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Abstract. Network traffic prediction is not only an academic problem, but also
a concern of industry and network performance department. Efficient prediction
of network traffic is helpful for protocol design, traffic scheduling, detection of
network attacks, etc. In this paper, we propose a network traffic prediction
method based on the Echo State Network. In the first place we prove that the
network traffic data are self-similar by means of the calculation of Hurst
exponent of each traffic time series, which indicates that we can predict network
traffic utilizing nonlinear time series models. Then Echo State Network is
applied for network traffic forecasting. Furthermore, to avoid the weak-
conditioned problem, grid search algorithm is used to optimize the reservoir
parameters and coefficients. The dataset we perform experiments on are large-
scale network traffic data at different time scale. They come from three provinces
and are provided by ZTE Corporation. The result shows that our approach can
predict network traffic efficiently, which is also a verification of the self-
similarity analysis.
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1 Introduction

Traffic prediction is the foundation of network performance analysis. It provides
essential evidence for network design and planning. Designing an efficient and accurate
model for network traffic prediction can reduce network congestion frequency and
improve network communication quality. Either short-term or long-term prediction is
beneficial to network control and resource adjustment. By analyzing and forecasting
historical traffic data and adjusting the allocation of network resources accordingly,
operators can be aware of the future situation of the network in advance. It has a
profound impact on the development of key technologies such as network planning,
resource allocation and network security.

There are a great number of prediction models for network traffic data and they can
be classified into statistical analysis models and machine learning methods [1].
Autoregressive integrated moving average (ARIMA) is a typical statistical analysis
model [2, 3], which is the combination of autoregressive and moving average models.
Since ARIMA is a linear time series model, some improvements are made to capture
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the non-linearity of network traffic. Zhou et al. [2] combined ARIMA model with
GARCH, non-linear model. Shu et al. [3] proposed a seasonal ARIMA model to
explore the cyclical patterns of traffic data. With the rapid growth of network and
complexity of traffic data, more and more researchers have placed emphasis on
machine learning models, especially neural networks [1]. A hybrid ARIMA-ANN
model was proposed in [4] to forecast time series data. Three methods: ARIMA, Holt-
Winters and a novel neural network ensemble (NNE) approach, were performed on
multi-scale internet traffic forecasting and the results showed the advantage of NNE [5].
Multi-layer Perception (MLP) is widely used for network traffic prediction [6–8]. [9]
performed SVR, the regression variant of SVM, on heterogeneous Internet traffic
collected at the POP of an ISP network. Nie et al. [10] decomposed the network traffic
into low-pass and high-pass component, where the low-pass component describe the
long-range dependence and the high-pass component gusty and irregular fluctuations of
network traffic. As for prediction, a deep belief network and a Gaussian model were
utilized for respectively. Poupart et al. [11] aimed at predicting the size of flow in order
to detect elephant flow (very large flows). Three machine learning techniques: neural
networks, Gaussian Process Regression and Online Bayesian Moment Matching
(oBMM), were combined with routing, where GPR achieved the best improvements for
elephant flow detection.

However, the most of the models focus on the non-linearity of traffic data to
improve the accuracy but ignore the importance of self-similarity. Based on the large-
scale network traffic dataset provided by ZTE Corporation, this paper analyzes the
characteristics of the dataset, and performs pre-processing on the dataset to obtain
suitable traffic data of each node at different time scales. Then by plotting the trend of
traffic over time and calculating the Hurst exponent value, it proved that the traffic data
of the three provinces provided by ZTE has self-similarity, suddenness and periodicity.
Finally we can predict the data using a nonlinear time series. Because of the nonlinear
characteristic of network traffic prediction, we utilize Echo State Network (ESN) to
learn the output connection weight matrix. The ridge regression learning algorithm is
applied instead of traditional linear regression algorithm so that weak-condition can be
avoided. Meanwhile the gird search algorithm is used to optimize the reservoir
parameters and regularization coefficients.

The reminding portion of the paper is organized as follows. Section 2 clarifies the
definition of self-similarity and the estimation of Hurst exponent. Section 3 introduces
the structure of Echo State Network, along with parameters to be estimated and the
training process. Section 4 focuses on the experiments based on network traffic data
from three provinces. Section 5 is the conclusion.

2 Self-similarity

Self-similarity [12–15] means that local structure is partly consistent with the overall
structure. A self-similar process is a stochastic process which is statistically constant. In
this regard, the concept of fractal to the random process is introduced. Network traffic
has long-range dependence (LRD) as opposed to processes with short-range depen-
dence like Poisson process. From a physical point of view, LRD [16, 17] is a
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phenomenon, i.e. the sustainability and suddenness of a self-similar process exist on all
time scales, also known as multi-scale behavioral features [18, 19].

Definition 2.1: 8k[ 0, we say that a stochastic process X tð Þ; t� 0f g is self-similar if

X tð Þ¼d k�HX ktð Þ, where H 2 0:5; 1ð Þ refers to Hurst exponent or self-similarity

parameter. ¼d means that the equation is correct in finite dimensions.
According to Definition 2.1, X tð Þ; t� 0f g with self-similarity has following

properties:

Property 2.1: Time series X tð Þ; t� 0f g has time-scale invariance, or when
X ktð Þ; t� 0f g is normalized by k�H , they have the same structure.

Property 2.2: E X tð Þf g ¼ 0

Property 2.3: EfjXðtÞqjg ¼ EfjXð1ÞqjgtqH

The Hurst exponent [20, 21], denoted by H, is an important parameter to charac-
terize self-similarity. A self-similar process will degenerate towards a Poisson process
if H ¼ 0:5. A value of H in the interval (0.5, 1) refers to positive autocorrelation, i.e.
the random variety series is self-similar and the degree grows with the increase of H.
A value of H in the interval (0, 0.5) indicates negative autocorrelation, i.e. the series is
not self-similar. There are five commonly used and robust estimation methods and we
compare them in detail as shown in Table 1. The first three methods are graphical. The
estimation of Hurst exponent is the slope of the line, which is plotted by fitting
statistical sample points. Among the three methods, the variance-time plot method is
less robust and the periodogram method requires determination of the appropriate
cutoff frequency. The whittle estimator can only estimate short-range dependent data,
rather than the long-range dependent data and it has high complexity. Wavelet analysis
can estimate the Hurst parameter more accurately while the confidence interval of the
parameter cannot be obtained and the calculation is more complicated. In summary, we
select R/S plot to estimate Hurst exponent.

Table 1. Comparison of commonly used estimation methods for Hurst parameters

Self-similarity
judgement

Graphical Online Complexity Others

Variance-
time plot

Yes Yes No O nð Þ Lots of data required in
advance

R/S plot Yes Yes No O n2ð Þ Independent of edge
distribution

Periodogram Yes Yes No O nlognð Þ Set suitable cutoff frequency
at first

Whittle
estimator

Yes No No O n2ð Þ A quantitative method with
high complexity

Wavelet
analysis

Yes No No O nlognð Þ Accurate estimation
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R/S plot is widely used to estimate Hurst exponent. At the beginning, we need to
divide a time series of length N into series of length N, N/2, N/4, etc. Then for a time
series X1;X2; . . .;Xnf g, calculate its rescaled range R/S:

1. Calculate the mean: m ¼ 1
n

Pn

i¼1
Xi, where n is the length of the time series, which is

the network traffic;
2. Generate a deviation series Y1; Y2; . . .; Ynf g: Yt ¼ Xt � m; t ¼ 1; 2; . . .; n
3. Calculate the range R: R ¼ max Y1;Y2; . . .; Ynð Þ � min Y1; Y2; . . .; Ynð Þ

4. Calculate the standard deviation S: S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

i¼1
ðXi � mÞ2

s

5. Get the rescaled range R/S.

3 Echo State Network

Echo State Network (ESN) [22–24] is a new type of recursive neural network. An ESN
is made up of an input layer, a hidden layer (dynamic reservoir) and an output layer. It
can also remember data by adjusting weights inside the network. The dynamic reser-
voir contains a large number of sparsely connected neurons, which keep the state of the
system and has a capacity of short-term memory.

3.1 Structure of ESN

Echo State Network is a new type of three-layer recurrent neural network. As shown in
Fig. 1, an ESN consists of three parts: input layer, hidden layer (reservoir) and output
layer. The number of neurons is K, N and L respectively. Win 2 R

N�M and Wout 2
R

L� KþNþLð Þ are the input and output weight matrices respectively as shown in Fig. 1.
W 2 R

N�N represents concatenation of neurons inside the reservoir. Wback 2 R
N�L is a

feedback matrix from the output layer at one moment to the reservoir at the next.
The hidden layer is also known as a dynamic reservoir since it is made up of many

dynamic neurons which are connected. The reservoir is the core structure of ESN. Like
a human brain, it consists of many neurons. These neurons are connected to constitute a
large-scale and complex network so that they can transfer information inside. It can
constantly learn and deal with stimuli from the outside world. Considering the con-
dition that information cannot be transferred from one neuron to another, we have
weights among neurons in the range [−1, 1]. The weight will be 0 if there is no
connection between the two neurons, otherwise it will be a non-zero value in the
interval [−1, 1]. A positive weight results in promotion while a negative weight causes
neutralization.

Reservoir connection matrix is sparse. To guarantee the reservoir’s echo effects, the
spectral radius of W should be less than 1. Echo effects refer to the reservoir neuron’s
short-memory of the states of input traffic data.
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3.2 Key Parameters of Reservoir

The reservoir, a recursive structure of randomly generated, large-scale and sparse con-
nections, is the core structure of ESN. It is necessary to set appropriate values for reser-
voir’s key parameters to achieve good performance. Reservoir’s key parameters include:
spectral radius (SR), size of reservoir (N), input scale (IS) and sparse degree (SD).

• Spectral radius (SR). The feature value, with the largest absolute value, of the
connection weight matrix, denoted by kmax. The state of reservoir neurons can stay
decaying to keep the network stable if kmax\1.

• Size of reservoir (N). The number of neurons in the reservoir. The size of reservoir
is closely related to the number of samples to be predicted, which has a great impact
on the prediction. There are two ways to set the value of N. The first method is
based on the complexity of the problem, which is gradually increasing the value of
N; the second method is to select a value in the range T=10; T=2½ �, where T refers to
the size of the training set.

• Input scale (IS). A scale factor that needs to be multiplied by the input signal before
it connects neurons inside reservoir, i.e. a certain scaling of the input signal. With a
nonlinear time series, the IS is larger.

• Sparse degree (SD). The connection among neurons inside reservoir. Not all neu-
rons have connections between them. SD represents the number of connected
neurons out of N, i.e. SD ¼ n

N, where n is the number of connected neurons. With a
value SD 2 5%; 10%½ �, the reservoir can maintain its dynamic characteristics.

Reservoir Output layer Input layer 
(K nodes)

Fig. 1. Structure of Echo State Network
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3.3 Training

Win, W and Wback are randomly initialized at the beginning and they are unchanged
during the training and predicting process, which means that we only need to train the
weight matrix Wout. Linear regression algorithm is applied to calculate Wout. State
sequences of input, output and reservoir at moment n are defined as follows:

Definition 3.1: Suppose that the ESN has K input nodes and L output nodes, then the
input and output vectors are u nð Þ ¼ ðu1 nð Þ; . . .; uk nð ÞÞT and y nð Þ ¼ ðy1 nð Þ; . . .; yL nð ÞÞT
respectively. Win ¼ ðwin

ij ÞN�K is the input connection weight matrix, W ¼ ðwijÞN�N is
reservoir weight matrix and Wout ¼ ðwout

ij ÞL� KþNþ Lð Þ represents the output connection
weight matrix.

The training process of ESN can be divided into two stages:

Step1. Data Sampling. Initiate the network state at the very beginning. Generally we
set the initial state as 0, i.e. x 0ð Þ ¼ 0.

• Training samples u tð Þ; t ¼ 1; 2; . . .;Pf g are added to reservoir by the means of input
connection weight matrix Win.

• According to Eqs. 1 and 2, calculate states of reservoir and corresponding output
y nð Þ. Equation 1 is known as an update equation of reservoir neurons. Equation 2 is
an output state function, where n is the number of samples of input network. f and
fout are the neuron stimulation functions of the dynamic reservoir and output layer
respectively. In general, f ¼ tanh, fout ¼ Sigmoig. You can choose other functions
according to specific situation.

x nþ 1ð Þ ¼ f Winu nþ 1ð ÞþWx nð ÞþWbacky nð Þ� � ð1Þ

y nþ 1ð Þ ¼ fout W
out u nþ 1ð Þ; x nþ 1ð Þð Þð Þ ð2Þ

Step 2. Computing Output Weights. Compute output weights Wout based on
reservoir state matrix M and corresponding output matrix T collected at step 1, where
M 2 R

m�N , T 2 R
m�1. In general, the state of reservoir is not stable at the initial phase

of step 1. In order to eliminate the influence of the initial transient of the network, data
sampling will be simplified, which is removing some steps of sampling, and the value
of m is the final number of sampling. Using linear regression method, weights are
calculated according to Wout ¼ ðM�1 � TÞT , where M�1 is the generalized inverse
matrix of M.
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4 Experiments and Analysis

4.1 Dataset

ZTE provided us with network traffic data of three provinces: A, B, and C. Traffic data
of different time scales: second, hour, day, week, month, are stored in their own csv
files. Taking the minute-scale traffic data from March 1st to March 31st for example,
bytes of traffic data at several nodes at 100 fixed time points everyday are recorded and
stored into 31 files respectively in a common format. Due to the space limitation, we
will talk about minute-scale in detail.

After sampling, the size of traffic data in province A is 9.22 GB, along with
19.5 GB in province B and 50.7 GB in province C, which are apparently too large for
the self-similarity analysis. It is necessary to find out the rules and apply corresponding
pre-processing method to get suitable data.As described above, all the files have a
common format with multiple fields, some of which are unnecessary. We need three
fields: noid for Node number, time and kb for Bytes count and we can extract these data
from the whole dataset. In this way we get a dataset that is much smaller.

There are abnormal values in the dataset after filtering. The abnormal values of field
kb are −99999999 and 450000, which can also be considered as missing values. If the
ratio of abnormal values at one node exceeds 15%, then delete the node. Otherwise,
replace the abnormal values with the mean. Actually the ratio is either 0 or 100%.

Besides, the value of field kb is relatively large, so that normalization is required for
speed. The deviation standard method is applied to scale data into the range [−1.0, 1.0].

4.2 Self-similarity Experiments

We shall observe the flow of traffic data by time in the first place. Considering the
minute-scale traffic data, Fig. 2 demonstrates the traffic series of three provinces
intuitively. It is easy to tell that all of them have periodicity. The periods all approx-
imate to 96. Besides all of them has a big gap between the maximum value and the
minimum value, which means that they are all unstable time series that have strong
bursts. Since the local trends are some kind consistent to the overall trend, we can
roughly tell that the minute-scale traffic data of each province have self-similarity.

In order to more rigorously judge whether the traffic sequence has self-similarity,
the Hurst exponent estimation is applied. We adopt R/S plot to estimate Hurst expo-
nent. Hurst values at different time scales of province A, B and C are shown in
Tables 2, 3 and 4 respectively. We omit time scales week and month since the number
of traffic data is smaller than 100, which is not persuasive. As what we said above, a
time series is self-similar if its Hurst exponent is a value in range 0.5–1. It is proved that
network traffic data of three provinces at different time scales is self-similar.
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Fig. 2. Minute-scale traffic series: (a), (b), and (c) correspond to Province A, B and C
respectively.

Table 2. Hurst values in Province A

Time scale No. of traffic data Value of Hurst

Minute 3456 0.8274
Hour 840 0.8335
Day 142 0.8430

Table 3. Hurst values in Province B

Time scale No. of traffic data Value of Hurst

Minute 3456 0.7189
Hour 840 0.737
Day 632 0.7511
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4.3 Network Traffic Prediction and Evaluation

Evaluation. Ahead of displaying the results of prediction, the evaluation indicators
that we will use in this paper are introduced first. Considering test dataset x1; y1ð Þ; . . .;f
xm; ymð Þg, the prediction for vector ðx1; . . .; xmÞT is ðŷ1; ; . . .; ŷmÞT . In this paper, we
evaluate the performance of a prediction model with following evaluation indicators.

Mean Absolute Error (MAE). MAE is also known as L1-norm loss. It offers an
intuitive comparison among real values and prediction ones. The bigger the value of
MAE is, the worse this prediction model perform. It can be given by:

1
m

X

i¼1

m

yi � ŷið Þj j

Root Mean Square Error (RMSE). RMSE is the most commonly used performance
metric for regression tasks. It is used to measure the deviation between observed and
true values. RMSE is sensitive to abnormally large or small errors in predicted values,
which makes it well reflective of prediction accuracy. RMSE is given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

X

i¼1

m

ðyi � ŷiÞ2
s

R-square. R-square is used to describe how well the regression line fits the observa-
tions. It reflects the proportion of predictable dependent variables from the unpre-
dictable ones. R-square can be used to describe how well the regression line fit the
observations. A larger value of R2 indicates a better performance of the prediction
model. It is given by:

R2 y; ŷð Þ ¼ 1�
Pm

i¼1ðyi � ŷiÞ2Pm
i¼1ðyi;�yÞ2

¼ 1�
Pm

i¼1ðyi � ŷiÞ2=mPm
i¼1ðyi;�yÞ2=m

¼ 1�MSE ŷ; yð Þ
Var yð Þ

Experiment Result. We predict network traffic data of three provinces with GRID-
ESN: finding parameters of ESN using the grid search algorithm, and make compar-
isons with Elman, SVR and ESN. The key parameters to be set includes: SD, N, SR
and regularization factor v. We set N = 1000. SR, SD and v are determined by grid
search algorithm. Their searching ranges are [0.01, 1], [0.01, 0.1] and [10−6, 10−2]
respectively.

Table 4. Hurst values in Province C

Time scale No. of traffic data Value of Hurst

Minute 3456 0.5755
Hour 816 0.6090
Day 784 0.7016
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Prediction of Network Traffic in Province A. Parameter estimation of GRID-ESN:
SR = 0.948, SD = 0.014 and v = 0.01. The prediction comparison is shown in Fig. 3
and Table 5. From Fig. 3, we can find that ESN can fit the traffic data better than SVR
and Elman, especially at the bursts. Besides, the average evaluation values of 30
experiments are shown in Table 5, where GRID-ESN get the smallest RMSE and
MAE, and the biggest value of R-square.

Fig. 3. Prediction comparison for traffic data in Province A: (a) is the prediction comparison
among SVR, Elman and ESN; (b) is the prediction comparison between ESN and GRID-ESN

Table 5. Province A: RMSE/MAE/R-square value for ESN, Elman, SVR and GRID-ESN

RMSE MAE R-square

ESN 0.03095 0.02181 0.95747
Elman 0.04237 0.03426 0.92041
SVR 0.03224 0.02643 0.95385
GRID-ESN 0.02673 0.02027 0.96827
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Prediction of Network Traffic in Province B. Parameter estimation of GRID-ESN:
SR = 0.864, SD = 0.045 and v = 0.01. It is not sufficient to make a decision based on
the regular traffic data, so that we select traffic data on holidays, which contain many
bursts. The prediction comparison is shown in Fig. 4 and Table 6. As shown in Fig. 4,
ESN is still better than SVR and Elman. Compare GRID-ESN with ESN in Fig. 4(b),
GRID-ESN performs better, especially at the error at burst nodes. The average eval-
uation values of 30 experiments are shown in Table 6, where GRID-ESN get the
smallest RMSE and MAE, and the biggest value of R-square.

Prediction of Network Traffic in Province C. Parameter estimation of GRID-ESN:
SR = 0.948, SD = 0.043 and v = 0.01. We select a piece of data that is more unstable.

Fig. 4. Prediction comparison for traffic data in Province B: (a) is the prediction comparison
among SVR, Elman and ESN; (b) is the prediction comparison between ESN and GRID-ESN
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The prediction comparison is shown in Fig. 5 and Table 7. From Fig. 5, we can find
that ESN can fit the traffic data better than SVR and Elman. The evaluation of the four
models including GRID-ESN is shown in Table 7, where GRID-ESN get the smallest
RMSE and MAE, and the biggest value of R-square.

Table 6. Province B: RMSE/MAE/R-square value for ESN, Elman, SVR and GRID-ESN

RMSE MAE R-square

ESN 0.00513 0.00267 0.90525
Elman 0.00676 0.00546 0.84214
SVR 0.00573 0.00425 0.88679
GRID-ESN 0.00503 0.00255 0.91251

Fig. 5. Prediction comparison for traffic data in Province C: (a) is the prediction comparison
among SVR, Elman and ESN; (b) is the prediction comparison between ESN and GRID-ESN
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5 Conclusion

We observe and analyze the characteristics of network traffic dataset, find the law of
data storage, and then perform a series of processing on data set, such as specification,
integration, transformation and cleaning to obtain the traffic data of each node at
different time scales. By plotting the traffic data graph, we can easily find the sud-
denness and periodicity of the traffic data. By calculating the Hurst exponent of the
node traffic at different time scales of the dataset, it is proved that the traffic data of the
three provinces provided by ZTE are self-similar, which indicated that the nonlinear
characteristics of the network traffic time series can be predicted by a nonlinear time
series model. In this paper we propose a traffic prediction method based on Echo State
Network. The ridge regression learning algorithm is applied instead of traditional linear
regression algorithm so that ill-condition can be avoided. Meanwhile the gird search
algorithm is used to optimize the reservoir parameters and regularization coefficients.
We compare GRID-ESN with ESN, SVR and Elman, and evaluate the prediction
performance with four indicators: RMSE, MAE and R-Square, which indicates that our
approach can predict traffic data with better performance.
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