enabling the
possibility of regional management and understanding both fleet dynamics and vessel
behavior, and increasing efficiency of vessel safety protection [1].
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Nevertheless, VMS still has some shortcomings in real-time and maritime com-
munications. For instance;

(1) The development of marine communication networks is much slower than that on
land, marine communication systems available today only provide the bare min-
imum essential services such as ship identification, positioning, location, course,
heading, destination, tonnage and speed etc. This is provided in the form of AIS
(Automatic Identification System) using VHF radio frequencies. Inter ship satellite
communication is possible but is a costly option when compared to conventional
wireless communications and not affordable for most small to medium seagoing
vessels [2]. Sensor devices deployed on vessels can generate huge volumes of
useful data that require significant portions of bandwidth for dissemination but it
not utilized due to the deficiencies of the communication network.

(2) Fishing activity is monitored to detect vessels committing infringements, which
requires near real time information dissemination so that the suspected infringe-
ments can be immediately detected. The processing of such data in the cloud faces
additional delay due to wide area network latency that hinders the real-time
response [3].

To address the problem, vessel monitoring systems are adopting more intelligent
technologies to manage all the vessels. This paper proposes an edge computing-based
intelligent VMS (EC-VMS) for smart vessel management. Every vessel has a per-
ception platform to interact with the vessel terminal, sensors and other condition data
collectors. Therefore, it can monitor itself in real-time and provide the data to the
server. As the BeiDou navigation satellite system (BDS) can be used for positioning
and communication through short messaging, the EC-VMS adopts it for communica-
tion. Thus, all the vessels can communicate with a server. Moreover, an edge
computing-based (EC) server is established to handle all the data for the vessels,
including their locations and status values, in real time. So, the processing of the
collected data on the EC server can help in making quick responses to abnormalities.
The administrators on land communicate through the server, scheduling jobs, noticing
abnormalities, and so on.

An experimental system was built on the existing VMS in in the East China Sea,
which showed improved performance over current vessel monitoring systems. The
average communication times was reduced and the real-time performance of the system
improved. Moreover, the EC-VMS could improve the quality of data that is transmitted
to shore.

The main contributions of this paper are as follows;

(1) Propose an edge computing-based framework of VMS, which can efficiently
transmit the fishing vessels data and reduce the time of the network communication.

(2) A method based on Edge Computing is adopted to improve the real-time per-
formance of the system in the case of marine restricted communication.

(3) Higher performance VMS compared to current systems.
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2 Related Work

VMS can provide high resolution data on the spatial and temporal distribution of
fishing effort. In Europe, the European Commission has introduced legislation to
monitor fishing activity so that all vessels >15 m long are required to transmit their
locations, estimated by GPS, at intervals of 2 h or less, so that the data is comparable
with data provided by remote animal sensing [1].

The main drawback of VMS is that the data transmission is not in real-time. A large
amount of sensor data can be generated on board, but cannot be fully transmitted to
shore in time. So, VMS research is mostly focused on VMS data post-processing, to
distinguish the employed fishing gear type [4], to detect potential fishing behavior from
different gear types [5], to create fish abundance indices [6], to identify and characterize
trips made by fishing vessels [7], and to improve fishing efficiency [8]. The other
source of information was integrated to improving the uniformity of VMS Data, such
as spaceborne high-resolution radar satellite data, satellite automatic identification
system (sat-AIS) tracking data, and some vessel detection system (VDS) data [9].

Currently satellite communication is used in the maritime industry, however due to
the limitations of satellite bandwidth, real time communications are affected and thus
the performance of vessel monitoring systems degraded.

Recently, lots of progress has been made to improve the low-bandwidth commu-
nication in satellite positioning and satellite communication [10]. BDS was developed
by China which can provide functions such as high precision positioning, short message
communication, and Time services etc. In China, BDS is widely used in marine fishing
vessels because of its low cost of short message communication [11]. Although there are
many applications of marine communication system at present, there are still bottlenecks
in the network, and the real-time performance is much worse than that on land [12–14].

Edge computing is becoming a new computing paradigm which combines edge IoT
devices and cloud computing [15]. It processes data at the edge of the network, which has
the potential to provide a better response time, battery life, bandwidth cost, data safety,
and privacy. In edge computing, the computing occurs in the proximity of the data
sources. Therefore, it has some advantages compared to cloud computing [16]. The
results of some research have demonstrated these advantages [17–20]. The emerging edge
computing technologies is the most important technique in our EC-VMS, which could
achieve the goal of improving the response time and reduce the communication traffic.

The proposed framework of this paper has benefited from the edge computing
paradigm to make the marine fishing management more real-time and intelligent.

3 Architecture

3.1 The Framework of EC-VMS

As shown in Fig. 1, the framework of EC-VMS mainly consists of four layers.

Perception Layer. There are many heterogeneous sensors, video surveillance, navi-
gation and communication equipment in the ship. The perceptive layer refers to the
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physical sensors and their running platforms. Through these devices, the perception
layer gets the data of the operational state and the working environment of the ship.

Aggregated Layer. Shipborne data centers obtain the data for all the ship equipment
through various application interfaces, preprocesses and stores them accordingly. The
connection with the perceptive layer can be wired or wireless.

Edge Computing Layer. An edge computing-based management system is estab-
lished between the ships, which can store and make decision immediately and in
addition decides whether to forward information to cloud layer. The edge computing
layer can run on only one ship, and it can also run in the form of ship network through a
marine self-organizing mesh network.

Fig. 1. The framework of EC-VMS
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Cloud Layer. A cloud computing-based management system is built on shore, which
can store large amounts of ships data and manage the whole system. Moreover, the
cloud layer can track all the ships in real time, make decisions and generate emergency
commands.

3.2 Perception Layer

The Perception layer collects data mainly on three aspects of fishing vessels; marine
environmental data, including meteorological, hydrological, sea surface temperature,
humidity and salinity etc. Fishery production data including ship location, fishing
conditions, fishing gear, fish catch, materials, personnel and video surveillance of
operation etc. Equipment condition data including engine condition, oil quantity and
the internal network etc.

Recently, RFID tags and various kinds of sensor technology are adopted by vessel
builders. The RFID tag has a self-perception ability, which allows it to report its own
status. The sensors can sample numerical values, which reflect the states of the mon-
itored objects. Table 1 shows a part of the data that could be obtained from different
sensors and devices onboard. These sampled numerical values reflect the states of the
monitored objects.

3.3 Aggregation Layer

The aggregation layer is an adaptor layer to connect the devices of perception layer,
which is responsible for sensor node configuration, initialization, data acquisition, data
caching and network manager. On modern vessels, the data sensors are shared over an
Ethernet network available on the ship. All the local data obtained from sensors or
devices onboard can be encapsulated and transmitted to the aggregated layer data
storage center using different wireless protocols (e.g. WIFI, Bluetooth, ZigBee and
UWB etc.). The aggregated layer has a data cache corresponding to the data cache of
perception layer for each device, which is used to facilitate powerful distributed
optimizations for communication.

There is an aggregated database to receive, store, and process the raw sampling data
from the connected sensors, and then send the processed data to the edge computing
layer. The database contains the basic data of vessels information, crew, navigation
information, marine geographic information and fishery facilities etc. Moreover, it sets

Table 1. A part of the data from sensors and devices onboard.

Data Category Data type

Positioning & navigation Fishery production Numeric, characters, dates
Meteorological Marine environmental Numeric, image
Hydrological Marine environmental Numeric, image
Video surveillance Fishery production Video, audio
Power monitoring Equipment condition Numeric
Fishery administration Fishery production Numeric, characters, image
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up the scheme for multi-source heterogeneous perception data (e.g. image data from
videomonitoring and trajectory data fromGPS etc.). The aggregated layer exchanges and
shares data with other vessels and provides data support for the edge computing layer.

3.4 Edge Computing Layer

The Edge Computing layer represents an abstract edge computer dedicated and
responsible for a group of vessels. The Edge Computing layer and aggregation layer
can overlap in their functions and both can co-exist within a network of vessels or on a
single vessel. Data from the aggregation layer can be sent to the Edge Computing layer
for storage, processing and analysis. In an edge computing environment, an aggrega-
tion layer can transmit data to its Edge Computing layer rapidly for analysis and
respond to the perception device in a few seconds.

A larger aggregation Edge Computing layer that manages the services of local
vessel networks is established in a selected vessel called Vessels Edge Computing
Server (VECS), which can receive the data from a single aggregation layer in a vessel
and make some advanced data analysis. In the larger aggregation edge computing
network, vessels can also perform specific computations and communicate with each
other. VECS decides which tasks go to the local edge computing node and which go to
the cloud center.

In the EC-VMS, few sensor devices will transmit data directly to the cloud. The
Edge Computing layer is mainly devoted to the vessel’s local data processing and
analyzing facilities for real-time needs such as emergency response services. Like the
aggregation layer, the Edge Computing layer maintains both data and application
caches which allow optimizations to be carried out by analyzing the interactions
between sensor data and applications. Figure 2 shows the communication of EC-VMS.

Fig. 2. The communication of EC-VMS
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3.5 Cloud Layer

A Cloud layer is designed to provide central control, which delivers elastic computing
power and storage at a low cost. However, cloud computing systems are shore based
and therefore have an intrinsic delay due to processing and communication links.
A local server allows for real time responses due the reduction in communications delay
and its exclusive use for running the management system.

It is important to respond to the abnormal condition when the edge node becomes
invalid. For example, if a vessel meets with a mishap, and the communication module
is damaged, the ECS cannot receive the help message, but the cloud layer can give an
alarm by running an anomaly detection service periodicity.

All the vessels in the EC-VMS are shown on the GIS for visualization. In addition,
every vessel has its own information on the marine map, consisting of its name, unique
ID, location, status and other attributes. Different colors are used to easily distinguish
the different states. This makes it easy for administrative staff to see the abnormal
vessels. Moreover, the situation must be display in real time. If one vessel is out of
touch for a specified time, the vessel on the map must immediately be set to the color of
the out of touch state. If a vessel is sailing into prohibited fishing areas, the vessel on
the map should synchronously blink, and the message reported to relevant staff.

3.6 Interactivity Policy of EC-VMS

In this work vessel trajectory data was used to validate the EC-VMS, we use a
transmission model called the Adaptable Trajectory Transmission Model (ATTM).
ATTM combines the LDR algorithm [21], SQUISH trajectory compression algorithm
[22] and reliable transmission strategy to establish a unified communication mechanism
based on the EC-VMS. The model was divided into two parts in the edge computing
layer; data tracking and data simplification.

In order to ensure that the trajectory can be transmitted to the ground monitoring
center in time for real time analysis, the trajectory tracking and simplification must be
synchronized. The ATTM uses synchronization mode so that when the tracking mech-
anism sends an updated trajectory, trajectory simplification will also be implemented.

Fishing vessels have a randomness in the process of operation, and its fishing
behavior is complex. Therefore, the algorithms such as Neural Networks and Gauss
Regression Processes are not suitable for track estimation. The LDR algorithm only
needs base points and velocity vectors to estimate track.

This is a linear predictive function of the edge computing layer for the current
position of fishing vessels.

~l tð Þ : t ¼ lb:~pþðt � lb:tÞ lV! ð1Þ

where lb is the prediction base point, lV
!

is velocity vector. For a given error threshold hd ,
LDR guarantees that when the predicted trajectory point P0

t are close to the observation
trajectory point Pt, that is ED Pt; P0

t

� �
< hd , the edge computing layer will not produce

update messages, and the shore-based monitoring center uses the predicted points
instead of the observation points. If the observed trajectory deviates from the predicted
trajectory then the prediction base point and velocity vector need to be updated.
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In the case of frequent trajectory changes, the edge computing layer needs to send
more trajectory points. However, the BDS communication protocol has strict restric-
tions on message length and transmission time interval, so we need to select a fixed-
length trajectory sequence (adapted to the BDS protocol packet) T’ from the original
observation trajectory T, and send it to cloud layer. ATTM uses SQUISH algorithm for
selection, because SQUISH runs fast, has good real-time performance, and can preset
the size of the approximate trajectory sequence. The edge computing layer adds the
observed trajectory points to the buffer of the SQUISH algorithm. When the trans-
mission condition is reached, the fixed size trajectory sequence T’ is obtained from the
buffer and sent to the cloud layer together with the update message.

Algorithm 1: ATTM (edge computing layer)
Input:
(1) error threshold
(2) observation trajectory point 
Function:

send messages
Begin 
1: initial uncompressed queue;
2: initial sending queue;
3: while (received data)
4:     if received a retransmit signal then
5:     adding missing messages to the sending queue

based on message number;
6:     if received the observation trajectory points then
7: if the uncompressed queue is empty then
8:             estimate trajectory points by LDR; 
9:             if estimated value greater than threshold then
10:               add observation point to uncompressed queue; 
11: else add observation point to compressed queue; 
12:   if it’s time window for data transmission then
13: if sending queue is not empty then
14:                  send message;
15:       else if uncompressed queue is not empty then
16:                  compress trajectory by SQUISH;
17:                  generate message into sending queue; 
18 send message; 
End

The cloud layer uses the same trajectory estimation algorithm as the edge com-
puting layer to display the ship’s position in real time. In order to reduce the number of
satellite communications, the cloud layer will not send a communication receipt for
each received message. The Cloud layer updates existing trajectory data according to
the new messages.
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4 Result and Analysis

4.1 Experimental Setup

The experimental data was collected from the trajectory data of four fishing vessels in
the VMS that took place in the East China Sea, near Zhoushan City, Zhejiang Province,
China. The VMS manages more than 3,000 vessels. This trajectory data is generated by
the shipborne BDS terminal module, and the device can collect positional data once a
second, but the minimum interval of satellite transmission is limited to 60 s. Trajectory
data contains information such as device number, time, longitude and latitude. In order
to control the experimental variables and improve the accuracy of the experiment, we
chose four vessels and installed edge computing nodes. The edge computing nodes
collected complete trajectory data of four fishing vessels from March 2018 to May
2018, totaling 1018412 trajectories’ points. The spatial distribution of the four vessels
are shown in Fig. 3.

Fig. 3. Spatial distribution of four vessels’ trajectory.
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This paper uses the ATTM algorithm to verify the framework proposed in this
work, which considers the limitation of the BDS communication protocol on message
length and minimum transmission interval. When the transmission interval does not
reach the minimum transmission interval, it is not allowed to send messages. When the
message length exceeds the maximum transmission length, the data beyond the max-
imum transmission length will be discarded. Meanwhile, this paper also considers the
situation of message distortion and packet loss.

4.2 Experimental Results

The experiment is analyzed from three aspects; the number of trajectory data trans-
mission, the real-time performance and the trajectory quality. Figure 4 shows the
comparison of ATTM transmission times with the traditional fixed-interval transmis-
sion mode (FITM) of VMS in three cases: 30-m threshold, 50-m threshold and 70-m
threshold. FITM transferred data at each time interval. The abscissa represents the
minimum communication interval of the VMS, and the ordinate represents the number
of communications. As can be seen from the figure, the communication times of FITM
and ATTM decrease with an increase in the communication interval.

ATTM has a low probability of predicting all observation trajectory points accu-
rately when the communication interval is large. It needs to communicate every time
when it reaches the communication window, so the number of transmissions decreases
slightly, which is close to FITM. Meanwhile the criterion of accurate prediction is that
the distance between the observation trajectory point and the prediction trajectory point
is less than the threshold, so the larger the threshold, the less the number of commu-
nications. ATTM has less communication times than FITM protocol under different
communication intervals and error thresholds, so it has obvious effect in saving
communication resources. Under the typical 60-s transmission interval and 50-m
threshold, the network traffic is reduced by 45.22%.

Fig. 4. Comparison of transmission times.
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Real-time trajectory query is another important indicator of EC-VMS. FITM
transmits data at fixed time intervals. When the cloud layer receives data at time t1, it
needs to wait for data at time t1 + 1. Therefore, the minimum delay time of FITM
query is 0 s, the maximum delay time is the transmission time interval Dt, and the
average delay time is Dt/2 s. The ATTM protocol can be used for real time analysis,
however there is an intrinsic delay in the system as the trajectory data will only be
updated when the cloud service receives the updated data. In order to compare with
FITM, this paper uses statistics to analyze the trajectory data correction time.

As can be seen from Fig. 5, the correction time of ATTM increases with the
communication time interval. This is because when the communication interval is
large, the ATTM cannot send the correction information in time, which leads to a
higher delay time. The higher the error threshold is, the fewer trajectory points are
needed to be corrected, so the real-time performance is better. The communication
interval and error threshold directly affect the real-time performance of ATTM. It can
be seen from Fig. 5 that the correction time of ATTM is obviously lower than FITM, so
we can conclude that the real-time performance of ATTM is better than FITM.

In order to compare the trajectory data quality of ATTM and FITM, we use the
Average of Pairs Distance (APD) as the evaluation criterion. Given trajectories A and
B, APD calculates the distance between the points corresponding to the two trajectories
and calculates the average value. The calculation formula is as follows:

APD A;Bð Þ ¼ 1
n
�
Xn

i¼1
EDða1; b1Þ ð2Þ

In this experiment, A is the trajectory queried in VMS and B is the original
observation trajectory. The results are shown in Fig. 6.

Fig. 5. Comparison of real-time performance.
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We set the error threshold of ARTT to 30 m, 50 m and 70 m, and compared it
with FITM.

The APD of FITM increases as the communication interval gets larger due to the
lower number of trajectory points in the FIFM transmission. In Fig. 6, the ADP of
ARTT decreases first and then gradually increases. This is the result of a large number
of points which have been calculated incorrectly being transmitted when the com-
munication interval is small. This means the LDR algorithm is used more frequently
and SQUISH compression algorithm is used less frequently, which makes the pre-
diction error larger than the compression error.

With the increase of the communication interval, the proportion of prediction points
decreases and the APD decreases. As the interval continues to increase, the proportion
of compressed points increases, and the error caused by compression also increases,
which eventually leads to an increasing trend of ADP. The larger the error threshold of
ARTT is, the larger the value of the ADP will be. In the case of a 30 m error threshold,
ATTM has a significant improvement over the FITM trajectory quality.

5 Conclusion

In order to reduce the communication cost and improve real-time efficiency of the
VMS, we propose a framework of edge computing-based VMS in this paper. In the
EC-VMS, firstly, in order to get more data, a perception platform is established on
every vessel to interactive with the data collector. Therefore, it can monitor itself in
real-time and provide the data support for the server. Secondly, the EC-VMS adopts the
BDS for communication because of its low price and wide coverage. Thus, all the
vessels can communicate with the server. Thirdly, an edge computing-based server is
established to handle all the data for the vessels, including their locations and status
values, in real time. So, the processing of the collected data on the edge computing
server can help in making a quick response. Moreover, a data transmission model
called ATTM was established to interact between the cloud and edge. The experiment

Fig. 6. Comparison of trajectory quality.
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is based on the data of an existing VMS that runs in the East China Sea, Zhoushan City.
Results show that it is better than the original VMS in real-time, efficiency and
usability. In the future work, more types of vessels data and edge computing methods
will be investigated.
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