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Abstract. Mobile crowd sensing (MCS) has been recognized as a
promising method to acquire massive volume of data. Stimulating the
enthusiasm of participants could be challenging at the same time. In this
paper, we first propose a three-layer mobile crowd sensing architecture
and introduce edge servers into it. The edge servers are used to process
raw data and improve response time. Our goal is to maximize social wel-
fare. Specifically, we model the social welfare maximization problem by
Markov decision process and study a convex optimization pricing prob-
lem in the proposed three-layer architecture. The size of the tasks the
edge servers assign is adjustable in this system. Then Lagrange multiplier
method is leveraged to solve the problem. We derive the experimental
data from real-world dataset and extensive simulations demonstrate the
performance of our proposed method.

Keywords: Mobile crowd sensing · Pricing · Social welfare ·
Incentive mechanism · Convex optimization

Supported by the National Natural Science Foundation of China (Nos. 61872044,
61502040), Beijing Municipal Program for Excellent Teacher Promotion (no.
PXM2017 014224.000028), Beijing Municipal Program for Top Talent Cultivation
(CIT&TCD201804055), Open Program of Beijing Key Laboratory of Internet Cul-
ture and Digital Dissemination Research (ICDDXN001), Qinxin Talent Program of
Beijing Information Science and Technology University, Supplementary and Support-
ive Project for Teachers at Beijing Information Science and Technology University (No.
5111823401) and Key Research and Cultivation Projects at Beijing Information Science
and Technology University (No. 5211823411).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

Y. Yin et al. (Eds.): MobiCASE 2019, LNICST 290, pp. 184–197, 2019.

https://doi.org/10.1007/978-3-030-28468-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28468-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-28468-8_14


A Pricing Incentive Mechanism for Mobile Crowd Sensing 185

1 Introduction

There are many smart-phones with sensor devices proliferating in our daily life,
which promote the prevalence of mobile crowd sensing. Mobile crowd sensing can
be considered as a novel method to obtain data, handle and share the data [1]. It
can be applied in many scenes, such as location [2,3], environmental monitoring
[4] and smart transportation [5,6]. However, the process of obtaining data causes
consume of the power, flow. Meanwhile, high quality of sensory data is crucial
to the platform. Therefore, we need some incentive mechanisms to stimulate the
users [10–16].

The traditional mobile crowd sensing system is two-layer framework [10].
With the rapid development of Internet of Thing (IoT), the platform need
response quickly and provide service with high reliability [11]. Considering of
the above, we introduce edge servers into traditional mobile crowd sensing sys-
tem [12]. The flow of a typical three-layer mobile crowd sensing system in edge
computing is shown in Fig. 1. It is composed of mobile crowd sensing cloud plat-
form, crowds and edge servers. The edge servers can be deployed with mobile
equipments (base stations, wireless routers). The task initiators and crowds could
use the system to acquire or provide sensing data. The cloud platform could be
regarded as an interface of task initiators and crowds.

Fig. 1. A mobile crowd sensing system

In the three-layer system, each part of crowds wants to maximize its own
utility because of the selfish of users. So we focus on designing an incentive
mechanism to stimulate them. Our goal is to maximize the social welfare.

To design an efficient pricing incentive mechanism, there are three challenges
we have to address. First, we introduce edge servers in a three-layer structure
in mobile crowd sensing system. Second, our goal is to make the social welfare
maximization and we must solve the problem in a polynomial time. The third
challenge is on how to adjust the demand and supply according to the ability of
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crowds. Faced with these challenges, we consider a three-layer architecture and
tend to boil down the social welfare maximization problem as a Walrasian equi-
librium problem. Then convex optimization and Markov decision process(MDP)
are used to model and solve the problem. Experiments show that our proposed
method is efficient.

The contributions of our paper are listed as follows:

(1) First, we first propose a three-layer mobile crowd sensing platform and intro-
duce edge servers into the platform to make the platform response quickly;

(2) Second, the dynamic of the crowds is considered in this paper. Then we
use Walrasian Equilibrium to describe the problem and model by convex
optimization and Markov decision process;

(3) Finally, the performance of our proposed algorithms are evaluated through
Matlab. The performance of our proposed algorithms is 32.4% better than
the existing method SWMA algorithm [17] and 39.3% better than the exist-
ing method NWSA [18]. We also compare the overpayment radio and our
proposed algorithms is most closest cost than [17,18].

The organization of this paper is as follows. We review the related work
in Sect. 2. In Sect. 3, we present the model and the problem formation. The
algorithms of pricing for mobile crowd sensing are presented in Sect. 4. Section 5
conducts simulations to evaluate the performance of our proposed algorithms.
We conclude the simulation results in Sect. 6.

2 Related Work

We review the related works from three aspects: incentive of mobile crowd sens-
ing, pricing on mobile crowd sensing and incentive of edge computing in this
section.

2.1 Mobile Crowd Sensing Applications

The mobile crowd sensing could be applied in transportation, environmental
monitoring, healthcare and social network. Tse et al. [5] analyzed the relation-
ship between traffic jam and weather conditions in Beijing through Sina Weibo
using social networks. Kalejaiye et al. [6] developed a mobile application for
developing areas to predict bus arrival time. Matarazzo et al. [7] used the mov-
ing smartphones to monitor bridge vibrations and evaluated bridge avoiding
unexpected rehabilitation. Xu et al. developed a NoiseSense system to house
a rel-time urban mapping service [8]. Wang et al. [9] leveraged the influenced
propagation on the social network to recruit workers.

2.2 Incentive of Mobile Crowd Sensing

The incentive mechanisms of mobile crowd sensing solve the problem that stim-
ulating the enthusiasm of users’ participation. Sun et al. [14] designed an online
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incentive mechanism and solved the social welfare maximization problem. It was
based on heterogeneous belief values for joint social states and realtime through-
put. However, it doesn’t consider the optimality of the proposed auction. Jin et
al. [13] guaranteed near-optimal social welfare based on reverse auction. But this
paper doesn’t consider the demand of the platform and can’t adjust the supply
according to the required. Peng et al. [15] considered the effort levels of par-
ticipants to bridge the gap between sensing data quality and reward. However,
the aforementioned incentive mechanisms don’t consider the uncertainty of the
mobile crowd sensing. Gao et al. [16] ensured a high probability of success to
perform tasks using reverse-auction-based incentive mechanism.

2.3 Pricing on Mobile Crowd Sensing

A proper price of sensing data makes users willing to submit high quality sens-
ing data [19]. Zheng et al. [19] presented the architecture of mobile crowd-sensed
data market and introduced in-depth study into online data pricing. The method
is leveraged to aggregate raw data and determine the trading pricing of sens-
ing data. Duan et al. [17] introduced Walrasian Equilibrium as a comprehensive
metric to price and solved social welfare maximization problem by dual decom-
position. Like this, He et al. [20] solved the same problem but leveraged reverse
flow network. The aforementioned works don’t consider the data quality while
pricing. The data quality is took into consideration in [13,21]. Han et al. [21]
treated the pricing problem as non-submodular optimization problem and then
converted it into submodular problem by Poisson binomial distributions.

2.4 Incentive of Edge Computing

The incentive mechanisms of edge computing are based on game theory mostly.
Yang et al. [22] designed a distributed manner to solve the multi-user computa-
tion offloading problem in a multi-channel environment. Liu et al. [23] modeled
the edge server owners’ interaction and solved simulating computation offloading
problem based on stackellberg game. Yu et al. [24] proposed Wi-Fi monetization
model and used stackellberg game to analyse the factors affecting the venue own-
ers. The above works don’t solve the computation offloading problem effectively.
Zhou et al. [25] combined deep learning and edge computing. They leveraged
edge computing to process raw data and used reservation pricing auction to
recruit participants.

Unlike the aforementioned studies, we first propose a three-layer mobile
crowd sensing architecture and add edge servers into the system in this paper.
Then we transfer the social welfare maximization problem as convex optimiza-
tion and solve it by lagrangian multiplier method.

3 System Model and Problem Formulation

In this section, we first present variables to be used in the article. Each edge
server plays a game with the crowds to decide which crowds to perform the task.
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The crowds are dynamically moving because they may move to another spot
while performing the tasks. So we suppose they can accomplish the tasks with
a certain probability. The social welfare maximization problem is conducted in
this section. Then we use MDP and convex optimization to model and solve it.

3.1 System Overview

Each task needs to be performed in serval spots called Area of Interest (AoI).
We divide all task areas into several interest spots Z = {z1, z2, ..., zl}. There are
many interest spots in the AoI. The task set is A = {A1, A2, ..., Am}, where Ai

is a quintuple Ai = {Zi, t
b
i , t

f
i , ti, Ni}. Each task is interested in several spots.

There are n crowds U = {u1, u2, ..., un} to perform tasks. Suppose each edge
server can receive and perform several tasks at the same time. The edge servers
x can be defined as G = {G1, G2, ..., GM} where Gx = {lx, gb

x, gf
x , cx,Mx,MX}.

We consider that each user can perform a task at one time. The sensing time
to perform the task can be divided into many time slots. pij is the unit price of
task ai in spot zj . tij is the time performing task ai in zj . We consider the unit
price pij of completing task ai in different interest spots is different because of
the complexity and cost of performing tasks.

Zi =
∑

ai∈zj
zj is the locations of task i requests. tbi and tfi are the earliest

beginning time and the latest finishing time respectively. ti is the sensing time of
the task i required and Ni is the number of crowds the sensing task needs. lx is
the location of edge server x. gb

x, gf
x is the beginning time and the finish time of

the edge server x correspondingly. cx is the cost of the edge server x calculating
from its crowds. Mx is the number of tasks currently being completed and MX

maximum number of performing tasks at the same time.
In this system, each part of the system wants to maximize their own utility

and every member works toward this goal in each layer game. We formulate it
as a social welfare maximization problem.

3.2 System Model

In this section, the edge servers and the crowds paly a game and decide which
crowds to perform the task. Because the crowds are mobile, we can not accurately
know the location of crowd. MDP is a common method to deal with continuous
optimization in discrete-time. The basic idea of MDP is to choose the appropriate
decision-making behavior to maximize the expected return value in the current
state.

The MDP consists of a quintet M = (D,S,A, Psa, R), where
D: is the decision points. D = {0, 1, 2, ..., N} where N represents that the

time all sensing tasks completed.
S: is the states set, s ∈ S, si is the state of step i. S = G × L × T × V =

{G1, G2, ..., Gm, L1, L2, ..., Lm, T1, T2, ..., Tm, V }, where G = {G1, G2, ..., Gm} is
an m-dimensional vector represented currently-executing task. Gi ∈ {0, 1}, i =
1, 2, ...,m. Gi = 1 indicates that the crowds is performing the task and Gi = 0
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means that the task isn’t performed. L = {L1, L2, ..., Lm} is an m-dimensional
vector represented the location of the tasks. T = {T1, T2, ..., Tm} is an m-
dimensional vector represented the sensing time of the tasks and V is the moving
rate of the crowds. In a time, the state of crowd is s ∈ S, the current task is
t ∈ T , the movement rate is v ∈ V .

a: is the set of actions, ai is the action of step i. The crowds can perform
many different tasks, so a = (a1, a2, ..., am), where ai ∈ {0, 1}, i = 1, 2, ...,m,
ai = 1 indicates that the crowds is performing the task and ai = 0 means that
the task hasn’t been performed.

Psa: is the probability of state transition. Psa is the probability distribu-
tion of the other states in the current state a ∈ S after performing action
a. For example, when the crowd takes action a at state s, the probability
transferring to s′ can be expressed as p(s′|s, a). The current state is s =
[a1, a2, ..., am, l1, l2, ..., lm, t1, t2, ..., tm, v]. We choose action a then the transition
probability of next state s′ = [a′

1, a
′
2, ..., a

′
m, l′1, l

′
2, ..., l

′
m, t′1, t

′
2, ..., t

′
m, v′] is

P (s′|s, a) =

⎧
⎪⎨

⎪⎩

P [v′|v]
∏

P [l′i, t
′
i|li, ti], if g′ = a

0, else
(1)

where P [v′|v] is the transition probability of moving rate. P [l′i, t
′
i|li, ti] is the

union transition probability of the sensing time and the location of task i.
The arrival time of crowds follows a random point distribution. We suppose

the arrival of crowds obeys the poisson distribution which is shown in Eq. (2). The
arrival time is a random sequence of independent exponentially and distribution
identically. Because the arrival of crowds is a poisson distribution, the number
of crowds in different time is independent. The transition probability of location
also obeys the poisson distribution.

Pn(k) =
(λt)n

n!
e−λt (2)

R: S × A → R, R is the reward function. If (s, a) transfers to the next state
s′, the reward function is r(s′|s, a). In each state, the value function of task ai

is Vi(ai) and it is a convex function. The utility of edge server Ui(ai) is Vi(ai)
minus the payoff paid to crowds, which is defined in Eq. (3).

Ui(ai) = Vi(ai) −
l∑

j=1

pijtij (3)

For the user uk, the cost function of performing task ai is Cki(tki) and it
is a convex function increased with sensing time. The utility function Uk(uk)
of user uk is the payoff getting from the edge server minus the cost Cki(tki) of
performing tasks which is defined in Eq. (4).

Uk(uk) =
m∑

i=1

pijtij −
m∑

i=1

Cki(tki) (4)
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For the edge servers and crowds, they all want to maximum their utility
while the supply from the crowds and the demand from the edge servers are
equal. According to exchange market theory of economics, this state reaches
Walrasian equilibrium. Walrasian equilibrium means that the total amount of
excess demand and excess supply in the entire market must be equal. Then the
overall system reaches a Pareto optimal point. Pareto optimal is a kind of ideal
state of resource allocation.

3.3 Problem Formulation

Social welfare of the whole system can be defined as Eq. (5)

W =
m∑

i=1

Ui(ai) +
n∑

j=1

Uk(uk) (5)

For the edge servers and the crowds, they want to maximize their utilities.
Then the problem can be described as a social welfare maximization problem
which is defined as follows.

max W (6)
s.t. tij ≤ ti (7)

Each task assigned by edge server is ti, we divide the task ti into several
subtasks, the size of each subtask is less than or equal to corresponding task,
which is described in Eq. (7).

4 Pricing Incentive Mechanism for Mobile Crowd Sensing

4.1 Convex Optimization Problem

The social welfare maximization problem proposed in Eqs. (6)–(7) is a con-
vex optimization problem. We transform constrained optimization problem into
unconstrained optimization problem using penalty function. The value of edge
server V (ai) and the cost function of performing task ai is Cki(tki) are convex
functions. We can apply Lagrange multiplier method to solve them. First, we
introduce Lagrange multiplier method to obtain the augmented matrix where
λk > 0. The Lagrange function is defined as Eq. (8)

W =
m∑

i=1

V (ai) −
n∑

k=1

m∑

i=1

Cki(tki) +
l∑

j=1

m∑

i=1

λij(ti − tij) (8)

Then we define the value function V (ai) of task ai as

V (ai) = ωlog(1 + ω) (9)

Different application scenarios have different selection and measurement indi-
cators of tij .Yang et al. [27] used the sensing time submittedbyusers to evaluate tij .
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In [28], tij depends on the locations of users through a coverage function. In this
paper, tij is the sensing time the task ai requests.

The cost of the crowds performing task ai is

Cki(tki) = bkit
2
ki + ckitki (10)

where bki > 0 and cki > 0.
We bring Eqs. (9) and (10) into Eq. (8) then we have

W (t,λ) =
m∑

i=1

ωlog(1 + ω) −
n∑

k=1

m∑

i=1

(bkit
2
ki + ckitki) +

l∑

j=1

m∑

i=1

λij(ti − tij) (11)

where t is the vector of sensing time got from the crowds, t = (tij)zj∈Z . p is the
price vector, p = (pij)ai∈A,zj∈Z .

We are motivated the method of constructing lagrange function by literature
[29], we modify the lagrange function and consider the MDP problem into it as
follows:

W (t,λ) =
m∑

i=1

ωlog(1 + ω) −
n∑

k=1

m∑

i=1

(bkit
2
ki + ckitki) +

l∑

j=1

m∑

i=1

λij(ti − tij)

+
∑

s′∈S

τp(s′|s, a)vk(s′)) +
1
2σ

||Δ||22
(12)

We consider the Lagrangian dual problem of problem (6), which is shown as
follows:

min
λ≥0

max∑m
i=1 tki≤χk

W (t,λ) (13)

s.t. tij ≤ ti (14)

4.2 Walrasian Equilibrium Algorithm

The dual decomposition method mainly aims at the convex optimization prob-
lems. It introduces the Lagrange multiplier, absorbs the constraint conditions
into the objective function. Then we solve the optimal Lagrange multiplier as the
main problem and decompose the optimization problem of the given Lagrange
multiplier into several subproblems and solve separately.

In our paper, the dual problem (13)–(14) can be decomposed into main prob-
lem and sub-problem. The sub-problem is that given the Lagrange multiplier λ,
how to optimize t and p to maximize W (t,λ). The main problem is that how to
optimize the Lagrange multiplier λ to minimize W (t,p,λ). Then the problem
can be solved by two layers of circulation.
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Sub Problem Algorithm. The sub problem is how to allocate the task to each
crowd in each spot to maximize W (t,p,λ) while given the Lagrange multiplier
λ. We can take the partial derivatives to get the optimal task allocation. We take
the derivative of the Eqs. (9) and (10) which is shown in Eq. (15). Then we use
the greedy iteration to allocate the task. The algorithm is shown in Algorithm1.

∂W (t,λ)
∂t

= ωlog(1 + ω) − 2bkitki − cki − λk (15)

Algorithm 1. The task allocation algorithm between the edges and the crowds
Require: λ
Ensure: P, T, W
1: initialize the task allocation matrix Ti,j,k ← −→

0 , the price matrix Pi,j,k ← −→
0 , the

social welfare matrix Wi,j,k ← −→
0 , where i ∈ m, j ∈ l, k ∈ n

2: for i ∈ m, j ∈ l, k ∈ n do
3: calculate T ∗

i,j,k and P ∗
i,j,k according to Eq.(15)

4: end for
5: repeat
6: for each task in each spot do
7: calculate Wi,j,k according to Eq.(12)
8: end for
9: (i∗, j∗, k∗) ← arg max

(i,j,k)∈T
Wi,j,k

10: allocate the task to user k∗

11: T ← T \ {(i∗, j∗, k∗)}
12: until T ∈ φ
13: return P, T, W

Line 1 initializes the parameters used in this algorithm. We initialize the task
allocation matrix Ti,j,k ← −→

0 , the price matrix Pi,j,k ← −→
0 and the the social

welfare matrix Wi,j,k ← −→
0 . For all tasks in all spots, we calculate T ∗

i,j,k and
P ∗

i,j,k according to the derived function Eq. (15) which is shown in line 2–4. Line
5–12 is the process of allocating tasks to appropriate crowds. Line 6–8 calculates
the social welfare of tasks in each spot for each user. Then we select the crowd
of maximizing social welfare and allocate the task to him. Finally we get the
P, T, W .

The time complexity of the Algorithm 1 is O(lmn + ln2S), where S is the
average sensing ability of each crowds.

Main Problem Algorithm. We use the subgradient method to optimize Lagrange
multiplier λ until it converge to λ∗ . In every iteration, the Lagrange multiplier
is updated according to Eq. (16)

λN+1 = [λN − μλ(N)
∂W (t,λ)

∂λN
]+ (16)
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where [x]+ = max{0, x}. In Eq. (16), μλ(N) is the iteration steps. When N → ∞,
μλ(N) → 0 to ensure convergence. If the objective function is derivable, ∂W (t,λ)

∂λN is
the corresponding gradient value of the objective function in λN . Else, ∂W (t,λ)

∂λN

is the time gradient value of the objective function in λN .
Through the gradual release and transformation of the original optimization

problem, the iterative optimization algorithm is finally obtained which is shown
in Algorithm 2.

Algorithm 2. The main problem solution algorithm
Require: Nmax

Ensure: λ, σ, P ∗, T ∗, W ∗

1: set the initialize number of iteration as N0 = 0, set the initialize lagrangian multi-
plier λ.

2: while N0 < Nmax do
3: use algorithm 1 to calculate P ∗, T ∗

4: update λ according to the Eq.(16) using the output of algorithm 1
5: if |λN+1 − λN | > ε then
6: tij = tij + α
7: else
8: break
9: end if

10: N0 = N0 + 1
11: end while
12: p∗

ij = pij

13: t∗
ij = tij

14: λ∗
ij = λij

15: W ∗
ij = Wij

16: return p∗, t∗, W ∗, λ∗

Line 1 sets the initialize number of iteration as N0 = 0 and the initialize
lagrangian multiplier λ. Line 2–11 is the process of getting the finally P ∗, T ∗,W ∗.
In line 3 we use Algorithm 1 to calculate P ∗, T ∗. Then we use the output of
Algorithm 1 to update λ. If |λN+1−λN | > ε, we increase the size of task and con-
tinue the iterative process. After the iterative process, we get the p∗, t∗, W ∗, λ∗.

In Algorithm 2, line 3 use Algorithm 1, so the time complexity is O(lmn +
ln2S). The time complexity the Algorithm 2 is O((n + 1)2(lmn + ln2S)(n + 1)),
that is O(n4l(m + nS)).

5 Performance Evaluation

5.1 Simulation Setup

To evaluate the performance of our proposed algorithms, we take simulations on
Matlab. We choose the data set from Stanford Large Network Dataset Collection
[33]. The dataset contains the user’s id, check-in time, latitude, longitude and
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location. We use the latitude and longitude to simulate the crowds’ location.
We classify the latitude between 40–41 and longitude between −123–122 of the
crowds to edge servers and they can work for the edge servers. Other edge servers
are in a similar manner. The size of tasks, the beginning time and ending time
are generated randomly.

5.2 Simulation Results

First we generate 10 edge servers and 100 crowds. First we analyse the conver-
gence and optimality, which is shown in Fig. 2. From the figure, we can get that
the more iterations, the greater the social welfare. As the number of iterations
increases, the social welfare converges when the iteration at around 800. The
more accurate of the Lagrange multiplier λ, the greater the social welfare.
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To evaluate the performance of our proposed method, we take 100 exper-
iments at each scenario. We compare our method with the existing methods
Nonoptimal Winner Selection Algorithm(NWSA) [18] and Social Welfare Maxi-
mization Algorithm (SWMA) [17]. The cumulative distribution function (CDF)
of the social welfare is shown in Fig. 3. The performance of our proposed algo-
rithms are 32.4% better than the existing method SWMA algorithm and 39.3%
better than NWSA.

Then we compare the overpayment ratio of our proposed method and the
other existing methods. We define the overpayment ratio as (payoff−cost)/cost.
The payoff is the payment the edge server pays to the crowd and the cost is the
crowd performs the task. Figure 4 is the CDFs of the overpayment ratio. The
average overpayment ratio of our proposed method is 0.05. The average over-
payment ratios of SWMA algorithm and NWSA are 9.65 and 1.83 respectively.
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6 Conclusion

In this work, we first propose a three-layer mobile crowd sensing system struc-
ture. The edge servers are introduced to improve the response speed and service
with high reliability. Then we conduct a game between the crowds and the edge
servers. We build an MDP model and considered the social welfare maximization
problem. Then we solve the problem by lagrangian multiplier method. The algo-
rithms are designed to calculate the Lagrange multiplier and the social welfare.
We implement them and evaluate the performance by real-world dataset. Our
proposed algorithms are better than the existing methods NWSA and SWMA
in social welfare and overpayment ratio.
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